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CHAPTER

ONE

INSTALLING TWISTED

1.1 Installing Optional Dependencies

This document describes the optional dependencies that Twisted supports. The dependencies are python packages that
Twisted’s developers have found useful either for developing Twisted itself or for developing Twisted applications.

The intended audience of this document is someone who is familiar with installing optional dependencies using pip.

If you are unfamiliar with the installation of optional dependencies, the python packaging tutorial can show you how.
For a deeper explanation of what optional dependencies are and how they are declared, please see the setuptools doc-
umentation.

The following optional dependencies are supported:

• dev - packages that aid in the development of Twisted itself.

– pyflakes

– twisted-dev-tools

– python-subunit

– Sphinx

– TwistedChecker, only available on python2

– pydoctor, only available on python2

• tls - packages that are needed to work with TLS.

– pyOpenSSL

– service_identity

– idna

• conch - packages for working with conch/SSH.

– cryptography

• soap - the SOAPpy package to work with SOAP.

• serial - the pyserial package to work with serial data.

• all-non-platform - installs tls, conch, soap, and serial options.

• macos-platform - all-non-platform options and pyobjc to work with Objective-C apis.

• windows-platform - all-non-platform options and pywin32 to work with Windows’s apis.

• http2 - packages needed for http2 support.

– h2

3

https://pip.pypa.io/en/latest/quickstart.html
https://packaging.python.org/en/latest/installing.html#examples
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
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https://pypi.python.org/pypi/TwistedChecker
https://pypi.python.org/pypi/pydoctor
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https://pypi.python.org/pypi/pyserial
https://pypi.python.org/pypi/pyobjc
https://pypi.python.org/pypi/pywin32
https://pypi.python.org/pypi/h2
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– priority

• contextvars - the contextvars backport package to provide contextvars support for Python versions before 3.7.

• Installing Optional Dependencies: documentation on how to install Twisted’s optional dependencies.

4 Chapter 1. Installing Twisted

https://pypi.python.org/pypi/priority
https://pypi.org/project/contextvars/


CHAPTER

TWO

TWISTED CORE

2.1 Developer Guides

2.1.1 The Vision For Twisted

Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While Python by itself is a very powerful language, there
are many facilities it lacks which other languages have spent great attention to adding. It can do this now; Twisted is a
good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it continues to
improve.

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through all proto-
cols. Failing that, all functionality should be configurable through at least one protocol, with a seamless and consistent
user-interface. The next phase of development will be focusing strongly on a configuration system which will unify
many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-programmer.

2.1.2 Writing Servers

Overview

This document explains how you can use Twisted to implement network protocol parsing and handling for TCP servers
(the same code can be reused for SSL and Unix socket servers). There is a separate document covering UDP.

Your protocol handling class will usually subclass twisted.internet.protocol.Protocol. Most protocol han-
dlers inherit either from this class or from one of its convenience children. An instance of the protocol class is in-
stantiated per-connection, on demand, and will go away when the connection is finished. This means that persistent
configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.
Factory. The buildProtocol method of the Factory is used to create a Protocol for each new connection.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the Factory
does not listen to connections, and in fact does not know anything about the network. See the endpoints documentation
for more information, or IReactorTCP.listenTCP and the other IReactor*.listen* APIs for the lower level APIs
that endpoints are based on.

This document will explain each step of the way.

5



Twisted Documentation, Release 23.8.0

Protocols

As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. The protocol responds to events as they arrive from the network and the
events arrive as calls to methods on the protocol.

Here is a simple example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all events.
Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection()

This protocol responds to the initial connection with a well known quote, and then terminates the connection.

The connectionMade event is usually where setup of the connection object happens, as well as any initial greetings
(as in the QOTD protocol above, which is actually based on RFC 865). The connectionLost event is where tearing
down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def __init__(self, factory):
self.factory = factory

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols + 1
self.transport.write(

"Welcome! There are currently %d open connections.\n" %
(self.factory.numProtocols,))

def connectionLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols - 1

def dataReceived(self, data):
self.transport.write(data)

Here connectionMade and connectionLost cooperate to keep a count of the active protocols in a shared object, the
factory. The factory must be passed to Echo.__init__ when creating a new instance. The factory is used to share
state that exists beyond the lifetime of any given connection. You will see why this object is called a “factory” in the
next section.

6 Chapter 2. Twisted Core
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loseConnection() and abortConnection()

In the code above, loseConnection is called immediately after writing to the transport. The loseConnection call
will close the connection only when all the data has been written by Twisted out to the operating system, so it is safe
to use in this case without worrying about transport writes being lost. If a producer is being used with the transport,
loseConnection will only close the connection once the producer is unregistered.

In some cases, waiting until all the data is written out is not what we want. Due to network failures, or bugs or
maliciousness in the other side of the connection, data written to the transport may not be deliverable, and so even
though loseConnection was called the connection will not be lost. In these cases, abortConnection can be used:
it closes the connection immediately, regardless of buffered data that is still unwritten in the transport, or producers
that are still registered. Note that abortConnection is only available in Twisted 11.1 and newer.

Using the Protocol

In this section, you will learn how to run a server which uses your Protocol.

Here is code that will run the QOTD server discussed earlier:

from twisted.internet.protocol import Factory
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTDFactory(Factory):
def buildProtocol(self, addr):

return QOTD()

# 8007 is the port you want to run under. Choose something >1024
endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(QOTDFactory())
reactor.run()

In this example, I create a protocol Factory. I want to tell this factory that its job is to build QOTD protocol instances,
so I set its buildProtocol method to return instances of the QOTD class. Then, I want to listen on a TCP port, so I
make a TCP4ServerEndpoint to identify the port that I want to bind to, and then pass the factory I just created to its
listen method.

endpoint.listen() tells the reactor to handle connections to the endpoint’s address using a particular protocol, but
the reactor needs to be running in order for it to do anything. reactor.run() starts the reactor and then waits forever
for connections to arrive on the port you’ve specified. You can stop the reactor by hitting Control-C in a terminal or
calling reactor.stop().

For more information on different ways you can listen for incoming connections, see the documentation for the endpoints
API . For more information on using the reactor, see the reactor overview.

2.1. Developer Guides 7
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Helper Protocols

Many protocols build upon similar lower-level abstractions.

For example, many popular internet protocols are line-based, containing text data terminated by line breaks (commonly
CR-LF), rather than containing straight raw data. However, quite a few protocols are mixed - they have line-based
sections and then raw data sections. Examples include HTTP/1.1 and the Freenet protocol.

For those cases, there is the LineReceiver protocol. This protocol dispatches to two different event handlers –
lineReceived and rawDataReceived. By default, only lineReceived will be called, once for each line. How-
ever, if setRawMode is called, the protocol will call rawDataReceived until setLineMode is called, which returns it
to using lineReceived. It also provides a method, sendLine, that writes data to the transport along with the delimiter
the class uses to split lines (by default, \r\n).

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver

class Answer(LineReceiver):

answers = {'How are you?': 'Fine', None: "I don't know what you mean"}

def lineReceived(self, line):
if line in self.answers:

self.sendLine(self.answers[line])
else:

self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.

Several other helpers exist, such as a netstring based protocol and prefixed-message-length protocols.

State Machines

Many Twisted protocol handlers need to write a state machine to record the state they are at. Here are some pieces of
advice which help to write state machines:

• Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

• Don’t mix application-specific code with Protocol handling code. When the protocol handler has to make an
application-specific call, keep it as a method call.

Factories

Simpler Protocol Creation

For a factory which simply instantiates instances of a specific protocol class, there is a simpler way to implement the
factory. The default implementation of the buildProtocol method calls the protocol attribute of the factory to
create a Protocol instance, and then sets an attribute on it called factory which points to the factory itself. This lets
every Protocol access, and possibly modify, the persistent configuration. Here is an example that uses these features
instead of overriding buildProtocol:

8 Chapter 2. Twisted Core
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from twisted.internet.protocol import Factory, Protocol
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
# self.factory was set by the factory's default buildProtocol:
self.transport.write(self.factory.quote + '\r\n')
self.transport.loseConnection()

class QOTDFactory(Factory):

# This will be used by the default buildProtocol to create new protocols:
protocol = QOTD

def __init__(self, quote=None):
self.quote = quote or 'An apple a day keeps the doctor away'

endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(QOTDFactory("configurable quote"))
reactor.run()

If all you need is a simple factory that builds a protocol without any additional behavior, Twisted 13.1 added Factory.
forProtocol, an even simpler approach.

Factory Startup and Shutdown

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is frequently
persisted, it is often not appropriate to do them in __init__ or __del__, and would frequently be too early or too
late).

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class LoggingProtocol(LineReceiver):

def lineReceived(self, line):
self.factory.fp.write(line + '\n')

class LogfileFactory(Factory):

protocol = LoggingProtocol

def __init__(self, fileName):
self.file = fileName

(continues on next page)

2.1. Developer Guides 9
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(continued from previous page)

def startFactory(self):
self.fp = open(self.file, 'a')

def stopFactory(self):
self.fp.close()

Putting it All Together

As a final example, here’s a simple chat server that allows users to choose a username and then communicate with
other users. It demonstrates the use of shared state in the factory, a state machine for each individual protocol, and
communication between different protocols.

chat.py

from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class Chat(LineReceiver):
def __init__(self, users):

self.users = users
self.name = None
self.state = "GETNAME"

def connectionMade(self):
self.sendLine("What's your name?")

def connectionLost(self, reason):
if self.name in self.users:

del self.users[self.name]

def lineReceived(self, line):
if self.state == "GETNAME":

self.handle_GETNAME(line)
else:

self.handle_CHAT(line)

def handle_GETNAME(self, name):
if name in self.users:

self.sendLine("Name taken, please choose another.")
return

self.sendLine(f"Welcome, {name}!")
self.name = name
self.users[name] = self
self.state = "CHAT"

def handle_CHAT(self, message):
message = f"<{self.name}> {message}"
for name, protocol in self.users.iteritems():

if protocol != self:
(continues on next page)

10 Chapter 2. Twisted Core
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(continued from previous page)

protocol.sendLine(message)

class ChatFactory(Factory):
def __init__(self):

self.users = {} # maps user names to Chat instances

def buildProtocol(self, addr):
return Chat(self.users)

reactor.listenTCP(8123, ChatFactory())
reactor.run()

The only API you might not be familiar with is listenTCP. listenTCP is the method which connects a Factory to
the network. This is the lower-level API that endpoints wraps for you.

Here’s a sample transcript of a chat session (emphasised text is entered by the user):

$ telnet 127.0.0.1 8123
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
What's your name?
test
Name taken, please choose another.
bob
Welcome, bob!
hello
<alice> hi bob
twisted makes writing servers so easy!
<alice> I couldn't agree more
<carrol> yeah, it's great

2.1.3 Writing Clients

Overview

Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets. UDP is covered in a different document .

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class. This
class will usually be descended from twisted.internet.protocol.Protocol . Most protocol handlers inherit
either from this class or from one of its convenience children. An instance of the protocol class will be instantiated when
you connect to the server and will go away when the connection is finished. This means that persistent configuration
is not saved in the Protocol .

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.
Factory (or twisted.internet.protocol.ClientFactory : see below). The default factory class just instanti-
ates the Protocol and then sets the protocol’s factory attribute to point to itself (the factory). This lets the Protocol
access, and possibly modify, the persistent configuration.

2.1. Developer Guides 11
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Protocol

As mentioned above, this and auxiliary classes and functions are where most of the code is. A Twisted protocol handles
data in an asynchronous manner. This means that the protocol never waits for an event, but rather responds to events
as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

This is one of the simplest protocols. It just writes whatever it reads from the connection to standard output. There are
many events it does not respond to. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class WelcomeMessage(Protocol):
def connectionMade(self):

self.transport.write("Hello server, I am the client!\r\n")
self.transport.loseConnection()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.

The connectionMade event is usually where set up of the Protocol object happens, as well as any initial greet-
ings (as in the WelcomeMessage protocol above). Any tearing down of Protocol -specific objects is done in
connectionLost .

Simple, single-use clients

In many cases, the protocol only needs to connect to the server once, and the code just wants to get a connected in-
stance of the protocol. In those cases twisted.internet.endpoints provides the appropriate API, and in particular
connectProtocol which takes a protocol instance rather than a factory.

from twisted.internet import reactor
from twisted.internet.protocol import Protocol
from twisted.internet.endpoints import TCP4ClientEndpoint, connectProtocol

class Greeter(Protocol):
def sendMessage(self, msg):

self.transport.write("MESSAGE %s\n" % msg)

def gotProtocol(p):
p.sendMessage("Hello")
reactor.callLater(1, p.sendMessage, "This is sent in a second")
reactor.callLater(2, p.transport.loseConnection)

point = TCP4ClientEndpoint(reactor, "localhost", 1234)
d = connectProtocol(point, Greeter())
d.addCallback(gotProtocol)
reactor.run()

12 Chapter 2. Twisted Core
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Regardless of the type of client endpoint, the way to set up a new connection is simply pass it to connectProtocol
along with a protocol instance. This means it’s easy to change the mechanism you’re using to connect, without changing
the rest of your program. For example, to run the greeter example over SSL, the only change required is to instantiate an
SSL4ClientEndpoint instead of a TCP4ClientEndpoint . To take advantage of this, functions and methods which
initiates a new connection should generally accept an endpoint as an argument and let the caller construct it, rather than
taking arguments like ‘host’ and ‘port’ and constructing its own.

For more information on different ways you can make outgoing connections to different types of endpoints, as well as
parsing strings into endpoints, see the documentation for the endpoints API .

You may come across code using ClientCreator , an older API which is not as flexible as the endpoint API. Rather
than calling connect on an endpoint, such code will look like this:

from twisted.internet.protocol import ClientCreator

...

creator = ClientCreator(reactor, Greeter)
d = creator.connectTCP("localhost", 1234)
d.addCallback(gotProtocol)
reactor.run()

In general, the endpoint API should be preferred in new code, as it lets the caller select the method of connecting.

ClientFactory

Still, there’s plenty of code out there that uses lower-level APIs, and a few features (such as automatic reconnection)
have not been re-implemented with endpoints yet, so in some cases they may be more convenient to use.

To use the lower-level connection APIs, you will need to call one of the reactor.connect* methods directly. For these
cases, you need a ClientFactory . The ClientFactory is in charge of creating the Protocol and also receives
events relating to the connection state. This allows it to do things like reconnect in the event of a connection error.
Here is an example of a simple ClientFactory that uses the Echo protocol (above) and also prints what state the
connection is in.

from twisted.internet.protocol import Protocol, ClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

class EchoClientFactory(ClientFactory):
def startedConnecting(self, connector):

print('Started to connect.')

def buildProtocol(self, addr):
print('Connected.')
return Echo()

def clientConnectionLost(self, connector, reason):
print('Lost connection. Reason:', reason)

def clientConnectionFailed(self, connector, reason):
print('Connection failed. Reason:', reason)

2.1. Developer Guides 13
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To connect this EchoClientFactory to a server, you could use this code:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

Note that clientConnectionFailed is called when a connection could not be established, and that
clientConnectionLost is called when a connection was made and then disconnected.

Reactor Client APIs

connectTCP

IReactorTCP.connectTCP provides support for IPv4 and IPv6 TCP clients. The host argument it accepts can be
either a hostname or an IP address literal. In the case of a hostname, the reactor will automatically resolve the name
to an IP address before attempting the connection. This means that for a hostname with multiple address records,
reconnection attempts may not always go to the same server (see below). It also means that there is name resolution
overhead for each connection attempt. If you are creating many short-lived connections (typically around hundreds
or thousands per second) then you may want to resolve the hostname to an address first and then pass the address to
connectTCP instead.

Reconnection

Often, the connection of a client will be lost unintentionally due to network problems. One way to reconnect after a
disconnection would be to call connector.connect() when the connection is lost:

from twisted.internet.protocol import ClientFactory

class EchoClientFactory(ClientFactory):
def clientConnectionLost(self, connector, reason):

connector.connect()

The connector passed as the first argument is the interface between a connection and a protocol. When the connection
fails and the factory receives the clientConnectionLost event, the factory can call connector.connect() to start
the connection over again from scratch.

However, most programs that want this functionality should implement ReconnectingClientFactory instead, which
tries to reconnect if a connection is lost or fails and which exponentially delays repeated reconnect attempts.

Here is the Echo protocol implemented with a ReconnectingClientFactory :

from twisted.internet.protocol import Protocol, ReconnectingClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):

stdout.write(data)

class EchoClientFactory(ReconnectingClientFactory):
def startedConnecting(self, connector):

print('Started to connect.')

(continues on next page)
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def buildProtocol(self, addr):
print('Connected.')
print('Resetting reconnection delay')
self.resetDelay()
return Echo()

def clientConnectionLost(self, connector, reason):
print('Lost connection. Reason:', reason)
ReconnectingClientFactory.clientConnectionLost(self, connector, reason)

def clientConnectionFailed(self, connector, reason):
print('Connection failed. Reason:', reason)
ReconnectingClientFactory.clientConnectionFailed(self, connector,

reason)

A Higher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted Words in the doc/words/
examples directory.

ircLogBot.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
An example IRC log bot - logs a channel's events to a file.

If someone says the bot's name in the channel followed by a ':',
e.g.

<foo> logbot: hello!

the bot will reply:

<logbot> foo: I am a log bot

Run this script with two arguments, the channel name the bot should
connect to, and file to log to, e.g.:

$ python ircLogBot.py test test.log

will log channel #test to the file 'test.log'.

To run the script:

$ python ircLogBot.py <channel> <file>
"""

(continues on next page)
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import sys

# system imports
import time

from twisted.internet import protocol, reactor
from twisted.python import log

# twisted imports
from twisted.words.protocols import irc

class MessageLogger:
"""
An independent logger class (because separation of application
and protocol logic is a good thing).
"""

def __init__(self, file):
self.file = file

def log(self, message):
"""Write a message to the file."""
timestamp = time.strftime("[%H:%M:%S]", time.localtime(time.time()))
self.file.write(f"{timestamp} {message}\n")
self.file.flush()

def close(self):
self.file.close()

class LogBot(irc.IRCClient):
"""A logging IRC bot."""

nickname = "twistedbot"

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filename, "a"))
self.logger.log("[connected at %s]" % time.asctime(time.localtime(time.time())))

def connectionLost(self, reason):
irc.IRCClient.connectionLost(self, reason)
self.logger.log(

"[disconnected at %s]" % time.asctime(time.localtime(time.time()))
)
self.logger.close()

# callbacks for events

(continues on next page)
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def signedOn(self):
"""Called when bot has successfully signed on to server."""
self.join(self.factory.channel)

def joined(self, channel):
"""This will get called when the bot joins the channel."""
self.logger.log("[I have joined %s]" % channel)

def privmsg(self, user, channel, msg):
"""This will get called when the bot receives a message."""
user = user.split("!", 1)[0]
self.logger.log(f"<{user}> {msg}")

# Check to see if they're sending me a private message
if channel == self.nickname:

msg = "It isn't nice to whisper! Play nice with the group."
self.msg(user, msg)
return

# Otherwise check to see if it is a message directed at me
if msg.startswith(self.nickname + ":"):

msg = "%s: I am a log bot" % user
self.msg(channel, msg)
self.logger.log(f"<{self.nickname}> {msg}")

def action(self, user, channel, msg):
"""This will get called when the bot sees someone do an action."""
user = user.split("!", 1)[0]
self.logger.log(f"* {user} {msg}")

# irc callbacks

def irc_NICK(self, prefix, params):
"""Called when an IRC user changes their nickname."""
old_nick = prefix.split("!")[0]
new_nick = params[0]
self.logger.log(f"{old_nick} is now known as {new_nick}")

# For fun, override the method that determines how a nickname is changed on
# collisions. The default method appends an underscore.
def alterCollidedNick(self, nickname):

"""
Generate an altered version of a nickname that caused a collision in an
effort to create an unused related name for subsequent registration.
"""
return nickname + "^"

class LogBotFactory(protocol.ClientFactory):
"""A factory for LogBots.

A new protocol instance will be created each time we connect to the server.

(continues on next page)
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"""

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def buildProtocol(self, addr):
p = LogBot()
p.factory = self
return p

def clientConnectionLost(self, connector, reason):
"""If we get disconnected, reconnect to server."""
connector.connect()

def clientConnectionFailed(self, connector, reason):
print("connection failed:", reason)
reactor.stop()

if __name__ == "__main__":
# initialize logging
log.startLogging(sys.stdout)

# create factory protocol and application
f = LogBotFactory(sys.argv[1], sys.argv[2])

# connect factory to this host and port
reactor.connectTCP("irc.freenode.net", 6667, f)

# run bot
reactor.run()

ircLogBot.py connects to an IRC server, joins a channel, and logs all traffic on it to a file. It demonstrates some of
the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory .

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track of
data that should be persisted. In the case of the logging bot, it needs to know which channel it is logging, and where to
log it.

from twisted.words.protocols import irc
from twisted.internet import protocol

class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessageLogger(open(self.factory.filename, "a"))
self.logger.log("[connected at %s]" %

(continues on next page)
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time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self.factory.channel)

class LogBotFactory(protocol.ClientFactory):

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def buildProtocol(self, addr):
p = LogBot()
p.factory = self
return p

When the protocol is created, it gets a reference to the factory as self.factory . It can then access attributes of the
factory in its logic. In the case of LogBot , it opens the file and connects to the channel stored in the factory.

Factories have a default implementation of buildProtocol. It does the same thing the example above does using the
protocol attribute of the factory to create the protocol instance. In the example above, the factory could be rewritten
to look like this:

class LogBotFactory(protocol.ClientFactory):
protocol = LogBot

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

Further Reading

The Protocol class used throughout this document is a base implementation of IProtocol used in most Twisted appli-
cations for convenience. To learn about the complete IProtocol interface, see the API documentation for IProtocol
.

The transport attribute used in some examples in this document provides the ITCPTransport interface. To learn
about the complete interface, see the API documentation for ITCPTransport .

Interface classes are a way of specifying what methods and attributes an object has and how they behave. See the
Components: Interfaces and Adapters document for more information on using interfaces in Twisted.

2.1. Developer Guides 19



Twisted Documentation, Release 23.8.0

2.1.4 Test-driven development with Twisted

Writing good code is hard, or at least it can be. A major challenge is to ensure that your code remains correct as you
add new functionality.

Unit testing is a modern, light-weight testing methodology in widespread use in many programming languages. De-
velopment that relies on unit tests is often referred to as Test-Driven Development (TDD ). Most Twisted code is tested
using TDD.

To gain a solid understanding of unit testing in Python, you should read the unittest -- Unit testing framework
chapter of the Python Library Reference. There is a lot of information available online and in books.

Introductory example of Python unit testing

This document is principally a guide to Trial, Twisted’s unit testing framework. Trial is based on Python’s unit testing
framework. While we do not aim to give a comprehensive guide to general Python unit testing, it will be helpful to
consider a simple non-networked example before expanding to cover networking code that requires the special capabil-
ities of Trial. If you are already familiar with unit test in Python, jump straight to the section specific to testing Twisted
code.

Note: In what follows we will make a series of refinements to some simple classes. In order to keep the examples and
source code links complete and to allow you to run Trial on the intermediate results at every stage, I add _N (where the
N are successive integers) to file names to keep them separate. This is a minor visual distraction that should be ignored.

Creating an API and writing tests

We’ll create a library for arithmetic calculation. First, create a project structure with a directory called calculus
containing an empty __init__.py file.

Then put the following simple class definition API into calculus/base_1.py :

base_1.py

# -*- test-case-name: calculus.test.test_base_1 -*-

class Calculation:
def add(self, a, b):

pass

def subtract(self, a, b):
pass

def multiply(self, a, b):
pass

def divide(self, a, b):
pass

(Ignore the test-case-name comment for now. You’ll see why that’s useful below .)

We’ve written the interface, but not the code. Now we’ll write a set of tests. At this point of development, we’ll be
expecting all tests to fail. Don’t worry, that’s part of the point. Once we have a test framework functioning, and we
have some decent tests written (and failing!), we’ll go and do the actual development of our calculation API. This is the

20 Chapter 2. Twisted Core

https://en.wikipedia.org/wiki/Unit_test
https://en.wikipedia.org/wiki/Test-driven_development
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/


Twisted Documentation, Release 23.8.0

preferred way to work for many people using TDD - write tests first, make sure they fail, then do development. Others
are not so strict and write tests after doing the development.

Create a test directory beneath calculus , with an empty __init__.py file. In a calculus/test/test_base_1.
py, put the following:

test_base_1.py

from calculus.base_1 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def test_add(self):

calc = Calculation()
result = calc.add(3, 8)
self.assertEqual(result, 11)

def test_subtract(self):
calc = Calculation()
result = calc.subtract(7, 3)
self.assertEqual(result, 4)

def test_multiply(self):
calc = Calculation()
result = calc.multiply(12, 5)
self.assertEqual(result, 60)

def test_divide(self):
calc = Calculation()
result = calc.divide(12, 5)
self.assertEqual(result, 2)

You should now have the following 4 files:

calculus/__init__.py
calculus/base_1.py
calculus/test/__init__.py
calculus/test/test_base_1.py

To run the tests, you must ensure you are able to load them. Make sure you are in the directory that the calculus
folder is in, if you run ls or dir you should see the folder. You can test that you can import the calculus package by
running python -c import calculus. If it reports an error (“No module named calculus”), double check you are
in the correct directory.

Run python -m twisted.trial calculus.test.test_base_1 from the command line when you are in the di-
rectory containing the calculus directory.

You should see the following output (though your files are probably not in /tmp ):

$ python -m twisted.trial calculus.test.test_base_1
calculus.test.test_base_1
CalculationTestCase
test_add ... [FAIL]
test_divide ... [FAIL]

(continues on next page)
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test_multiply ... [FAIL]
test_subtract ... [FAIL]

===============================================================================
[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1.py", line 8, in test_add
self.assertEqual(result, 11)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 11

calculus.test.test_base_1.CalculationTestCase.test_add
===============================================================================
[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1.py", line 23, in test_divide
self.assertEqual(result, 2)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 2

calculus.test.test_base_1.CalculationTestCase.test_divide
===============================================================================
[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1.py", line 18, in test_multiply
self.assertEqual(result, 60)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 60

calculus.test.test_base_1.CalculationTestCase.test_multiply
===============================================================================
[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1.py", line 13, in test_subtract
self.assertEqual(result, 4)

twisted.trial.unittest.FailTest: not equal:
a = None
b = 4

calculus.test.test_base_1.CalculationTestCase.test_subtract
-------------------------------------------------------------------------------
Ran 4 tests in 0.042s

FAILED (failures=4)

How to interpret this output? You get a list of the individual tests, each followed by its result. By default, failures are
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printed at the end, but this can be changed with the -e (or --rterrors ) option.

One very useful thing in this output is the fully-qualified name of the failed tests. This appears at the bottom of each
=-delimited area of the output. This allows you to copy and paste it to just run a single test you’re interested in. In our
example, you could run python -m twisted.trial calculus.test.test_base_1.CalculationTestCase.
test_subtract from the shell.

Note that trial can use different reporters to modify its output. Run python -m twisted.trial --help-reporters
to see a list of reporters.

The tests can be run by Trial in multiple ways:

• python -m twisted.trial calculus: run all the tests for the calculus package.

• python -m twisted.trial calculus.test: run using Python’s import notation.

• python -m twisted.trial calculus.test.test_base_1: as above, for a specific test module. You can
follow that logic by putting your class name and even a method name to only run those specific tests.

• python -m twisted.trial --testmodule=calculus/base_1.py: use the test-case-name comment
in the first line of calculus/base_1.py to find the tests.

• python -m twisted.trial calculus/test: run all the tests in the test directory (not recommended).

• python -m twisted.trial calculus/test/test_base_1.py: run a specific test file (not recommended).

The first 3 versions using full qualified names are strongly encouraged: they are much more reliable and they allow you
to easily be more selective in your test runs.

You’ll notice that Trial creates a _trial_temp directory in the directory where you run the tests. This has a file called
test.log which contains the log output of the tests (created using log.msg or log.err functions). Examine this file
if you add logging to your tests.

Making the tests pass

Now that we have a working test framework in place, and our tests are failing (as expected) we can go and try to
implement the correct API. We’ll do that in a new version of the above base_1 module, calculus/base_2.py :

base_2.py

# -*- test-case-name: calculus.test.test_base_2 -*-

class Calculation:
def add(self, a, b):

return a + b

def subtract(self, a, b):
return a - b

def multiply(self, a, b):
return a * b

def divide(self, a, b):
return a // b

We’ll also create a new version of test_base_1 which imports and test this new implementation, in calculus/
test_base_2.py:

test_base_2.py
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from calculus.base_2 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def test_add(self):

calc = Calculation()
result = calc.add(3, 8)
self.assertEqual(result, 11)

def test_subtract(self):
calc = Calculation()
result = calc.subtract(7, 3)
self.assertEqual(result, 4)

def test_multiply(self):
calc = Calculation()
result = calc.multiply(12, 5)
self.assertEqual(result, 60)

def test_divide(self):
calc = Calculation()
result = calc.divide(12, 5)
self.assertEqual(result, 2)

is a copy of test_base_1, but with the import changed. Run Trial again as above, and your tests should now pass:

$ python -m twisted.trial calculus.test.test_base_2

Running 4 tests.
calculus.test.test_base
CalculationTestCase
test_add ... [OK]
test_divide ... [OK]
test_multiply ... [OK]
test_subtract ... [OK]

-------------------------------------------------------------------------------
Ran 4 tests in 0.067s

PASSED (successes=4)

24 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

Factoring out common test logic

You’ll notice that our test file contains redundant code. Let’s get rid of that. Python’s unit testing framework allows
your test class to define a setUp method that is called before each test method in the class. This allows you to add
attributes to self that can be used in test methods. We’ll also add a parameterized test method to further simplify the
code.

Note that a test class may also provide the counterpart of setUp , named tearDown , which will be called after each
test (whether successful or not). tearDown is mainly used for post-test cleanup purposes. We will not use tearDown
until later.

Create calculus/test/test_base_2b.py as follows:

test_base_2b.py

from calculus.base_2 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def setUp(self):

self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual(result, expected)

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

def test_subtract(self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test(self.calc.divide, 12, 5, 2)

Much cleaner, isn’t it?

We’ll now add some additional error tests. Testing just for successful use of the API is generally not enough, especially
if you expect your code to be used by others. Let’s make sure the Calculation class raises exceptions if someone
tries to call its methods with arguments that cannot be converted to integers.

We arrive at calculus/test/test_base_3.py:

test_base_3.py

from calculus.base_3 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
(continues on next page)
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def setUp(self):
self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual(result, expected)

def _test_error(self, operation):
self.assertRaises(TypeError, operation, "foo", 2)
self.assertRaises(TypeError, operation, "bar", "egg")
self.assertRaises(TypeError, operation, [3], [8, 2])
self.assertRaises(TypeError, operation, {"e": 3}, {"r": "t"})

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

def test_subtract(self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test(self.calc.divide, 12, 5, 2)

def test_errorAdd(self):
self._test_error(self.calc.add)

def test_errorSubtract(self):
self._test_error(self.calc.subtract)

def test_errorMultiply(self):
self._test_error(self.calc.multiply)

def test_errorDivide(self):
self._test_error(self.calc.divide)

We’ve added four new tests and one general-purpose function, _test_error . This function uses the assertRaises
method, which takes an exception class, a function to run and its arguments, and checks that calling the function on the
arguments does indeed raise the given exception.

If you run the above, you’ll see that not all tests fail. In Python it’s often valid to add and multiply objects of different
and even differing types, so the code in the add and multiply tests does not raise an exception and those tests therefore
fail. So let’s add explicit type conversion to our API class. This brings us to calculus/base_3.py :

base_3.py

# -*- test-case-name: calculus.test.test_base_3 -*-

class Calculation:
def _make_ints(self, *args):

try:
(continues on next page)
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return [int(arg) for arg in args]
except ValueError:

raise TypeError("Couldn't coerce arguments to integers: {}".format(*args))

def add(self, a, b):
a, b = self._make_ints(a, b)
return a + b

def subtract(self, a, b):
a, b = self._make_ints(a, b)
return a - b

def multiply(self, a, b):
a, b = self._make_ints(a, b)
return a * b

def divide(self, a, b):
a, b = self._make_ints(a, b)
return a // b

Here the _make_ints helper function tries to convert a list into a list of equivalent integers, and raises a TypeError
in case the conversion goes wrong.

Note: The int conversion can also raise a TypeError if passed something of the wrong type, such as a list. We’ll
just let that exception go by, as TypeError is already what we want in case something goes wrong.

Twisted specific testing

Up to this point we’ve been doing fairly standard Python unit testing. With only a few cosmetic changes (most impor-
tantly, directly importing unittest instead of using Twisted’s unittest version) we could make the above tests run
using Python’s standard library unit testing framework.

Here we will assume a basic familiarity with Twisted’s network I/O, timing, and Deferred APIs. If you haven’t already
read them, you should read the documentation on Writing Servers , Writing Clients , and Deferreds .

Now we’ll get to the real point of this tutorial and take advantage of Trial to test Twisted code.
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Testing a protocol

We’ll now create a custom protocol to invoke our class from a telnet-like session. We’ll remotely call commands with
arguments and read back the response. The goal will be to test our network code without creating sockets.

Creating and testing the server

First we’ll write the tests, and then explain what they do. The first version of the remote test code is:

test_remote_1.py

from calculus.remote_1 import RemoteCalculationFactory

from twisted.test import proto_helpers
from twisted.trial import unittest

class RemoteCalculationTestCase(unittest.TestCase):
def setUp(self):

factory = RemoteCalculationFactory()
self.proto = factory.buildProtocol(("127.0.0.1", 0))
self.tr = proto_helpers.StringTransport()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived(f"{operation} {a} {b}\r\n".encode())
self.assertEqual(int(self.tr.value()), expected)

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test("divide", 14, 3, 4)

To fully understand this client, it helps a lot to be comfortable with the Factory/Protocol/Transport pattern used in
Twisted.

We first create a protocol factory object. Note that we have yet to see the RemoteCalculationFactory class.
It is in calculus/remote_1.py below. We call buildProtocol to ask the factory to build us a protocol ob-
ject that knows how to talk to our server. We then make a fake network transport, an instance of twisted.
test.proto_helpers.StringTransport class (note that test packages are generally not part of Twisted’s public
API;``twisted.test.proto_helpers`` is an exception). This fake transport is the key to the communications. It is used to
emulate a network connection without a network. The address and port passed to buildProtocol are typically used
by the factory to choose to immediately deny remote connections; since we’re using a fake transport, we can choose
any value that will be acceptable to the factory. In this case the factory just ignores the address, so we don’t need to
pick anything in particular.

Testing protocols without the use of real network connections is both simple and recommended when testing Twisted
code. Even though there are many tests in Twisted that use the network, most good tests don’t. The problem with unit
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tests and networking is that networks aren’t reliable. We cannot know that they will exhibit reasonable behavior all the
time. This creates intermittent test failures due to network vagaries. Right now we’re trying to test our Twisted code,
not network reliability. By setting up and using a fake transport, we can write 100% reliable tests. We can also test
network failures in a deterministic manner, another important part of your complete test suite.

The final key to understanding this client code is the _test method. The call to dataReceived simulates data ar-
riving on the network transport. But where does it arrive? It’s handed to the lineReceived method of the protocol
instance (in calculus/remote_1.py below). So the client is essentially tricking the server into thinking it has re-
ceived the operation and the arguments over the network. The server (once again, see below) hands over the work
to its CalculationProxy object which in turn hands it to its Calculation instance. The result is written back via
sendLine (into the fake string transport object), and is then immediately available to the client, who fetches it with
tr.value() and checks that it has the expected value. So there’s quite a lot going on behind the scenes in the two-line
_test method above.

Finally , let’s see the implementation of this protocol. Put the following into calculus/remote_1.py :

remote_1.py

# -*- test-case-name: calculus.test.test_remote_1 -*-

from calculus.base_3 import Calculation

from twisted.internet import protocol
from twisted.protocols import basic

class CalculationProxy:
def __init__(self):

self.calc = Calculation()
for m in ["add", "subtract", "multiply", "divide"]:

setattr(self, f"remote_{m}", getattr(self.calc, m))

class RemoteCalculationProtocol(basic.LineReceiver):
def __init__(self):

self.proxy = CalculationProxy()

def lineReceived(self, line):
op, a, b = line.decode("utf-8").split()
a = int(a)
b = int(b)
op = getattr(self.proxy, f"remote_{op}")
result = op(a, b)
self.sendLine(str(result).encode("utf-8"))

class RemoteCalculationFactory(protocol.Factory):
protocol = RemoteCalculationProtocol

def main():
import sys

from twisted.internet import reactor
from twisted.python import log

(continues on next page)
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log.startLogging(sys.stdout)
reactor.listenTCP(0, RemoteCalculationFactory())
reactor.run()

if __name__ == "__main__":
main()

As mentioned, this server creates a protocol that inherits from basic.LineReceiver , and then a factory that uses it
as protocol. The only trick is the CalculationProxy object, which calls Calculation methods through remote_*
methods. This pattern is used frequently in Twisted, because it is very explicit about what methods you are making
accessible.

If you run this test (python -m twisted.trial calculus.test.test_remote_1 ), everything should be fine.
You can also run a server to test it with a telnet client. To do that, call python calculus/remote_1.py . You should
have the following output:

2008-04-25 10:53:27+0200 [-] Log opened.
2008-04-25 10:53:27+0200 [-] __main__.RemoteCalculationFactory starting on 46194
2008-04-25 10:53:27+0200 [-] Starting factory <__main__.RemoteCalculationFactory␣
→˓instance at 0x846a0cc>

46194 is replaced by a random port. You can then call telnet on it:

$ telnet localhost 46194
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
add 4123 9423
13546

It works!

Creating and testing the client

Of course, what we build is not particularly useful for now: we’ll now build a client for our server, to be able to use it
inside a Python program. And it will serve our next purpose.

Create calculus/test/test_client_1.py:

test_client_1.py

from calculus.client_1 import RemoteCalculationClient

from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransport()
self.proto = RemoteCalculationClient()

(continues on next page)
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self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), f"{operation} {a} {b}\r\n".encode())
self.tr.clear()
d.addCallback(self.assertEqual, expected)
self.proto.dataReceived(

"{}\r\n".format(
expected,

).encode("utf-8")
)
return d

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test("divide", 14, 3, 4)

It’s really symmetric to the server test cases. The only tricky part is that we don’t use a client factory. We’re lazy, and
it’s not very useful in the client part, so we instantiate the protocol directly.

Incidentally, we have introduced a very important concept here: the tests now return a Deferred object, and the assertion
is done in a callback. When a test returns a Deferred, the reactor is run until the Deferred fires and its callbacks run.
The important thing to do here is to not forget to return the Deferred . If you do, your tests will pass even if nothing
is asserted. That’s also why it’s important to make tests fail first: if your tests pass whereas you know they shouldn’t,
there is a problem in your tests.

We’ll now add the remote client class to produce calculus/client_1.py :

client_1.py

# -*- test-case-name: calculus.test.test_client_1 -*-

from twisted.internet import defer
from twisted.protocols import basic

class RemoteCalculationClient(basic.LineReceiver):
def __init__(self):

self.results = []

def lineReceived(self, line):
d = self.results.pop(0)
d.callback(int(line))

def _sendOperation(self, op, a, b):
(continues on next page)
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d = defer.Deferred()
self.results.append(d)
line = f"{op} {a} {b}".encode()
self.sendLine(line)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

More good practices

Testing scheduling

When testing code that involves the passage of time, waiting e.g. for a two hour timeout to occur in a test is not very
realistic. Twisted provides a solution to this, the Clock class that allows one to simulate the passage of time.

As an example we’ll test the code for client request timeout: since our client uses TCP it can hang for a long time
(firewall, connectivity problems, etc. . . ). So generally we need to implement timeouts on the client side. Basically it’s
just that we send a request, don’t receive a response and expect a timeout error to be triggered after a certain duration.

test_client_2.py

from calculus.client_2 import ClientTimeoutError, RemoteCalculationClient

from twisted.internet import task
from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), f"{operation} {a} {b}\r\n".encode())
self.tr.clear()
d.addCallback(self.assertEqual, expected)

(continues on next page)
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self.proto.dataReceived(f"{expected}\r\n".encode())
return d

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test("divide", 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

What happens here? We instantiate our protocol as usual, the only trick is to create the clock, and assign proto.
callLater to clock.callLater . Thus, every callLater call in the protocol will finish before clock.advance()
returns.

In the new test (test_timeout), we call clock.advance , that simulates an advance in time (logically it’s similar to a
time.sleep call). And we just have to verify that our Deferred got a timeout error.

Let’s implement that in our code.

client_2.py

# -*- test-case-name: calculus.test.test_client_2 -*-

from twisted.internet import defer, reactor
from twisted.protocols import basic

class ClientTimeoutError(Exception):
pass

class RemoteCalculationClient(basic.LineReceiver):

callLater = reactor.callLater
timeOut = 60

def __init__(self):
self.results = []

def lineReceived(self, line):
d, callID = self.results.pop(0)
callID.cancel()
d.callback(int(line))

(continues on next page)
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def _cancel(self, d):
d.errback(ClientTimeoutError())

def _sendOperation(self, op, a, b):
d = defer.Deferred()
callID = self.callLater(self.timeOut, self._cancel, d)
self.results.append((d, callID))
line = f"{op} {a} {b}".encode()
self.sendLine(line)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

If everything completed successfully, it is important to remember to cancel the DelayedCall returned by callLater
.

Cleaning up after tests

This chapter is mainly intended for people who want to have sockets or processes created in their tests. If it’s still not
obvious, you must try to avoid using them, because it ends up with a lot of problems, one of them being intermittent
failures. And intermittent failures are the plague of automated tests.

To actually test that, we’ll launch a server with our protocol.

test_remote_2.py

from calculus.client_2 import RemoteCalculationClient
from calculus.remote_1 import RemoteCalculationFactory

from twisted.internet import protocol, reactor
from twisted.trial import unittest

class RemoteRunCalculationTestCase(unittest.TestCase):
def setUp(self):

factory = RemoteCalculationFactory()
self.port = reactor.listenTCP(0, factory, interface="127.0.0.1")
self.client = None

def tearDown(self):
if self.client is not None:

(continues on next page)
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self.client.transport.loseConnection()
return self.port.stopListening()

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator(reactor, RemoteCalculationClient)

def cb(client):
self.client = client
return getattr(self.client, op)(a, b).addCallback(

self.assertEqual, expected
)

return creator.connectTCP("127.0.0.1", self.port.getHost().port).addCallback(cb)

def test_add(self):
return self._test("add", 5, 9, 14)

def test_subtract(self):
return self._test("subtract", 47, 13, 34)

def test_multiply(self):
return self._test("multiply", 7, 3, 21)

def test_divide(self):
return self._test("divide", 84, 10, 8)

Recent versions of Trial will fail loudly if you remove the stopListening call, which is good.

Also, you should be aware that tearDown will be called in any case, after success or failure. So don’t expect every
object you created in the test method to be present, because your tests may have failed in the middle.

Trial also has a addCleanup method, which makes these kind of cleanups easy and removes the need for tearDown.
For example, you could remove the code in _test this way:

def setUp(self):
factory = RemoteCalculationFactory()
self.port = reactor.listenTCP(0, factory, interface="127.0.0.1")
self.addCleanup(self.port.stopListening)

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator(reactor, RemoteCalculationClient)
def cb(client):

self.addCleanup(self.client.transport.loseConnection)
return getattr(client, op)(a, b).addCallback(self.assertEqual, expected)

return creator.connectTCP('127.0.0.1', self.port.getHost().port).addCallback(cb)

This removes the need of a tearDown method, and you don’t have to check for the value of self.client: you only call
addCleanup when the client is created.
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Handling logged errors

Currently, if you send an invalid command or invalid arguments to our server, it logs an exception and closes the
connection. This is a perfectly valid behavior, but for the sake of this tutorial, we want to return an error to the user if
they send invalid operators, and log any errors on server side. So we’ll want a test like this:

def test_invalidParameters(self):
self.proto.dataReceived('add foo bar\r\n')
self.assertEqual(self.tr.value(), "error\r\n")

remote_2.py

# -*- test-case-name: calculus.test.test_remote_1 -*-

from calculus.base_3 import Calculation

from twisted.internet import protocol
from twisted.protocols import basic
from twisted.python import log

class CalculationProxy:
def __init__(self):

self.calc = Calculation()
for m in ["add", "subtract", "multiply", "divide"]:

setattr(self, f"remote_{m}", getattr(self.calc, m))

class RemoteCalculationProtocol(basic.LineReceiver):
def __init__(self):

self.proxy = CalculationProxy()

def lineReceived(self, line):
op, a, b = line.decode("utf-8").split()
op = getattr(

self.proxy,
"remote_{}".format(

op,
),

)
try:

result = op(a, b)
except TypeError:

log.err()
self.sendLine(b"error")

else:
self.sendLine(str(result).encode("utf-8"))

class RemoteCalculationFactory(protocol.Factory):
protocol = RemoteCalculationProtocol

(continues on next page)
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def main():
import sys

from twisted.internet import reactor
from twisted.python import log

log.startLogging(sys.stdout)
reactor.listenTCP(0, RemoteCalculationFactory())
reactor.run()

if __name__ == "__main__":
main()

If you try something like that, it will not work. Here is the output you should have:

$ python -m twisted.trial calculus.test.test_remote_3.RemoteCalculationTestCase.test_
→˓invalidParameters
calculus.test.test_remote_3
RemoteCalculationTestCase
test_invalidParameters ... [ERROR]

===============================================================================
[ERROR]: calculus.test.test_remote_3.RemoteCalculationTestCase.test_invalidParameters

Traceback (most recent call last):
File "/tmp/calculus/remote_2.py", line 27, in lineReceived
result = op(a, b)

File "/tmp/calculus/base_3.py", line 11, in add
a, b = self._make_ints(a, b)

File "/tmp/calculus/base_3.py", line 8, in _make_ints
raise TypeError

exceptions.TypeError:
-------------------------------------------------------------------------------
Ran 1 tests in 0.004s

FAILED (errors=1)

At first, you could think there is a problem, because you catch this exception. But in fact Trial doesn’t let you
do that without controlling it: you must expect logged errors and clean them. To do that, you have to use the
flushLoggedErrors method. You call it with the exception you expect, and it returns the list of exceptions logged
since the start of the test. Generally, you’ll want to check that this list has the expected length, or possibly that each
exception has an expected message. We do the former in our test:

test_remote_3.py

from calculus.remote_2 import RemoteCalculationFactory

from twisted.test import proto_helpers
from twisted.trial import unittest

class RemoteCalculationTestCase(unittest.TestCase):
(continues on next page)
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def setUp(self):
factory = RemoteCalculationFactory()
self.proto = factory.buildProtocol(("127.0.0.1", 0))
self.tr = proto_helpers.StringTransport()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived(f"{operation} {a} {b}\r\n".encode())
self.assertEqual(int(self.tr.value()), expected)

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test("divide", 14, 3, 4)

def test_invalidParameters(self):
self.proto.dataReceived(b"add foo bar\r\n")
self.assertEqual(self.tr.value(), b"error\r\n")
errors = self.flushLoggedErrors(TypeError)
self.assertEqual(len(errors), 1)

Resolve a bug

A bug was left over during the development of the timeout (probably several bugs, but that’s not the point), concerning
the reuse of the protocol when you got a timeout: the connection is not dropped, so you can get timeout forever.
Generally a user will come to you saying “I have this strange problem on my crappy network. It seems you could solve
it with doing XXX at YYY.”

Actually, this bug can be corrected several ways. But if you correct it without adding tests, one day you’ll face a big
problem: regression. So the first step is adding a failing test.

test_client_3.py

from calculus.client_3 import ClientTimeoutError, RemoteCalculationClient

from twisted.internet import task
from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()

(continues on next page)
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self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), f"{operation} {a} {b}\r\n".encode())
self.tr.clear()
d.addCallback(self.assertEqual, expected)
self.proto.dataReceived(f"{expected}\r\n".encode())
return d

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test("divide", 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

def test_timeoutConnectionLost(self):
called = []

def lost(arg):
called.append(True)

self.proto.connectionLost = lost

d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)

def check(ignore):
self.assertEqual(called, [True])

return self.assertFailure(d, ClientTimeoutError).addCallback(check)

What have we done here?

• We switched to StringTransportWithDisconnection. This transport manages loseConnection and forwards it
to its protocol.

• We assign the protocol to the transport via the protocol attribute.
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• We check that after a timeout our connection has closed.

For doing that, we then use the TimeoutMixin class, that does almost everything we want. The great thing is that it
almost changes nothing to our class.

client_3.py

# -*- test-case-name: calculus.test.test_client -*-

from twisted.internet import defer
from twisted.protocols import basic, policies

class ClientTimeoutError(Exception):
pass

class RemoteCalculationClient(basic.LineReceiver, policies.TimeoutMixin):
def __init__(self):

self.results = []
self._timeOut = 60

def lineReceived(self, line):
self.setTimeout(None)
d = self.results.pop(0)
d.callback(int(line))

def timeoutConnection(self):
for d in self.results:

d.errback(ClientTimeoutError())
self.transport.loseConnection()

def _sendOperation(self, op, a, b):
d = defer.Deferred()
self.results.append(d)
line = f"{op} {a} {b}".encode()
self.sendLine(line)
self.setTimeout(self._timeOut)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)
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Testing Deferreds without the reactor

Above we learned about returning Deferreds from test methods in order to make assertions about their results, or
side-effects that only happen after they fire. This can be useful, but we don’t actually need the feature in this exam-
ple. Because we were careful to use Clock , we don’t need the global reactor to run in our tests. Instead of return-
ing the Deferred with a callback attached to it which performs the necessary assertions, we can use a testing helper,
successResultOf (and the corresponding error-case helper failureResultOf ), to extract its result and make asser-
tions against it directly. Compared to returning a Deferred, this avoids the problem of forgetting to return the Deferred,
improves the stack trace reported when the assertion fails, and avoids the complexity of using global reactor (which,
for example, may then require cleanup).

test_client_4.py

from calculus.client_3 import ClientTimeoutError, RemoteCalculationClient

from twisted.internet import task
from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), f"{operation} {a} {b}\r\n".encode())
self.tr.clear()
self.proto.dataReceived(f"{expected}\r\n".encode())
self.assertEqual(expected, self.successResultOf(d))

def test_add(self):
self._test("add", 7, 6, 13)

def test_subtract(self):
self._test("subtract", 82, 78, 4)

def test_multiply(self):
self._test("multiply", 2, 8, 16)

def test_divide(self):
self._test("divide", 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)
self.failureResultOf(d).trap(ClientTimeoutError)

(continues on next page)
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def test_timeoutConnectionLost(self):
called = []

def lost(arg):
called.append(True)

self.proto.connectionLost = lost

d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)

def check(ignore):
self.assertEqual(called, [True])

self.failureResultOf(d).trap(ClientTimeoutError)
self.assertEqual(called, [True])

This version of the code makes the same assertions, but no longer returns any Deferreds from any test methods. Instead
of making assertions about the result of the Deferred in a callback, it makes the assertions as soon as it knows the De-
ferred is supposed to have a result (in the _test method and in test_timeout and test_timeoutConnectionLost
). The possibility of knowing exactly when a Deferred is supposed to have a test is what makes successResultOf
useful in unit testing, but prevents it from being applicable to non-testing purposes.

successResultOf will raise an exception (failing the test) if the Deferred passed to it does not have a result, or has
a failure result. Similarly, failureResultOf will raise an exception (also failing the test) if the Deferred passed to it
does not have a result, or has a success result. There is a third helper method for testing the final case, assertNoResult
, which only raises an exception (failing the test) if the Deferred passed to it has a result (either success or failure).

Dropping into a debugger

In the course of writing and running your tests, it is often helpful to employ the use of a debugger. This can be
particularly helpful in tracking down where the source of a troublesome bug is in your code. Python’s standard library
includes a debugger in the form of the pdb module. Running your tests with pdb is as simple as invoking twisted with
the --debug option, which will start pdb at the beginning of the execution of your test suite.

Trial also provides a --debugger option which can run your test suite using another debugger instead. To specify a
debugger other than pdb , pass in the fully-qualified name of an object that provides the same interface as pdb . Most
third-party debuggers tend to implement an interface similar to pdb , or at least provide a wrapper object that does. For
example, invoking Trial with the extra arguments --debug --debugger pudb will open the PuDB debugger instead,
provided it is properly installed.

Code coverage

Code coverage is one of the aspects of software testing that shows how much your tests cross (cover) the code of your
program. There are different kinds of measures: path coverage, condition coverage, statement coverage. . . We’ll only
consider statement coverage here, whether a line has been executed or not.

Trial has an option to generate the statement coverage of your tests. This option is –coverage. It creates a coverage
directory in _trial_temp, with a file .cover for every module used during the tests. The ones interesting for us are
calculus.base.cover and calculus.remote.cover. Each line starts with a counter showing how many times the line was
executed during the tests, or the marker ‘>>>>>>’ if the line was not covered. If you went through the whole tutorial
to this point, you should have complete coverage :).
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Again, this is only another useful pointer, but it doesn’t mean your code is perfect: your tests should consider every
possible input and output, to get full coverage (condition, path, etc.) as well .

Conclusion

So what did you learn in this document?

• How to use the Trial command-line tool to run your tests

• How to use string transports to test individual clients and servers without creating sockets

• If you really want to create sockets, how to cleanly do it so that it doesn’t have bad side effects

• And some small tips you can’t live without.

If one of the topics still looks cloudy to you, please give us your feedback! You can file tickets to improve this document
- learn how to contribute on the Twisted web site.

2.1.5 Twisted from Scratch, or The Evolution of Finger

The Evolution of Finger: building a simple finger service

Introduction

This is the first part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

If you’re not familiar with ‘finger’ it’s probably because it’s not used as much nowadays as it used to be. Basically, if
you run finger nail or finger nail@example.com the target computer spits out some information about the user
named nail . For instance:

Login: nail Name: Nail Sharp
Directory: /home/nail Shell: /usr/bin/sh
Last login Wed Mar 31 18:32 2004 (PST)
New mail received Thu Apr 1 10:50 2004 (PST)

Unread since Thu Apr 1 10:50 2004 (PST)
No Plan.

If the target computer does not have the fingerd daemon running you’ll get a “Connection Refused” error. Paranoid
sysadmins keep fingerd off or limit the output to hinder crackers and harassers. The above format is the standard
fingerd default, but an alternate implementation can output anything it wants, such as automated responsibility status
for everyone in an organization. You can also define pseudo “users”, which are essentially keywords.

This portion of the tutorial makes use of factories and protocols as introduced in the Writing a TCP Server howto and
deferreds as introduced in Using Deferreds and Generating Deferreds . Services and applications are discussed in
Using the Twisted Application Framework .

By the end of this section of the tutorial, our finger server will answer TCP finger requests on port 1079, and will read
data from the web.
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Refuse Connections

finger01.py

from twisted.internet import reactor

reactor.run()

This example only runs the reactor. It will consume almost no CPU resources. As it is not listening on any port, it
can’t respond to network requests — nothing at all will happen until we interrupt the program. At this point if you
run finger nail or telnet localhost 1079 , you’ll get a “Connection refused” error since there’s no daemon
running to respond. Not very useful, perhaps — but this is the skeleton inside which the Twisted program will grow.

As implied above, at various points in this tutorial you’ll want to observe the behavior of the server being developed.
Unless you have a finger program which can use an alternate port, the easiest way to do this is with a telnet client.
telnet localhost 1079will connect to the local host on port 1079, where a finger server will eventually be listening.

The Reactor

You don’t call Twisted, Twisted calls you. The reactor is Twisted’s main event loop, similar to the main loop in other
toolkits available in Python (Qt, wx, and Gtk). There is exactly one reactor in any running Twisted application. Once
started it loops over and over again, responding to network events and making scheduled calls to code.

Note that there are actually several different reactors to choose from; from twisted.internet import reactor
returns the current reactor. If you haven’t chosen a reactor class yet, it automatically chooses the default. See the
Reactor Basics HOWTO for more information.

Do Nothing

finger02.py

from twisted.internet import endpoints, protocol, reactor

class FingerProtocol(protocol.Protocol):
pass

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

Here we use endpoints.serverFromString to create a Twisted endpoint. An endpoint is a Twisted concept that
encapsulates one end of a connection. There are different endpoints for clients and servers. One of the great advantages
of endpoints is that they can be described textually using a kind of domain-specific language. For example, here,
we ask Twisted to create a TCP endpoint for a server using the string "tcp:1079". That, along with the call to
serverFromString, tells Twisted to look for a TCP endpoint, and pass it the port 1079. The endpoint returned from
that function can then have the listen() method invoked on it, which causes Twisted to start listening on port 1079.
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(The number 1079 is a reminder that eventually we want to run on port 79, the standard port for finger servers.) For
more detail on endpoints, check out the Getting Connected With Endpoints.

The factory given to the listen() method, FingerFactory , is used to handle incoming requests on that port.
Specifically, for each request, the reactor calls the factory’s buildProtocol method, which in this case causes
FingerProtocol to be instantiated. Since the protocol defined here does not actually respond to any events, con-
nections to 1079 will be accepted, but the input ignored.

A Factory is the proper place for data that you want to make available to the protocol instances, since the protocol
instances are garbage collected when the connection is closed.

Drop Connections

finger03.py

from twisted.internet import endpoints, protocol, reactor

class FingerProtocol(protocol.Protocol):
def connectionMade(self):

self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

Here we add to the protocol the ability to respond to the event of beginning a connection — by terminating it. Perhaps
not an interesting behavior, but it is already close to behaving according to the letter of the standard finger protocol.
After all, there is no requirement to send any data to the remote connection in the standard. The only problem, as far
as the standard is concerned, is that we terminate the connection too soon. A client which is slow enough will see his
send() of the username result in an error.

Read Username, Drop Connections

finger04.py

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

(continues on next page)
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fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

Here we make FingerProtocol inherit from LineReceiver , so that we get data-based events on a line-by-line basis.
We respond to the event of receiving the line with shutting down the connection.

If you use a telnet client to interact with this server, the result will look something like this:

$ telnet localhost 1079
Trying 127.0.0.1...
Connected to localhost.localdomain.
alice
Connection closed by foreign host.

Congratulations, this is the first standard-compliant version of the code. However, usually people actually expect some
data about users to be transmitted.

Read Username, Output Error, Drop Connections

finger05.py

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.write(b"No such user\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

Finally, a useful version. Granted, the usefulness is somewhat limited by the fact that this version only prints out a “No
such user” message. It could be used for devastating effect in honey-pots (decoy servers), of course.
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Output From Empty Factory

finger06.py

# Read username, output from empty factory, drop connections

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.write(self.factory.getUser(user) + b"\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def getUser(self, user):
return b"No such user"

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

The same behavior, but finally we see what usefulness the factory has: as something that does not get constructed for
every connection, it can be in charge of the user database. In particular, we won’t have to change the protocol if the
user database back-end changes.

Output from Non-empty Factory

finger07.py

# Read username, output from non-empty factory, drop connections

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

self.transport.write(self.factory.getUser(user) + b"\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, users):
self.users = users

(continues on next page)
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def getUser(self, user):
return self.users.get(user, b"No such user")

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory({b"moshez": b"Happy and well"}))
reactor.run()

Finally, a really useful finger database. While it does not supply information about logged in users, it could be used to
distribute things like office locations and internal office numbers. As hinted above, the factory is in charge of keeping
the user database: note that the protocol instance has not changed. This is starting to look good: we really won’t have
to keep tweaking our protocol.

Use Deferreds

finger08.py

# Read username, output from non-empty factory, drop connections
# Use deferreds, to minimize synchronicity assumptions

from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return "Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

(continues on next page)
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fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory({b"moshez": b"Happy and well"}))
reactor.run()

But, here we tweak it just for the hell of it. Yes, while the previous version worked, it did assume the result of getUser
is always immediately available. But what if instead of an in-memory database, we would have to fetch the result
from a remote Oracle server? By allowing getUser to return a Deferred, we make it easier for the data to be retrieved
asynchronously so that the CPU can be used for other tasks in the meanwhile.

As described in the Deferred HOWTO , Deferreds allow a program to be driven by events. For instance, if one task in a
program is waiting on data, rather than have the CPU (and the program!) idly waiting for that data (a process normally
called ‘blocking’), the program can perform other operations in the meantime, and waits for some signal that data is
ready to be processed before returning to that process.

In brief, the code in FingerFactory above creates a Deferred, to which we start to attach callbacks . The deferred
action in FingerFactory is actually a fast-running expression consisting of one dictionary method, get . Since
this action can execute without delay, FingerFactory.getUser uses defer.succeed to create a Deferred which
already has a result, meaning its return value will be passed immediately to the first callback function, which turns out
to be FingerProtocol.writeResponse . We’ve also defined an errback (appropriately named FingerProtocol.
onError ) that will be called instead of writeResponse if something goes wrong.

Run ‘finger’ Locally

finger09.py

# Read username, output from factory interfacing to OS, drop connections

from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def getUser(self, user):
return utils.getProcessOutput(b"finger", [user])

(continues on next page)
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fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

This example also makes use of a Deferred. twisted.internet.utils.getProcessOutput is a non-blocking
version of Python’s commands.getoutput : it runs a shell command (finger , in this case) and captures its stan-
dard output. However, getProcessOutput returns a Deferred instead of the output itself. Since FingerProtocol.
lineReceived is already expecting a Deferred to be returned by getUser , it doesn’t need to be changed, and it returns
the standard output as the finger result.

Note that in this case the shell’s built-in finger command is simply run with whatever arguments it is given. This is
probably insecure, so you probably don’t want a real server to do this without a lot more validation of the user input.
This will do exactly what the standard version of the finger server does.

Read Status from the Web

The web. That invention which has infiltrated homes around the world finally gets through to our invention. In this
case we use the built-in Twisted web client via twisted.web.client.getPage , a non-blocking version of Python’s
urllib2.urlopen(URL).read . Like getProcessOutput it returns a Deferred which will be called back with a
string, and can thus be used as a drop-in replacement.

Thus, we have examples of three different database back-ends, none of which change the protocol class. In fact, we
will not have to change the protocol again until the end of this tutorial: we have achieved, here, one truly usable class.

finger10.py

# Read username, output from factory interfacing to web, drop connections

from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic
from twisted.web import client

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

(continues on next page)
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def __init__(self, prefix):
self.prefix = prefix

def getUser(self, user):
return client.getPage(self.prefix + user)

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory(prefix=b"http://livejournal.com/~"))
reactor.run()

Use Application

Up until now, we faked. We kept using port 1079, because really, who wants to run a finger server with root privileges?
Well, the common solution is “privilege shedding” : after binding to the network, become a different, less privileged
user. We could have done it ourselves, but Twisted has a built-in way to do it. We will create a snippet as above, but
now we will define an application object. That object will have uid and gid attributes. When running it (later we will
see how) it will bind to ports, shed privileges and then run.

Read on to find out how to run this code using the twistd utility.

twistd

This is how to run “Twisted Applications” — files which define an ‘application’. A daemon is expected to adhere to
certain behavioral standards so that standard tools can stop/start/query them. If a Twisted application is run via twistd,
the TWISTed Daemonizer, all this behavioral stuff will be handled for you. twistd does everything a daemon can be
expected to — shuts down stdin/stdout/stderr, disconnects from the terminal and can even change runtime directory, or
even the root filesystems. In short, it does everything so the Twisted application developer can concentrate on writing
his networking code.

root% twistd -ny finger11.tac # just like before
root% twistd -y finger11.tac # daemonize, keep pid in twistd.pid
root% twistd -y finger11.tac --pidfile=finger.pid
root% twistd -y finger11.tac --rundir=/
root% twistd -y finger11.tac --chroot=/var
root% twistd -y finger11.tac -l /var/log/finger.log
root% twistd -y finger11.tac --syslog # just log to syslog
root% twistd -y finger11.tac --syslog --prefix=twistedfinger # use given prefix

There are several ways to tell twistd where your application is; here we show how it is done using the application
global variable in a Python source file (a Twisted Application Configuration file).

finger11.tac

# Read username, output from non-empty factory, drop connections
# Use deferreds, to minimize synchronicity assumptions
# Write application. Save in 'finger.tpy'

from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor

(continues on next page)
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from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return "Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

application = service.Application("finger", uid=1, gid=1)
factory = FingerFactory({b"moshez": b"Happy and well"})
strports.service("tcp:79", factory, reactor=reactor).setServiceParent(

service.IServiceCollection(application)
)

Instead of using endpoints.serverFromString as in the above examples, here we are using its application-aware
counterpart, strports.service . Notice that when it is instantiated, the application object itself does not reference
either the protocol or the factory. Any services (such as the one we created with strports.service) which have the
application as their parent will be started when the application is started by twistd. The application object is more useful
for returning an object that supports the IService , IServiceCollection , IProcess , and sob.IPersistable
interfaces with the given parameters; we’ll be seeing these in the next part of the tutorial. As the parent of the endpoint
we opened, the application lets us manage the endpoint.

With the daemon running on the standard finger port, you can test it with the standard finger command: finger
moshez .
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The Evolution of Finger: adding features to the finger service

Introduction

This is the second part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, our finger server will continue to sprout features: the ability for users to set finger an-
nounces, and using our finger service to send those announcements on the web, on IRC and over XML-RPC. Resources
and XML-RPC are introduced in the Web Applications portion of the Twisted Web howto . More examples using
twisted.words.protocols.irc can be found in Writing a TCP Client and the Twisted Words examples .

Setting Message By Local Users

Now that port 1079 is free, maybe we can use it with a different server, one which will let people set their messages.
It does no access control, so anyone who can login to the machine can set any message. We assume this is the desired
behavior in our case. Testing it can be done by simply:

% nc localhost 1079 # or telnet localhost 1079
moshez
Giving a tutorial now, sorry!
^D

finger12.tac

# But let's try and fix setting away messages, shall we?
from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, users):
self.users = users

def getUser(self, user):
(continues on next page)
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return defer.succeed(self.users.get(user, b"No such user"))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser(user, status)

class FingerSetterFactory(protocol.ServerFactory):
protocol = FingerSetterProtocol

def __init__(self, fingerFactory):
self.fingerFactory = fingerFactory

def setUser(self, user, status):
self.fingerFactory.users[user] = status

ff = FingerFactory({b"moshez": b"Happy and well"})
fsf = FingerSetterFactory(ff)

application = service.Application("finger", uid=1, gid=1)
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", ff).setServiceParent(serviceCollection)
strports.service("tcp:1079", fsf).setServiceParent(serviceCollection)

This program has two protocol-factory-TCPServer pairs, which are both child services of the application. Specifically,
the setServiceParent method is used to define the two TCPServer services as children of application , which
implements IServiceCollection . Both services are thus started with the application.

Use Services to Make Dependencies Sane

The previous version had the setter poke at the innards of the finger factory. This strategy is usually not a good idea:
this version makes both factories symmetric by making them both look at a single object. Services are useful for when
an object is needed which is not related to a specific network server. Here, we define a common service class with
methods that will create factories on the fly. The service also contains methods the factories will depend on.

The factory-creation methods, getFingerFactory and getFingerSetterFactory , follow this pattern:

1. Instantiate a generic server factory, twisted.internet.protocol.ServerFactory .

2. Set the protocol class, just like our factory class would have.

3. Copy a service method to the factory as a function attribute. The function won’t have access to the factory’s
self , but that’s OK because as a bound method it has access to the service’s self , which is what it needs. For
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getUser , a custom method defined in the service gets copied. For setUser , a standard method of the users
dictionary is copied.

Thus, we stopped subclassing: the service simply puts useful methods and attributes inside the factories. We are getting
better at protocol design: none of our protocol classes had to be changed, and neither will have to change until the end
of the tutorial.

As an application service, this new finger service implements the IService interface and can be started and stopped
in a standardized manner. We’ll make use of this in the next example.

finger13.tac

# Fix asymmetry
from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser(user, status)

class FingerService(service.Service):
def __init__(self, users):

self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def setUser(self, user, status):
(continues on next page)
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self.users[user] = status

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getFingerSetterFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerSetterProtocol
f.setUser = self.setUser
return f

application = service.Application("finger", uid=1, gid=1)
f = FingerService({b"moshez": b"Happy and well"})
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:1079", f.getFingerSetterFactory()).setServiceParent(

serviceCollection
)

Most application services will want to use the Service base class, which implements all the generic IService be-
havior.

Read Status File

This version shows how, instead of just letting users set their messages, we can read those from a centrally managed
file. We cache results, and every 30 seconds we refresh it. Services are useful for such scheduled tasks.

listings/finger/etc.users

finger14.tac

# Read from file
from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")

(continues on next page)
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self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):

self.users = {}
self.filename = filename

def _read(self):
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
finger = strports.service("tcp:79", f.getFingerFactory())

finger.setServiceParent(service.IServiceCollection(application))
f.setServiceParent(service.IServiceCollection(application))

Since this version is reading data from a file (and refreshing the data every 30 seconds), there is no
FingerSetterFactory and thus nothing listening on port 1079.

Here we override the standard startService and stopService hooks in the Finger service, which is set up as a
child service of the application in the last line of the code. startService calls _read , the function responsible for
reading the data; reactor.callLater is then used to schedule it to run again after thirty seconds every time it is
called. reactor.callLater returns an object that lets us cancel the scheduled run in stopService using its cancel
method.
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Announce on Web, Too

The same kind of service can also produce things useful for other protocols. For example, in twisted.web, the factory
itself (Site ) is almost never subclassed — instead, it is given a resource, which represents the tree of resources available
via URLs. That hierarchy is navigated by Site and overriding it dynamically is possible with getChild .

To integrate this into the Finger application (just because we can), we set up a new TCPServer that calls the Site factory
and retrieves resources via a new function of FingerService named getResource . This function specifically returns
a Resource object with an overridden getChild method.

finger15.tac

# Read from file, announce on the web!
import cgi

from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic
from twisted.web import resource, server, static

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerResource(resource.Resource):
def __init__(self, users):

self.users = users
resource.Resource.__init__(self)

# we treat the path as the username
def getChild(self, username, request):

"""
'username' is L{bytes}.
'request' is a 'twisted.web.server.Request'.
"""
messagevalue = self.users.get(username)
if messagevalue:

messagevalue = messagevalue.decode("ascii")
if username:

username = username.decode("ascii")
username = cgi.escape(username)

(continues on next page)
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if messagevalue is not None:
messagevalue = cgi.escape(messagevalue)
text = f"<h1>{username}</h1><p>{messagevalue}</p>"

else:
text = f"<h1>{username}</h1><p>No such user</p>"

text = text.encode("ascii")
return static.Data(text, "text/html")

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = FingerResource(self.users)
return r

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(
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serviceCollection
)

Announce on IRC, Too

This is the first time there is client code. IRC clients often act a lot like servers: responding to events from the net-
work. The Client Service will make sure that severed links will get re-established, with intelligent tweaked exponential
back-off algorithms. The IRC client itself is simple: the only real hack is getting the nickname from the factory in
connectionMade .

finger16.tac

# Read from file, announce on the web, irc
import cgi

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.web import resource, server, static
from twisted.words.protocols import irc

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg.encode("ascii"))

def onError(err):
return b"Internal error in server"

(continues on next page)
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d.addErrback(onError)

def writeResponse(message):
message = message.decode("ascii")
irc.IRCClient.msg(self, user, msg + ": " + message)

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
def getData(path, request):

user = self.users.get(path, b"No such users <p/> usage: site/user")
path = path.decode("ascii")
user = user.decode("ascii")
text = f"<h1>{path}</h1><p>{user}</p>"
text = text.encode("ascii")
return static.Data(text, "text/html")

r = resource.Resource()
r.getChild = getData
return r

def getIRCBot(self, nickname):
f = protocol.ClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

(continues on next page)
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def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(

serviceCollection
)
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"),
f.getIRCBot("fingerbot"),

).setServiceParent(serviceCollection)

FingerService now has another new function, getIRCbot , which returns a ClientFactory . This factory in turn
will instantiate the IRCReplyBot protocol. The IRCBot is configured in the last line to connect to irc.libera.chat
with a nickname of fingerbot .

By overriding irc.IRCClient.connectionMade , IRCReplyBot can access the nickname attribute of the factory
that instantiated it.

Add XML-RPC Support

In Twisted, XML-RPC support is handled just as though it was another resource. That resource will still support GET
calls normally through render(), but that is usually left unimplemented. Note that it is possible to return deferreds from
XML-RPC methods. The client, of course, will not get the answer until the deferred is triggered.

finger17.tac

# Read from file, announce on the web, irc, xml-rpc
import cgi

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)

(continues on next page)
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def onError(err):
return b"Internal error in server"

d.addErrback(onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg.encode("ascii"))

def onError(err):
return "Internal error in server"

d.addErrback(onError)

def writeResponse(message):
message = message.decode("ascii")
irc.IRCClient.msg(self, user, msg + ": " + message)

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

(continues on next page)

2.1. Developer Guides 63



Twisted Documentation, Release 23.8.0

(continued from previous page)

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
def getData(path, request):

user = self.users.get(path, b"No such user <p/> usage: site/user")
path = path.decode("ascii")
user = user.decode("ascii")
text = f"<h1>{path}</h1><p>{user}</p>"
text = text.encode("ascii")
return static.Data(text, "text/html")

r = resource.Resource()
r.getChild = getData
x = xmlrpc.XMLRPC()
x.xmlrpc_getUser = self.getUser
r.putChild("RPC2", x)
return r

def getIRCBot(self, nickname):
f = protocol.ClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(

serviceCollection
)
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"),
f.getIRCBot("fingerbot"),

).setServiceParent(serviceCollection)

Instead of a web browser, we can test the XMLRPC finger using a simple client based on Python’s built-in xmlrpclib
, which will access the resource we’ve made available at localhost/RPC2 .
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fingerXRclient.py

# testing xmlrpc finger

try:
# Python 3
from xmlrpc.client import Server

except ImportError:
# Python 2
from xmlrpclib import Server

server = Server("http://127.0.0.1:8000/RPC2")
print(server.getUser("moshez"))

The Evolution of Finger: cleaning up the finger code

Introduction

This is the third part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, we’ll clean up our code so that it is closer to a readable and extensible style.

Write Readable Code

The last version of the application had a lot of hacks. We avoided sub-classing, didn’t support things like user listings
over the web, and removed all blank lines – all in the interest of code which is shorter. Here we take a step back,
subclass what is more naturally a subclass, make things which should take multiple lines take them, etc. This shows
a much better style of developing Twisted applications, though the hacks in the previous stages are sometimes used in
throw-away prototypes.

finger18.tac

# Do everything properly
import cgi

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
(continues on next page)

2.1. Developer Guides 65



Twisted Documentation, Release 23.8.0

(continued from previous page)

self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class UserStatusTree(resource.Resource):
def __init__(self, service):

resource.Resource.__init__(self)
self.service = service

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
l = [f'<li><a href="{user}">{user}</a></li>' for user in users]
return "<ul>" + "".join(l) + "</ul>"

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)

(continues on next page)
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d.addCallback(cgi.escape)
d.addCallback(lambda m: "<h1>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):
def __init__(self, filename):

self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = UserStatusTree(self)
x = UserStatusXR(self)
r.putChild("RPC2", x)
return r

def getIRCBot(self, nickname):
f = protocol.ClientFactory()
f.protocol = IRCReplyBot

(continues on next page)
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f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(

serviceCollection
)
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"),
f.getIRCBot("fingerbot"),

).setServiceParent(serviceCollection)

The Evolution of Finger: moving to a component based architecture

Introduction

This is the fourth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, we’ll move our code to a component architecture so that adding new features is trivial.
See Interfaces and Adapters for a more complete discussion of components.

Write Maintainable Code

In the last version, the service class was three times longer than any other class, and was hard to understand. This was
because it turned out to have multiple responsibilities. It had to know how to access user information, by rereading
the file every half minute, but also how to display itself in a myriad of protocols. Here, we used the component-
based architecture that Twisted provides to achieve a separation of concerns. All the service is responsible for, now,
is supporting getUser /getUsers . It declares its support via the zope.interface.implementer decorator. Then,
adapters are used to make this service look like an appropriate class for various things: for supplying a finger factory
to TCPServer , for supplying a resource to site’s constructor, and to provide an IRC client factory for TCPClient .
All the adapters use are the methods in FingerService they are declared to use:getUser /getUsers . We could, of
course, skip the interfaces and let the configuration code use things like FingerFactoryFromService(f) directly.
However, using interfaces provides the same flexibility inheritance gives: future subclasses can override the adapters.

finger19.tac
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# Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

def catchError(err):
return b"Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}
"""

(continues on next page)
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def buildProtocol(addr):
"""
Return a protocol returning L{bytes}
"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""
Return a protocol returning L{bytes}.
"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):

(continues on next page)
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self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):
"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

(continues on next page)
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components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer(resource.IResource)
class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
l = [f'<li><a href="{user}">{user}</a></li>' for user in users]
return "<ul>" + "".join(l) + "</ul>"

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<h1>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

(continues on next page)
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xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)
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Advantages of Latest Version

• Readable – each class is short

• Maintainable – each class knows only about interfaces

• Dependencies between code parts are minimized

• Example: writing a new IFingerService is easy

finger19a_changes.py

class IFingerSetterService(Interface):
def setUser(user, status):

"""Set the user's status to something"""

# Advantages of latest version

@implementer(IFingerService, IFingerSetterService)
class MemoryFingerService(service.Service):

def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def setUser(self, user, status):
self.users[user] = status

f = MemoryFingerService({b"moshez": b"Happy and well"})
serviceCollection = service.IServiceCollection(application)
strports.service(

"tcp:1079:interface=127.0.0.1", IFingerSetterFactory(f)
).setServiceParent(serviceCollection)

Full source code here:

finger19a.tac

# Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

(continues on next page)
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class IFingerService(Interface):
def getUser(user):

"""Return a deferred returning L{bytes}"""

def getUsers():
"""Return a deferred returning a L{list} of L{bytes}"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""Set the user's status to something"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""Return a deferred returning L{bytes}"""

def buildProtocol(addr):
"""Return a protocol returning L{bytes}"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

(continues on next page)
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class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""Return a deferred returning L{bytes}"""

def buildProtocol(addr):
"""Return a protocol returning L{bytes}"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):
(continues on next page)
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"""
@ivar nickname
"""

def getUser(user):
"""Return a deferred returning a string"""

def buildProtocol(addr):
"""Return a protocol"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer(resource.IResource)
class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
l = [f'<li><a href="{user}">{user}</a></li>' for user in users]
return "<ul>" + "".join(l) + "</ul>"

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":

return UserStatusTree(self.service)
else:

(continues on next page)
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return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<h1>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer(IFingerService, IFingerSetterService)
class MemoryFingerService(service.Service):

def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def setUser(self, user, status):
self.users[user] = status

application = service.Application("finger", uid=1, gid=1)
f = MemoryFingerService({b"moshez": b"Happy and well"})
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)

(continues on next page)

78 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

(continued from previous page)

i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)
strports.service(

"tcp:1079:interface=127.0.0.1", IFingerSetterFactory(f)
).setServiceParent(serviceCollection)

Aspect-Oriented Programming

At last, an example of aspect-oriented programming that isn’t about logging or timing. This code is actually useful!
Watch how aspect-oriented programming helps you write less code and have fewer dependencies!

The Evolution of Finger: pluggable backends

Introduction

This is the fifth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part we will add new several new backends to our finger service using the component-based architecture devel-
oped in The Evolution of Finger: moving to a component based architecture . This will show just how convenient it is
to implement new back-ends when we move to a component based architecture. Note that here we also use an interface
we previously wrote, FingerSetterFactory , by supporting one single method. We manage to preserve the service’s
ignorance of the network.

Another Back-end

finger19b_changes.py

import pwd

from twisted.internet import defer, protocol, reactor, utils

# Another back-end

@implementer(IFingerService)
class LocalFingerService(service.Service):

def getUser(self, user):
# need a local finger daemon running for this to work
return utils.getProcessOutput("finger", [user])

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()
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finger19b.tac

# Do everything properly, and componentize
import cgi
import pwd

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
(continues on next page)
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self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""

(continues on next page)

2.1. Developer Guides 81



Twisted Documentation, Release 23.8.0

(continued from previous page)

Return a protocol returning L{bytes}.
"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
(continues on next page)
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class IRCClientFactoryFromService(protocol.ClientFactory):
protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer(resource.IResource)
class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
l = [f'<li><a href="{user}">{user}</a></li>' for user in users]
return "<ul>" + "".join(l) + "</ul>"

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":

return UserStatusTree(self.service)
else:

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):

(continues on next page)
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d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<h1>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

# Another back-end

@implementer(IFingerService)
(continues on next page)
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class LocalFingerService(service.Service):
def getUser(self, user):

# need a local finger daemon running for this to work
return utils.getProcessOutput(b"finger", [user])

def getUsers(self):
return defer.succeed([])

application = service.Application("finger", uid=1, gid=1)
f = LocalFingerService()
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)

We’ve already written this, but now we get more for less work: the network code is completely separate from the
back-end.

Yet Another Back-end: Doing the Standard Thing

finger19c_changes.py

import os
import pwd

from twisted.internet import defer, protocol, reactor, utils

# Yet another back-end

@implementer(IFingerService)
class LocalFingerService(service.Service):

def getUser(self, user):
user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed("No such user")
try:

f = open(os.path.join(entry[5], ".plan"))
except OSError:

return defer.succeed("No such user")
with f:

data = f.read()
(continues on next page)
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data = data.strip()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

Full source code here:

finger19c.tac

# Do everything properly, and componentize
import cgi
import os
import pwd

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

(continues on next page)
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def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):

(continues on next page)
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if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade():

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

(continues on next page)
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def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer(resource.IResource)
class UserStatusTree(resource.Resource):

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
l = [f'<li><a href="{user}">{user}</a></li>' for user in users]
return "<ul>" + "".join(l) + "</ul>"

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":

return UserStatusTree(self.service)

(continues on next page)
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else:
return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<h1>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

(continues on next page)
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def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

# Yet another back-end

@implementer(IFingerService)
class LocalFingerService(service.Service):

def getUser(self, user):
user = user.strip()
try:

entry = pwd.getpwnam(user)
except KeyError:

return defer.succeed(b"No such user")
try:

f = open(os.path.join(entry[5], ".plan"))
except OSError:

return defer.succeed(b"No such user")
with f:

data = f.read()
data = data.strip()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

application = service.Application("finger", uid=1, gid=1)
f = LocalFingerService()
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)

Not much to say except that now we can be churn out backends like crazy. Feel like doing a back-end for Advogato ,
for example? Dig out the XML-RPC client support Twisted has, and get to work!
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The Evolution of Finger: a web frontend

Introduction

This is the sixth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we demonstrate adding a web frontend using simple twisted.web.resource.Resource objects:
UserStatusTree , which will produce a listing of all users at the base URL (/ ) of our site; UserStatus , which
gives the status of each user at the location /username ; and UserStatusXR , which exposes an XMLRPC interface
to getUser and getUsers functions at the URL /RPC2 .

In this example we construct HTML segments manually. If the web interface was less trivial, we would want to use
more sophisticated web templating and design our system so that HTML rendering and logic were clearly separated.

finger20.tac

# Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

def catchError(err):
return b"Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

(continues on next page)
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d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""

(continues on next page)
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Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):

(continues on next page)
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"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

class UserStatusTree(resource.Resource):
def __init__(self, service):

resource.Resource.__init__(self)
self.service = service

# add a specific child for the path "RPC2"
self.putChild(b"RPC2", UserStatusXR(self.service))

# need to do this for resources at the root of the site
self.putChild(b"", self)

def _cb_render_GET(self, users, request):
userOutput = "".join(

[f'<li><a href="{user}">{user}</a></li>' for user in users]
)
request.write(

"""
<html><head><title>Users</title></head><body>
<h1>Users</h1>
<ul>
%s
</ul></body></html>"""
% userOutput

)
request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

(continues on next page)
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# signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(

b"""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>"""

% (self.user, self.user, status)
)
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

# signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

(continues on next page)
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def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)

The Evolution of Finger: Twisted client support using Perspective Broker

Introduction

This is the seventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add a Perspective Broker service to the finger application so that Twisted clients can access the finger
server. Perspective Broker is introduced in depth in its own section of the core howto index.
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Use Perspective Broker

We add support for perspective broker, Twisted’s native remote object protocol. Now, Twisted clients will not have to
go through XML-RPCish contortions to get information about users.

finger21.tac

# Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from twisted.spread import pb
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + "\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)
(continues on next page)
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class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

(continues on next page)
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@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

(continues on next page)
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protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

class UserStatusTree(resource.Resource):
def __init__(self, service):

resource.Resource.__init__(self)
self.service = service

# add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

# need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = "".join(

[f'<li><a href="{user}">{user}</a></li>' for user in users]
)
request.write(

"""
<html><head><title>Users</title></head><body>
<h1>Users</h1>
<ul>
%s
</ul></body></html>"""
% userOutput

)
request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

# signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

(continues on next page)
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components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(

"""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>"""

% (self.user, self.user, status)
)
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

# signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):
def remote_getUser(username):

"""
Return a user's status.
"""

def remote_getUsers():
"""
Return a user's status.
"""

@implementer(IPerspectiveFinger)
(continues on next page)
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class PerspectiveFingerFromService(pb.Root):
def __init__(self, service):

self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(
PerspectiveFingerFromService, IFingerService, IPerspectiveFinger

)

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)

(continues on next page)
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strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(
serviceCollection

)
i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)
strports.service(

"tcp:8889", pb.PBServerFactory(IPerspectiveFinger(f))
).setServiceParent(serviceCollection)

A simple client to test the perspective broker finger:

fingerPBclient.py

# test the PB finger on port 8889
# this code is essentially the same as
# the first example in howto/pb-usage

from twisted.internet import endpoints, reactor
from twisted.spread import pb

def gotObject(object):
print("got object:", object)
object.callRemote("getUser", "moshez").addCallback(gotData)

# or
# object.callRemote("getUsers").addCallback(gotData)

def gotData(data):
print("server sent:", data)
reactor.stop()

def gotNoObject(reason):
print("no object:", reason)
reactor.stop()

factory = pb.PBClientFactory()
clientEndpoint = endpoints.clientFromString("tcp:127.0.0.1:8889")
clientEndpoint.connect(factory)
factory.getRootObject().addCallbacks(gotObject, gotNoObject)
reactor.run()
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The Evolution of Finger: using a single factory for multiple protocols

Introduction

This is the eighth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add HTTPS support to our web frontend, showing how to have a single factory listen on multiple ports.
More information on using SSL in Twisted can be found in the SSL howto .

Support HTTPS

All we need to do to code an HTTPS site is just write a context factory (in this case, which loads the certificate from a
certain file) and then use the twisted.internet.endpoints.serverFromString method to build a SSL endpoint.
Note that one factory (in this case, a site) can listen on multiple ports with multiple protocols.

Of course, this endpoint doesn’t work without a TLS certificate and a private key. You’ll need to create a self-signed
cert and key. This will obviously not be trusted by your web browser, so you’ll see a warning when you connect. In
this case, don’t worry: you’re not at risk.

To create a certificate and key that can be used by this tutorial, run the following:

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365

finger22.py

# Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from OpenSSL import SSL

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from twisted.spread import pb
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
(continues on next page)
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def setUser(user, status):
"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol returning a string.
"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

(continues on next page)
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def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""
Return a protocol returning L{bytes}.
"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

(continues on next page)
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class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning a string.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

class UserStatusTree(resource.Resource):
def __init__(self, service):

resource.Resource.__init__(self)
self.service = service

# add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

# need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = "".join(

[f'<li><a href="{user}">{user}</a></li>' for user in users]
)
request.write(

"""

(continues on next page)
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<html><head><title>Users</title></head><body>
<h1>Users</h1>
<ul>
%s
</ul></body></html>"""
% userOutput

)
request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

# signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):

resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(

"""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>"""

% (self.user, self.user, status)
)
request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

# signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

(continues on next page)
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def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):
def remote_getUser(username):

"""
Return a user's status.
"""

def remote_getUsers():
"""
Return a user's status.
"""

@implementer(IPerspectiveFinger)
class PerspectiveFingerFromService(pb.Root):

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(
PerspectiveFingerFromService, IFingerService, IPerspectiveFinger

)

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

(continues on next page)
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def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
site = server.Site(resource.IResource(f))
strports.service(

"tcp:8000",
site,

).setServiceParent(serviceCollection)
strports.service(

"ssl:port=443:certKey=cert.pem:privateKey=key.pem", site
).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)
strports.service(

"tcp:8889", pb.PBServerFactory(IPerspectiveFinger(f))
).setServiceParent(serviceCollection)

The Evolution of Finger: a Twisted finger client

Introduction

This is the ninth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we develop a client for the finger server: a proxy finger server which forwards requests to another finger
server.
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Finger Proxy

Writing new clients with Twisted is much like writing new servers. We implement the protocol, which just gathers up
all the data, and give it to the factory. The factory keeps a deferred which is triggered if the connection either fails or
succeeds. When we use the client, we first make sure the deferred will never fail, by producing a message in that case.
Implementing a wrapper around client which just returns the deferred is a common pattern. While less flexible than
using the factory directly, it’s also more convenient.

Additionally, because this code now programmatically receives its host and port, it’s a bit less convenient to use client-
FromString. Instead, we move to using the specific endpoint we want. In this case, because we’re connecting as a client
over IPv4 using TCP, we want the TCP4ClientEndpoint.

fingerproxy.tac

# finger proxy
from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components

def catchError(err):
return "Internal error in server"

class IFingerService(Interface):
def getUser(user):

"""Return a deferred returning L{bytes}"""

def getUsers():
"""Return a deferred returning a L{list} of L{bytes}"""

class IFingerFactory(Interface):
def getUser(user):

"""Return a deferred returning L{bytes}"""

def buildProtocol(addr):
"""Return a protocol returning L{bytes}"""

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value)
self.transport.loseConnection()

d.addCallback(writeValue)

(continues on next page)
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@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ClientFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerClient(protocol.Protocol):
def connectionMade(self):

self.transport.write(self.factory.user + b"\r\n")
self.buf = []

def dataReceived(self, data):
self.buf.append(data)

def connectionLost(self, reason):
self.factory.gotData("".join(self.buf))

class FingerClientFactory(protocol.ClientFactory):

protocol = FingerClient

def __init__(self, user):
self.user = user
self.d = defer.Deferred()

def clientConnectionFailed(self, _, reason):
self.d.errback(reason)

def gotData(self, data):
self.d.callback(data)

def finger(user, host, port=79):
f = FingerClientFactory(user)
endpoint = endpoints.TCP4ClientEndpoint(reactor, host, port)
endpoint.connect(f)
return f.d

@implementer(IFingerService)
class ProxyFingerService(service.Service):

(continues on next page)
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def getUser(self, user):
try:

user, host = user.split("@", 1)
except BaseException:

user = user.strip()
host = "127.0.0.1"

ret = finger(user, host)
ret.addErrback(lambda _: "Could not connect to remote host")
return ret

def getUsers(self):
return defer.succeed([])

application = service.Application("finger", uid=1, gid=1)
f = ProxyFingerService()
strports.service("tcp:7779", IFingerFactory(f)).setServiceParent(

service.IServiceCollection(application)
)

The Evolution of Finger: making a finger library

Introduction

This is the tenth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we separate the application code that launches a finger service from the library code which defines a finger
service, placing the application in a Twisted Application Configuration (.tac) file. We also move configuration (such as
HTML templates) into separate files. Configuration and deployment with .tac and twistd are introduced in Using the
Twisted Application Framework .

Organization

Now this code, while quite modular and well-designed, isn’t properly organized. Everything above the application=
belongs in a module, and the HTML templates all belong in separate files.

We can use the templateFile and templateDirectory attributes to indicate what HTML template file to use for
each Page, and where to look for it.

organized-finger.tac

# organized-finger.tac
# eg: twistd -ny organized-finger.tac

import finger

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.python import log
from twisted.spread import pb
from twisted.web import resource, server

(continues on next page)
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application = service.Application("finger", uid=1, gid=1)
f = finger.FingerService("/etc/users")
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", finger.IFingerFactory(f)).setServiceParent(serviceCollection)

site = server.Site(resource.IResource(f))
strports.service(

"tcp:8000",
site,

).setServiceParent(serviceCollection)

strports.service(
"ssl:port=443:certKey=cert.pem:privateKey=key.pem", site

).setServiceParent(serviceCollection)

i = finger.IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
).setServiceParent(serviceCollection)

strports.service(
"tcp:8889", pb.PBServerFactory(finger.IPerspectiveFinger(f))

).setServiceParent(serviceCollection)

Note that our program is now quite separated. We have:

• Code (in the module)

• Configuration (file above)

• Presentation (templates)

• Content (/etc/users )

• Deployment (twistd)

Prototypes don’t need this level of separation, so our earlier examples all bunched together. However, real applications
do. Thankfully, if we write our code correctly, it is easy to achieve a good separation of parts.

Easy Configuration

We can also supply easy configuration for common cases with a makeService method that will also help build .tac
files later:

finger_config.py

# Easy configuration
# makeService from finger module

def makeService(config):
# finger on port 79
s = service.MultiService()

(continues on next page)
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f = FingerService(config["file"])
h = strports.service("tcp:79", IFingerFactory(f))
h.setServiceParent(s)

# website on port 8000
r = resource.IResource(f)
r.templateDirectory = config["templates"]
site = server.Site(r)
j = strports.service("tcp:8000", site)
j.setServiceParent(s)

# ssl on port 443
if config.get("ssl"):

k = strports.service("ssl:port=443:certKey=cert.pem:privateKey=key.pem", site)
k.setServiceParent(s)

# irc fingerbot
if "ircnick" in config:

i = IIRCClientFactory(f)
i.nickname = config["ircnick"]
ircserver = config["ircserver"]
b = internet.ClientService(

endpoints.HostnameEndpoint(reactor, ircserver, 6667), i
)
b.setServiceParent(s)

# Pespective Broker on port 8889
if "pbport" in config:

m = internet.StreamServerEndpointService(
endpoints.TCP4ServerEndpoint(reactor, int(config["pbport"])),
pb.PBServerFactory(IPerspectiveFinger(f)),

)
m.setServiceParent(s)

return s

And we can write simpler files now:

simple-finger.tac

# simple-finger.tac
# eg: twistd -ny simple-finger.tac

import finger

from twisted.application import service

options = {
"file": "/etc/users",
"templates": "/usr/share/finger/templates",
"ircnick": "fingerbot",
"ircserver": "irc.freenode.net",
"pbport": 8889,

(continues on next page)
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"ssl": "ssl=0",
}

ser = finger.makeService(options)
application = service.Application("finger", uid=1, gid=1)
ser.setServiceParent(service.IServiceCollection(application))

% twistd -ny simple-finger.tac

Note: the finger user still has ultimate power: they can use makeService, or they can use the lower-level interface if
they have specific needs (maybe an IRC server on some other port? Maybe we want the non-SSL webserver to listen
only locally? etc. etc.). This is an important design principle: never force a layer of abstraction; allow usage of layers
of abstractions instead.

The pasta theory of design:

Spaghetti
Each piece of code interacts with every other piece of code (can be implemented with GOTO, functions, objects).

Lasagna
Code has carefully designed layers. Each layer is, in theory independent. However low-level layers usually cannot
be used easily, and high-level layers depend on low-level layers.

Ravioli
Each part of the code is useful by itself. There is a thin layer of interfaces between various parts (the sauce).
Each part can be usefully be used elsewhere.

. . . but sometimes, the user just wants to order “Ravioli”, so one coarse-grain easily definable layer of abstraction on
top of it all can be useful.

The Evolution of Finger: configuration of the finger service

Introduction

This is the eleventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we make it easier for non-programmers to configure a finger server. Plugins are discussed further in the
Twisted Plugin System howto. Writing twistd plugins is covered in Writing a twistd Plugin, and .tac applications are
covered in Using the Twisted Application Framework.

Plugins

So far, the user had to be somewhat of a programmer to be able to configure stuff. Maybe we can eliminate even that?
Move old code to finger/__init__.py and. . .

Full source code for finger module here:

finger.py

# finger.py module

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
(continues on next page)
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from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components, log
from twisted.spread import pb
from twisted.web import resource, server, xmlrpc
from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

"""
Return a deferred returning a L{bytes}.
"""

def getUsers():
"""
Return a deferred returning a L{list} of L{bytes}.
"""

class IFingerSetterService(Interface):
def setUser(user, status):

"""
Set the user's status to something.
"""

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""
Return a protocol returning L{bytes}.

(continues on next page)
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"""

@implementer(IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):

self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:

self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""
Return a protocol returning L{bytes}.
"""

@implementer(IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

(continues on next page)
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components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):

self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():

d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

"""
@ivar nickname
"""

def getUser(user):
"""
Return a deferred returning L{bytes}.
"""

def buildProtocol(addr):
"""
Return a protocol.
"""

@implementer(IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(

(continues on next page)

120 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

(continued from previous page)

IRCClientFactoryFromService, IFingerService, IIRCClientFactory
)

class UserStatusTree(resource.Resource):

template = """<html><head><title>Users</title></head><body>
<h1>Users</h1>
<ul>
%(users)s
</ul>
</body>
</html>"""

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

def getChild(self, path, request):
if path == "":

return self
elif path == "RPC2":

return UserStatusXR(self.service)
else:

return UserStatus(path, self.service)

def render_GET(self, request):
users = self.service.getUsers()

def cbUsers(users):
request.write(

self.template
% {

"users": "".join(
[

# Name should be quoted properly these uses.
f'<li><a href="{name}">{name}</a></li>'
for name in users

]
)

}
)
request.finish()

users.addCallback(cbUsers)

def ebUsers(err):
log.err(err, "UserStatusTree failed")
request.finish()

users.addErrback(ebUsers)
return server.NOT_DONE_YET

(continues on next page)
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components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):

template = """<html><head><title>%(title)s</title></head>
<body><h1>%(name)s</h1><p>%(status)s</p></body></html>"""

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
status = self.service.getUser(self.user)

def cbStatus(status):
request.write(

self.template
% {"title": self.user, "name": self.user, "status": status}

)
request.finish()

status.addCallback(cbStatus)

def ebStatus(err):
log.err(err, "UserStatus failed")
request.finish()

status.addErrback(ebStatus)
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):
def remote_getUser(username):

"""
Return a user's status.
"""

(continues on next page)
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def remote_getUsers():
"""
Return a user's status.
"""

@implementer(IPerspectiveFinger)
class PerspectiveFingerFromService(pb.Root):

def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(
PerspectiveFingerFromService, IFingerService, IPerspectiveFinger

)

@implementer(IFingerService)
class FingerService(service.Service):

def __init__(self, filename):
self.filename = filename

def _read(self):
self.users = {}
with open(self.filename, "rb") as f:

for line in f:
user, status = line.split(b":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

(continues on next page)
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# Easy configuration

def makeService(config):
# finger on port 79
s = service.MultiService()
f = FingerService(config["file"])
h = strports.service("tcp:1079", IFingerFactory(f))
h.setServiceParent(s)

# website on port 8000
r = resource.IResource(f)
r.templateDirectory = config["templates"]
site = server.Site(r)
j = strports.service("tcp:8000", site)
j.setServiceParent(s)

# ssl on port 443
# if config.get('ssl'):
# k = strports.service(
# "ssl:port=443:certKey=cert.pem:privateKey=key.pem", site
# )
# k.setServiceParent(s)

# irc fingerbot
if "ircnick" in config:

i = IIRCClientFactory(f)
i.nickname = config["ircnick"]
ircserver = config["ircserver"]
b = internet.ClientService(

endpoints.HostnameEndpoint(reactor, ircserver, 6667), i
)
b.setServiceParent(s)

# Pespective Broker on port 8889
if "pbport" in config:

m = internet.StreamServerEndpointService(
endpoints.TCP4ServerEndpoint(reactor, int(config["pbport"])),
pb.PBServerFactory(IPerspectiveFinger(f)),

)
m.setServiceParent(s)

return s

tap.py

# finger/tap.py
import finger

from twisted.application import internet, service
(continues on next page)
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from twisted.internet import interfaces
from twisted.python import usage

class Options(usage.Options):

optParameters = [
["file", "f", "/etc/users"],
["templates", "t", "/usr/share/finger/templates"],
["ircnick", "n", "fingerbot"],
["ircserver", None, "irc.freenode.net"],
["pbport", "p", 8889],

]

optFlags = [["ssl", "s"]]

def makeService(config):
return finger.makeService(config)

And register it all:

finger_tutorial.py

from twisted.application.service import ServiceMaker

finger = ServiceMaker("finger", "finger.tap", "Run a finger service", "finger")

Note that the second argument to ServiceMaker ,``finger.tap`` , is a reference to a module (finger/tap.py ), not to
a filename.

And now, the following works

% sudo twistd -n finger --file=/etc/users --ircnick=fingerbot

For more details about this, see the twistd plugin documentation .

Introduction

Twisted is a big system. People are often daunted when they approach it. It’s hard to know where to start looking.

This guide builds a full-fledged Twisted application from the ground up, using most of the important bits of the frame-
work. There is a lot of code, but don’t be afraid.

The application we are looking at is a “finger” service, along the lines of the familiar service traditionally provided by
UNIX™ servers. We will extend this service slightly beyond the standard, in order to demonstrate some of Twisted’s
higher-level features.

Each section of the tutorial dives straight into applications for various Twisted topics. These topics have their own
introductory howtos listed in the core howto index and in the documentation for other Twisted projects like Twisted
Web and Twisted Words. There are at least three ways to use this tutorial: you may find it useful to read through the rest
of the topics listed in the core howto index before working through the finger tutorial, work through the finger tutorial
and then go back and hit the introductory material that is relevant to the Twisted project you’re working on, or read the
introductory material one piece at a time as it comes up in the finger tutorial.
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Contents

This tutorial is split into eleven parts:

1. The Evolution of Finger: building a simple finger service

2. The Evolution of Finger: adding features to the finger service

3. The Evolution of Finger: cleaning up the finger code

4. The Evolution of Finger: moving to a component based architecture

5. The Evolution of Finger: pluggable backends

6. The Evolution of Finger: a web frontend

7. The Evolution of Finger: Twisted client support using Perspective Broker

8. The Evolution of Finger: using a single factory for multiple protocols

9. The Evolution of Finger: a Twisted finger client

10. The Evolution of Finger: making a finger library

11. The Evolution of Finger: configuration of the finger service

2.1.6 Setting up the TwistedQuotes application

Goal

This document describes how to set up the TwistedQuotes application used in a number of other documents, such as
designing Twisted applications .

Setting up the TwistedQuotes project directory

In order to run the Twisted Quotes example, you will need to do the following:

1. Make a TwistedQuotes directory on your system

2. Place the following files in the TwistedQuotes directory:

• __init__.py

"""
Twisted Quotes
"""

(this file marks it as a package, see this section of the Python tutorial for more on packages)

• quoters.py

from random import choice

from zope.interface import implementer

from TwistedQuotes import quoteproto

@implementer(quoteproto.IQuoter)
(continues on next page)
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class StaticQuoter:
"""
Return a static quote.
"""

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

@implementer(quoteproto.IQuoter)
class FortuneQuoter:

"""
Load quotes from a fortune-format file.
"""

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
with open(choice(self.filenames)) as quoteFile:

quotes = quoteFile.read().split("\n%\n")
return choice(quotes)

• quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter(Interface):
"""
An object that returns quotes.
"""

def getQuote():
"""
Return a quote.
"""

class QOTD(Protocol):
def connectionMade(self):

self.transport.write(self.factory.quoter.getQuote() + "\r\n")
self.transport.loseConnection()

class QOTDFactory(Factory):
"""

(continues on next page)
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A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by

the L{QOTD} protocol to get quotes to emit.
"""

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

3. Add the TwistedQuotes directory’s parent to your Python path. For example, if the TwistedQuotes direc-
tory’s path is /mystuff/TwistedQuotes or c:\mystuff\TwistedQuotes add /mystuff to your Python
path. On UNIX this would be export PYTHONPATH=/mystuff:$PYTHONPATH , on Microsoft Windows change
the PYTHONPATH variable through the Systems Properties dialog by adding ;c:\mystuff at the end.

4. Test your package by trying to import it in the Python interpreter:

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import TwistedQuotes
>>> # No traceback means you're fine.

2.1.7 Designing Twisted Applications

Goals

This document describes how a good Twisted application is structured. It should be useful for beginning Twisted
developers who want to structure their code in a clean, maintainable way that reflects current best practices.

Readers will want to be familiar with writing servers and clients using Twisted.

Example of a modular design: TwistedQuotes

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality – Quote of the Day – which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Day protocol, and more.

Set up the project directory

See the description of setting up the TwistedQuotes example .
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quoters.py

from random import choice

from zope.interface import implementer

from TwistedQuotes import quoteproto

@implementer(quoteproto.IQuoter)
class StaticQuoter:

"""
Return a static quote.
"""

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

@implementer(quoteproto.IQuoter)
class FortuneQuoter:

"""
Load quotes from a fortune-format file.
"""

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
with open(choice(self.filenames)) as quoteFile:

quotes = quoteFile.read().split("\n%\n")
return choice(quotes)

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking to
the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the day”
.

Note that this module does not import any Twisted functionality at all! The reason for doing things this way is in-
tegration. If your “business objects” are not stuck to your user interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file formats. Having such classes provides a way to decouple your
components from each other, by allowing each to be used independently.

In this manner, Twisted itself has minimal impact on the logic of your program. Although the Twisted “dot products”
are highly interoperable, they also follow this approach. You can use them independently because they are not stuck
to each other. They communicate in well-defined ways, and only when that communication provides some additional
feature. Thus, you can use twisted.web with twisted.enterprise , but neither requires the other, because they
are integrated around the concept of Deferreds .

Your Twisted applications should follow this style as much as possible. Have (at least) one module which implements
your specific functionality, independent of any user-interface code.
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Next, we’re going to need to associate this abstract logic with some way of displaying it to the user. We’ll do this by
writing a Twisted server protocol, which will respond to the clients that connect to it by sending a quote to the client
and then closing the connection. Note: don’t get too focused on the details of this – different ways to interface with the
user are 90% of what Twisted does, and there are lots of documents describing the different ways to do it.

quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter(Interface):
"""
An object that returns quotes.
"""

def getQuote():
"""
Return a quote.
"""

class QOTD(Protocol):
def connectionMade(self):

self.transport.write(self.factory.quoter.getQuote() + "\r\n")
self.transport.loseConnection()

class QOTDFactory(Factory):
"""
A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by

the L{QOTD} protocol to get quotes to emit.
"""

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

This is a very straightforward Protocol implementation, and the pattern described above is repeated here. The Protocol
contains essentially no logic of its own, just enough to tie together an object which can generate quotes (a Quoter ) and
an object which can relay bytes to a TCP connection (a Transport ). When a client connects to this server, a QOTD
instance is created, and its connectionMade method is called.

The QOTDFactory ‘s role is to specify to the Twisted framework how to create a Protocol instance that will handle
the connection. Twisted will not instantiate a QOTDFactory ; you will do that yourself later, in a twistd plug-in.

Note: you can read more specifics of Protocol and Factory in the Writing Servers HOWTO.

Once we have an abstraction – a Quoter – and we have a mechanism to connect it to the network – the QOTD protocol
– the next thing to do is to put the last link in the chain of functionality between abstraction and user. This last link will
allow a user to choose a Quoter and configure the protocol. Writing this configuration is covered in the Application
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HOWTO .

2.1.8 Overview of Twisted Internet

Twisted Internet is a collection of compatible event-loops for Python. It contains the code to dispatch events to interested
observers and a portable API so that observers need not care about which event loop is running. Thus, it is possible to
use the same code for different loops, from Twisted’s basic, yet portable, select -based loop to the loops of various
GUI toolkits like GTK+ or Tk.

Twisted Internet contains the various interfaces to the reactor API, whose usage is documented in the low-level chapter.
Those APIs are IReactorCore , IReactorTCP , IReactorSSL , IReactorUNIX , IReactorUDP , IReactorTime ,
IReactorProcess , IReactorMulticast and IReactorThreads . The reactor APIs allow non-persistent calls to
be made.

Twisted Internet also covers the interfaces for the various transports, in ITransport and friends. These interfaces
allow Twisted network code to be written without regard to the underlying implementation of the transport.

The IProtocolFactory dictates how factories, which are usually a large part of third party code, are written.

2.1.9 Reactor Overview

This HOWTO introduces the Twisted reactor, describes the basics of the reactor and links to the various reactor inter-
faces.

Reactor Basics

The reactor is the core of the event loop within Twisted – the loop which drives applications using Twisted. The event
loop is a programming construct that waits for and dispatches events or messages in a program. It works by calling
some internal or external “event provider”, which generally blocks until an event has arrived, and then calls the relevant
event handler (“dispatches the event”). The reactor provides basic interfaces to a number of services, including network
communications, threading, and event dispatching.

For information about using the reactor and the Twisted event loop, see:

• the event dispatching howtos: Scheduling and Using Deferreds ;

• the communication howtos: TCP servers , TCP clients , UDP networking and Using processes ; and

• Using threads .

There are multiple implementations of the reactor, each modified to provide better support for specialized features over
the default implementation. More information about these and how to use a particular implementation is available via
Choosing a Reactor .

Twisted applications can use the interfaces in twisted.application.service to configure and run the application
instead of using boilerplate reactor code. See Using Application for an introduction to Application.
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Using the reactor object

You can get to the reactor object using the following code:

from twisted.internet import reactor

The reactor usually implements a set of interfaces, but depending on the chosen reactor and the platform, some of the
interfaces may not be implemented:

• IReactorCore : Core (required) functionality.

• IReactorFDSet : Use FileDescriptor objects.

• IReactorProcess : Process management. Read the Using Processes document for more information.

• IReactorSSL : SSL networking support.

• IReactorTCP : TCP networking support. More information can be found in the Writing Servers and Writing
Clients documents.

• IReactorThreads : Threading use and management. More information can be found within Threading In
Twisted .

• IReactorTime : Scheduling interface. More information can be found within Scheduling Tasks .

• IReactorUDP : UDP networking support. More information can be found within UDP Networking .

• IReactorUNIX : UNIX socket support.

• IReactorSocket : Third-party socket support.

2.1.10 Using TLS in Twisted

Overview

This document describes how to secure your communications using TLS (Transport Layer Security) — also known as
SSL (Secure Sockets Layer) — in Twisted servers and clients. It assumes that you know what TLS is, what some of
the major reasons to use it are, and how to generate your own certificates. It also assumes that you are comfortable
with creating TCP servers and clients as described in the server howto and client howto . After reading this document
you should be able to create servers and clients that can use TLS to encrypt their connections, switch from using an
unencrypted channel to an encrypted one mid-connection, and require client authentication.

Using TLS in Twisted requires that you have pyOpenSSL installed. A quick test to verify that you do is to run from
OpenSSL import SSL at a python prompt and not get an error.

Twisted provides TLS support as a transport — that is, as an alternative to TCP. When using TLS, use of the TCP
APIs you’re already familiar with, TCP4ClientEndpoint and TCP4ServerEndpoint — or reactor.listenTCP
and reactor.connectTCP — is replaced by use of parallel TLS APIs (many of which still use the legacy name “SSL”
due to age and/or compatibility with older APIs). To create a TLS server, use SSL4ServerEndpoint or listenSSL .
To create a TLS client, use SSL4ClientEndpoint or connectSSL .

TLS provides transport layer security, but it’s important to understand what “security” means. With respect to TLS it
means three things:

1. Identity: TLS servers (and sometimes clients) present a certificate, offering proof of who they are, so that you
know who you are talking to.

2. Confidentiality: once you know who you are talking to, encryption of the connection ensures that the communi-
cations can’t be understood by any third parties who might be listening in.
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3. Integrity: TLS checks the encrypted messages to ensure that they actually came from the party you originally
authenticated to. If the messages fail these checks, then they are discarded and your application does not see
them.

Without identity, neither confidentiality nor integrity is possible. If you don’t know who you’re talking to, then you
might as easily be talking to your bank or to a thief who wants to steal your bank password. Each of the APIs listed
above with “SSL” in the name requires a configuration object called (for historical reasons) a contextFactory. (Please
pardon the somewhat awkward name.) The contextFactory serves three purposes:

1. It provides the materials to prove your own identity to the other side of the connection: in other words, who you
are.

2. It expresses your requirements of the other side’s identity: in other words, who you would like to talk to (and
who you trust to tell you that you’re talking to the right party).

3. It allows you to specify certain specialized options about the way the TLS protocol itself operates.

The requirements of clients and servers are slightly different. Both can provide a certificate to prove their identity, but
commonly, TLS servers provide a certificate, whereas TLS clients check the server’s certificate (to make sure they’re
talking to the right server) and then later identify themselves to the server some other way, often by offering a shared
secret such as a password or API key via an application protocol secured with TLS and not as part of TLS itself.

Since these requirements are slightly different, there are different APIs to construct an appropriate contextFactory
value for a client or a server.

For servers, we can use twisted.internet.ssl.CertificateOptions. In order to prove the server’s
identity, you pass the privateKey and certificate arguments to this object. twisted.internet.ssl.
PrivateCertificate.options() is a convenient way to create a CertificateOptions instance configured to
use a particular key and certificate.

For clients, we can use twisted.internet.ssl.optionsForClientTLS(). This takes two arguments, hostname
(which indicates what hostname must be advertised in the server’s certificate) and optionally trustRoot. By default,
optionsForClientTLS tries to obtain the trust roots from your platform, but you can specify your own.

You may obtain an object suitable to pass as the trustRoot= parameter with an explicit list of twisted.internet.
ssl.Certificate or twisted.internet.ssl.PrivateCertificate instances by calling twisted.internet.
ssl.trustRootFromCertificates(). This will cause optionsForClientTLS to accept any connection so long
as the server’s certificate is signed by at least one of the certificates passed.

Note: Currently, Twisted only supports loading of OpenSSL’s default trust roots. If you’ve built OpenSSL yourself,
you must take care to include these in the appropriate location. If you’re using the OpenSSL shipped as part of macOS
10.5-10.9, this behavior will also be correct. If you’re using Debian, or one of its derivatives like Ubuntu, install
the ca-certificates package to ensure you have trust roots available, and this behavior should also be correct. Work
is ongoing to make platformTrust — the API that optionsForClientTLS uses by default — more robust. For
example, platformTrust should fall back to the “certifi” package if no platform trust roots are available but it doesn’t
do that yet. When this happens, you shouldn’t need to change your code.

2.1. Developer Guides 133

https://pypi.org/project/certifi


Twisted Documentation, Release 23.8.0

TLS echo server and client

Now that we’ve got the theory out of the way, let’s try some working examples of how to get started with a TLS server.
The following examples rely on the files server.pem (private key and self-signed certificate together) and public.
pem (the server’s public certificate by itself).

TLS echo server

echoserv_ssl.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import sys

import echoserv

from twisted.internet import defer, protocol, ssl, task
from twisted.python import log
from twisted.python.modules import getModule

def main(reactor):
log.startLogging(sys.stdout)
certData = getModule(__name__).filePath.sibling("server.pem").getContent()
certificate = ssl.PrivateCertificate.loadPEM(certData)
factory = protocol.Factory.forProtocol(echoserv.Echo)
reactor.listenSSL(8000, factory, certificate.options())
return defer.Deferred()

if __name__ == "__main__":
import echoserv_ssl

task.react(echoserv_ssl.main)

This server uses listenSSL to listen for TLS traffic on port 8000, using the certificate and private key contained in the
file server.pem. It uses the same echo example server as the TCP echo server — even going so far as to import its
protocol class. Assuming that you can buy your own TLS certificate from a certificate authority, this is a fairly realistic
TLS server.

TLS echo client

echoclient_ssl.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import echoclient

(continues on next page)
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from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.python.modules import getModule

@defer.inlineCallbacks
def main(reactor):

factory = protocol.Factory.forProtocol(echoclient.EchoClient)
certData = getModule(__name__).filePath.sibling("public.pem").getContent()
authority = ssl.Certificate.loadPEM(certData)
options = ssl.optionsForClientTLS("example.com", authority)
endpoint = endpoints.SSL4ClientEndpoint(reactor, "localhost", 8000, options)
echoClient = yield endpoint.connect(factory)

done = defer.Deferred()
echoClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == "__main__":
import echoclient_ssl

task.react(echoclient_ssl.main)

This client uses SSL4ClientEndpoint to connect to echoserv_ssl.py. It also uses the same echo example client
as the TCP echo client. Whenever you have a protocol that listens on plain-text TCP it is easy to run it over TLS
instead. It specifies that it only wants to talk to a host named "example.com", and that it trusts the certificate authority
in "public.pem" to say who "example.com" is. Note that the host you are connecting to — localhost — and the
host whose identity you are verifying — example.com — can differ. In this case, our example server.pem certificate
identifies a host named “example.com”, but your server is proably running on localhost.

In a realistic client, it’s very important that you pass the same “hostname” your connection API (in this case,
SSL4ClientEndpoint) and optionsForClientTLS. In this case we’re using “localhost” as the host to connect
to because you’re probably running this example on your own computer and “example.com” because that’s the value
hard-coded in the dummy certificate distributed along with Twisted’s example code.

Connecting To Public Servers

Here is a short example, now using the default trust roots for optionsForClientTLS from platformTrust.

check_server_certificate.py

import sys

from twisted.internet import defer, endpoints, error, protocol, ssl, task

def main(reactor, host, port=443):
options = ssl.optionsForClientTLS(hostname=host.decode("utf-8"))
port = int(port)

class ShowCertificate(protocol.Protocol):
def connectionMade(self):

(continues on next page)
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self.transport.write(b"GET / HTTP/1.0\r\n\r\n")
self.done = defer.Deferred()

def dataReceived(self, data):
certificate = ssl.Certificate(self.transport.getPeerCertificate())
print("OK:", certificate)
self.transport.abortConnection()

def connectionLost(self, reason):
print("Lost.")
if not reason.check(error.ConnectionClosed):

print("BAD:", reason.value)
self.done.callback(None)

return endpoints.connectProtocol(
endpoints.SSL4ClientEndpoint(reactor, host, port, options), ShowCertificate()

).addCallback(lambda protocol: protocol.done)

task.react(main, sys.argv[1:])

You can use this tool fairly simply to retrieve certificates from an HTTPS server with a valid TLS certificate, by running
it with a host name. For example:

$ python check_server_certificate.py www.twistedmatrix.com
OK: <Certificate Subject=www.twistedmatrix.com ...>
$ python check_server_certificate.py www.cacert.org
BAD: [(... 'certificate verify failed')]
$ python check_server_certificate.py dornkirk.twistedmatrix.com
BAD: No service reference ID could be validated against certificate.

Note: To properly validate your hostname parameter according to RFC6125, please also install the “service_identity”
and “idna” packages from PyPI. Without this package, Twisted will currently make a conservative guess as to the
correctness of the server’s certificate, but this will reject a large number of potentially valid certificates. service_identity
implements the standard correctly and it will be a required dependency for TLS in a future release of Twisted.

Using startTLS

If you want to switch from unencrypted to encrypted traffic mid-connection, you’ll need to turn on TLS with startTLS
on both ends of the connection at the same time via some agreed-upon signal like the reception of a particular message.
You can readily verify the switch to an encrypted channel by examining the packet payloads with a tool like Wireshark
.
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startTLS server

starttls_server.py

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.protocols.basic import LineReceiver
from twisted.python.modules import getModule

class TLSServer(LineReceiver):
def lineReceived(self, line):

print("received: ", line)
if line == b"STARTTLS":

print("-- Switching to TLS")
self.sendLine(b"READY")
self.transport.startTLS(self.factory.options)

def main(reactor):
certData = getModule(__name__).filePath.sibling("server.pem").getContent()
cert = ssl.PrivateCertificate.loadPEM(certData)
factory = protocol.Factory.forProtocol(TLSServer)
factory.options = cert.options()
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8000)
endpoint.listen(factory)
return defer.Deferred()

if __name__ == "__main__":
import starttls_server

task.react(starttls_server.main)

startTLS client

starttls_client.py

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.protocols.basic import LineReceiver
from twisted.python.modules import getModule

class StartTLSClient(LineReceiver):
def connectionMade(self):

self.sendLine(b"plain text")
self.sendLine(b"STARTTLS")

def lineReceived(self, line):
print("received: ", line)
if line == b"READY":

self.transport.startTLS(self.factory.options)
self.sendLine(b"secure text")

(continues on next page)
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self.transport.loseConnection()

@defer.inlineCallbacks
def main(reactor):

factory = protocol.Factory.forProtocol(StartTLSClient)
certData = getModule(__name__).filePath.sibling("server.pem").getContent()
factory.options = ssl.optionsForClientTLS(

"example.com", ssl.PrivateCertificate.loadPEM(certData)
)
endpoint = endpoints.HostnameEndpoint(reactor, "localhost", 8000)
startTLSClient = yield endpoint.connect(factory)

done = defer.Deferred()
startTLSClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == "__main__":
import starttls_client

task.react(starttls_client.main)

startTLS is a transport method that gets passed a contextFactory. It is invoked at an agreed-upon time in the
data reception method of the client and server protocols. The server uses PrivateCertificate.options to create
a contextFactory which will use a particular certificate and private key (a common requirement for TLS servers).

The client creates an uncustomized CertificateOptions which is all that’s necessary for a TLS client to interact
with a TLS server.

Client authentication

Server and client-side changes to require client authentication fall largely under the dominion of pyOpenSSL, but few
examples seem to exist on the web so for completeness a sample server and client are provided here.

TLS server with client authentication via client certificate verification

When one or more certificates are passed to PrivateCertificate.options, the resulting contextFactory will
use those certificates as trusted authorities and require that the peer present a certificate with a valid chain anchored by
one of those authorities.

A server can use this to verify that a client provides a valid certificate signed by one of those certificate authorities;
here is an example of such a certificate.

ssl_clientauth_server.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import sys

(continues on next page)
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import echoserv

from twisted.internet import defer, protocol, ssl, task
from twisted.python import log
from twisted.python.modules import getModule

def main(reactor):
log.startLogging(sys.stdout)
certData = getModule(__name__).filePath.sibling("public.pem").getContent()
authData = getModule(__name__).filePath.sibling("server.pem").getContent()
authority = ssl.Certificate.loadPEM(certData)
certificate = ssl.PrivateCertificate.loadPEM(authData)
factory = protocol.Factory.forProtocol(echoserv.Echo)
reactor.listenSSL(8000, factory, certificate.options(authority))
return defer.Deferred()

if __name__ == "__main__":
import ssl_clientauth_server

task.react(ssl_clientauth_server.main)

Client with certificates

The following client then supplies such a certificate as the clientCertificate argument to optionsForClientTLS,
while still validating the server’s identity.

ssl_clientauth_client.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import echoclient

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.python.modules import getModule

@defer.inlineCallbacks
def main(reactor):

factory = protocol.Factory.forProtocol(echoclient.EchoClient)
certData = getModule(__name__).filePath.sibling("public.pem").getContent()
authData = getModule(__name__).filePath.sibling("server.pem").getContent()
clientCertificate = ssl.PrivateCertificate.loadPEM(authData)
authority = ssl.Certificate.loadPEM(certData)
options = ssl.optionsForClientTLS("example.com", authority, clientCertificate)
endpoint = endpoints.SSL4ClientEndpoint(reactor, "localhost", 8000, options)
echoClient = yield endpoint.connect(factory)

(continues on next page)
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done = defer.Deferred()
echoClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == "__main__":
import ssl_clientauth_client

task.react(ssl_clientauth_client.main)

Notice that these two examples are very, very similar to the TLS echo examples above. In fact, you can demonstrate
a failed authentication by simply running echoclient_ssl.py against ssl_clientauth_server.py; you’ll see no
output because the server closed the connection rather than echoing the client’s authenticated input.

TLS Protocol Options

For servers, it is desirable to offer Diffie-Hellman based key exchange that provides perfect forward secrecy. The
ciphers are activated by default, however it is necessary to pass an instance of DiffieHellmanParameters to
CertificateOptions via the dhParameters option to be able to use them.

For example,

from twisted.internet.ssl import CertificateOptions, DiffieHellmanParameters
from twisted.python.filepath import FilePath
dhFilePath = FilePath('dh_param_1024.pem')
dhParams = DiffieHellmanParameters.fromFile(dhFilePath)
options = CertificateOptions(..., dhParameters=dhParams)

Another part of the TLS protocol which CertificateOptions can control is the version of the TLS or SSL protocol
used. By default, Twisted will configure it to use TLSv1.2 or later and disable the insecure SSLv3 protocol. Manual
control over protocols can be helpful if you need to support legacy SSLv3 systems, or you wish to restrict it down to
just the strongest of the TLS versions.

You can ask CertificateOptions to use a more secure default minimum than Twisted’s by using the
raiseMinimumTo argument in the initializer:

from twisted.internet.ssl import CertificateOptions, TLSVersion
options = CertificateOptions(

...,
raiseMinimumTo=TLSVersion.TLSv1_3)

This will always negotiate a minimum of TLSv1.3, but will negotiate higher versions if Twisted’s default is higher. This
usage will stay secure if Twisted updates the minimum to some hypothetical future TLS version, rather than causing
your application to use the now theoretically insecure minimum you set.

If you need a strictly hard range of TLS versions you wish CertificateOptions to negotiate, you can use the
insecurelyLowerMinimumTo and lowerMaximumSecurityTo arguments in the initializer:

from twisted.internet.ssl import CertificateOptions, TLSVersion
options = CertificateOptions(

...,
insecurelyLowerMinimumTo=TLSVersion.TLSv1_0,
lowerMaximumSecurityTo=TLSVersion.TLSv1_2)
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This will cause it to negotiate between TLSv1.0 and TLSv1.2, and will not change if Twisted’s default minimum TLS
version is raised. Note that this may not work at all, due to your version of OpenSSL potentially limiting the avail-
ability of deprecated or broken TLS versions. It is highly recommended not to set lowerMaximumSecurityTo unless
you have a peer that is known to misbehave on newer TLS versions, and to only set insecurelyLowerMinimumTo
when Twisted’s minimum is not acceptable. Using these two arguments to CertificateOptions may make your
application’s TLS insecure if you do not review it frequently, and should not be used in libraries.

SSLv3 support is still available and you can enable support for it if you wish. As an example, this supports all TLS
versions and SSLv3:

from twisted.internet.ssl import CertificateOptions, TLSVersion
options = CertificateOptions(

...,
insecurelyLowerMinimumTo=TLSVersion.SSLv3)

Future OpenSSL versions may completely remove the ability to negotiate the insecure SSLv3 protocol, and this will
not allow you to re-enable it.

Additionally, it is possible to limit the acceptable ciphers for your connection by passing an IAcceptableCiphers
object to CertificateOptions. Since Twisted uses a secure cipher configuration by default, it is discouraged to do
so unless absolutely necessary.

Application Layer Protocol Negotiation (ALPN) and Next Protocol Negotiation (NPN)

ALPN and NPN are TLS extensions that can be used by clients and servers to negotiate what application-layer protocol
will be spoken once the encrypted connection is established. This avoids the need for extra custom round trips once
the encrypted connection is established. It is implemented as a standard part of the TLS handshake.

NPN is supported from OpenSSL version 1.0.1. ALPN is the newer of the two protocols, supported in OpenSSL
versions 1.0.2 onward. These functions require pyOpenSSL version 0.15 or higher. To query the methods supported
by your system, use twisted.internet.ssl.protocolNegotiationMechanisms(). It will return a collection of
flags indicating support for NPN and/or ALPN.

twisted.internet.ssl.CertificateOptions and twisted.internet.ssl.optionsForClientTLS() allow
for selecting the protocols your program is willing to speak after the connection is established.

On the server-side you will have:

from twisted.internet.ssl import CertificateOptions
options = CertificateOptions(..., acceptableProtocols=[b'h2', b'http/1.1'])

and for clients:

from twisted.internet.ssl import optionsForClientTLS
options = optionsForClientTLS(hostname=hostname, acceptableProtocols=[b'h2', b'http/1.1
→˓'])

Twisted will attempt to use both ALPN and NPN, if they’re available, to maximise compatibility with peers. If both
ALPN and NPN are supported by the peer, the result from ALPN is preferred.

For NPN, the client selects the protocol to use; For ALPN, the server does. If Twisted is acting as the peer who is
supposed to select the protocol, it will prefer the earliest protocol in the list that is supported by both peers.

To determine what protocol was negotiated, after the connection is done, use TLSMemoryBIOProtocol.
negotiatedProtocol. It will return one of the protocol names passed to the acceptableProtocols parameter.
It will return None if the peer did not offer ALPN or NPN.
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It can also return None if no overlap could be found and the connection was established regardless (some peers will
do this: Twisted will not). In this case, the protocol that should be used is whatever protocol would have been used if
negotiation had not been attempted at all.

Warning: If ALPN or NPN are used and no overlap can be found, then the remote peer may choose to terminate the
connection. This may cause the TLS handshake to fail, or may result in the connection being torn down immediately
after being made. If Twisted is the selecting peer (that is, Twisted is the server and ALPN is being used, or Twisted
is the client and NPN is being used), and no overlap can be found, Twisted will always choose to fail the handshake
rather than allow an ambiguous connection to set up.

An example of using this functionality can be found in this example script for clients and this example
script for servers.

Related facilities

twisted.protocols.amp supports encrypted connections and exposes a startTLS method one can use or subclass.
twisted.web has built-in TLS support in its client , http , and xmlrpc modules.

Conclusion

After reading through this tutorial, you should be able to:

• Use listenSSL and connectSSL to create servers and clients that use TLS

• Use startTLS to switch a channel from being unencrypted to using TLS mid-connection

• Add server and client support for client authentication

2.1.11 UDP Networking

Overview

Unlike TCP, UDP has no notion of connections. A UDP socket can receive datagrams from any server on the network
and send datagrams to any host on the network. In addition, datagrams may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no connections, we only use a single object, a protocol, for each UDP socket. We then use the reactor
to connect this protocol to a UDP transport, using the twisted.internet.interfaces.IReactorUDP reactor API.

DatagramProtocol

The class where you actually implement the protocol parsing and handling will usually be descended from twisted.
internet.protocol.DatagramProtocol or from one of its convenience children. The DatagramProtocol class
receives datagrams and can send them out over the network. Received datagrams include the address they were sent
from. When sending datagrams the destination address must be specified.

Here is a simple example:

basic_example.py
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from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):

print(f"received {data!r} from {addr}")
self.transport.write(data, addr)

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registered with the reactor. This means it may be persisted if it’s added to an application,
and thus it has startProtocol and stopProtocol methods that will get called when the protocol is connected and
disconnected from a UDP socket.

The protocol’s transport attribute will implement the twisted.internet.interfaces.IUDPTransport inter-
face. Notice that addr argument to self.transport.write should be a tuple with IP address and port number. First
element of tuple must be ip address and not a hostname. If you only have the hostname use reactor.resolve() to
resolve the address (see twisted.internet.interfaces.IReactorCore.resolve()).

Other thing to keep in mind is that data written to transport must be bytes. Trying to write string may work ok in Python
2, but will fail if you are using Python 3.

To confirm that socket is indeed listening you can try following command line one-liner.

> echo "Hello World!" | nc -4u -w1 localhost 9999

If everything is ok your “server” logs should print:

received b'Hello World!\n' from ('127.0.0.1', 32844) # where 32844 is some random port␣
→˓number

Adopting Datagram Ports

By default reactor.listenUDP() call will create appropriate socket for you, but it is also possible to add an existing
SOCK_DGRAM file descriptor of some socket to the reactor using the adoptDatagramPort API.

Here is a simple example:

adopt_datagram_port.py

import socket

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):

print(f"received {data!r} from {addr}")
self.transport.write(data, addr)

(continues on next page)
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# Create new socket that will be passed to reactor later.
portSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

# Make the port non-blocking and start it listening.
portSocket.setblocking(False)
portSocket.bind(("127.0.0.1", 9999))

# Now pass the port file descriptor to the reactor.
port = reactor.adoptDatagramPort(portSocket.fileno(), socket.AF_INET, Echo())

# The portSocket should be cleaned up by the process that creates it.
portSocket.close()

reactor.run()

Note:

• You must ensure that the socket is non-blocking before passing its file descriptor to adoptDatagramPort.

• adoptDatagramPort cannot (currently) detect the family of the adopted socket so you must ensure that you
pass the correct socket family argument.

• The reactor will not shutdown the socket. It is the responsibility of the process that created the socket to shutdown
and clean up the socket when it is no longer needed.

Connected UDP

A connected UDP socket is slightly different from a standard one as it can only send and receive datagrams to/from a
single address. However this does not in any way imply a connection as datagrams may still arrive in any order and
the port on the other side may have no one listening. The benefit of the connected UDP socket is that it may provide
notification of undelivered packages. This depends on many factors (almost all of which are out of the control of the
application) but still presents certain benefits which occasionally make it useful.

Unlike a regular UDP protocol, we do not need to specify where to send datagrams and are not told where they came
from since they can only come from the address to which the socket is ‘connected’.

connected_udp.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Helloer(DatagramProtocol):
def startProtocol(self):

host = "192.168.1.1"
port = 1234

self.transport.connect(host, port)
print("now we can only send to host %s port %d" % (host, port))
self.transport.write(b"hello") # no need for address

(continues on next page)
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def datagramReceived(self, data, addr):
print(f"received {data!r} from {addr}")

# Possibly invoked if there is no server listening on the
# address to which we are sending.
def connectionRefused(self):

print("No one listening")

# 0 means any port, we don't care in this case
reactor.listenUDP(0, Helloer())
reactor.run()

Note that connect(), like write() will only accept IP addresses, not unresolved hostnames. To obtain the IP of a
hostname use reactor.resolve(), e.g:

getting_ip.py

from twisted.internet import reactor

def gotIP(ip):
print("IP of 'localhost' is", ip)
reactor.stop()

reactor.resolve("localhost").addCallback(gotIP)
reactor.run()

Connecting to a new address after a previous connection or making a connected port unconnected are not currently
supported, but likely will be in the future.

Multicast UDP

Multicast allows a process to contact multiple hosts with a single packet, without knowing the specific IP address of
any of the hosts. This is in contrast to normal, or unicast, UDP, where each datagram has a single IP as its destination.
Multicast datagrams are sent to special multicast group addresses (in the IPv4 range 224.0.0.0 to 239.255.255.255),
along with a corresponding port. In order to receive multicast datagrams, you must join that specific group address.
However, any UDP socket can send to multicast addresses. Here is a simple server example:

MulticastServer.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class MulticastPingPong(DatagramProtocol):
def startProtocol(self):

"""
Called after protocol has started listening.
"""
# Set the TTL>1 so multicast will cross router hops:
self.transport.setTTL(5)

(continues on next page)
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# Join a specific multicast group:
self.transport.joinGroup("228.0.0.5")

def datagramReceived(self, datagram, address):
print(f"Datagram {repr(datagram)} received from {repr(address)}")
if datagram == b"Client: Ping" or datagram == "Client: Ping":

# Rather than replying to the group multicast address, we send the
# reply directly (unicast) to the originating port:
self.transport.write(b"Server: Pong", address)

# We use listenMultiple=True so that we can run MulticastServer.py and
# MulticastClient.py on same machine:
reactor.listenMulticast(9999, MulticastPingPong(), listenMultiple=True)
reactor.run()

As with UDP, with multicast there is no server/client differentiation at the protocol level. Our server example is very
simple and closely resembles a normal listenUDP protocol implementation. The main difference is that instead of
listenUDP, listenMulticast is called with the port number. The server calls joinGroup to join a multicast group.
A DatagramProtocol that is listening with multicast and has joined a group can receive multicast datagrams, but also
unicast datagrams sent directly to its address. The server in the example above sends such a unicast message in reply
to the multicast message it receives from the client.

Client code may look like this:

MulticastClient.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class MulticastPingClient(DatagramProtocol):
def startProtocol(self):

# Join the multicast address, so we can receive replies:
self.transport.joinGroup("228.0.0.5")
# Send to 228.0.0.5:9999 - all listeners on the multicast address
# (including us) will receive this message.
self.transport.write(b"Client: Ping", ("228.0.0.5", 9999))

def datagramReceived(self, datagram, address):
print(f"Datagram {repr(datagram)} received from {repr(address)}")

reactor.listenMulticast(9999, MulticastPingClient(), listenMultiple=True)
reactor.run()

Note that a multicast socket will have a default TTL (time to live) of 1. That is, datagrams won’t traverse more than one
router hop, unless a higher TTL is set with setTTL. Other functionality provided by the multicast transport includes
setOutgoingInterface and setLoopbackMode – see IMulticastTransport for more information.

To test your multicast setup you need to start server in one terminal and couple of clients in other terminals. If all goes
ok you should see “Ping” messages sent by each client in logs of all other connected clients.
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Broadcast UDP

Broadcast allows a different way of contacting several unknown hosts. Broadcasting via UDP sends a packet out to all
hosts on the local network by sending to a magic broadcast address ("<broadcast>"). This broadcast is filtered by
routers by default, and there are no “groups” like multicast, only different ports.

Broadcast is enabled by passing True to setBroadcastAllowed on the port. Checking the broadcast status can be
done with getBroadcastAllowed on the port.

For a complete example of this feature, see udpbroadcast.py.

IPv6

UDP sockets can also bind to IPv6 addresses to support sending and receiving datagrams over IPv6. By passing an
IPv6 address to listenUDP’s interface argument, the reactor will start an IPv6 socket that can be used to send and
receive UDP datagrams.

ipv6_listen.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):

print(f"received {data!r} from {addr}")
self.transport.write(data, addr)

reactor.listenUDP(9999, Echo(), interface="::")
reactor.run()

2.1.12 Using Processes

Overview

Along with connection to servers across the internet, Twisted also connects to local processes with much the same API.
The API is described in more detail in the documentation of:

• twisted.internet.interfaces.IReactorProcess

• twisted.internet.interfaces.IProcessTransport

• twisted.internet.interfaces.IProcessProtocol
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Running Another Process

Processes are run through the reactor, using reactor.spawnProcess . Pipes are created to the child process, and
added to the reactor core so that the application will not block while sending data into or pulling data out of the new
process. reactor.spawnProcess requires two arguments, processProtocol and executable , and optionally
takes several more: args , environment , path , userID , groupID , usePTY , and childFDs . Not all of these are
available on Windows.

from twisted.internet import reactor

processProtocol = MyProcessProtocol()
reactor.spawnProcess(processProtocol, executable, args=[program, arg1, arg2],

env={'HOME': os.environ['HOME']}, path,
uid, gid, usePTY, childFDs)

• processProtocol should be an instance of a subclass of twisted.internet.protocol.ProcessProtocol
. The interface is described below.

• executable is the full path of the program to run. It will be connected to processProtocol.

• args is a list of command line arguments to be passed to the process. args[0] should be the name of the process.

• env is a dictionary containing the environment to pass through to the process.

• path is the directory to run the process in. The child will switch to the given directory just before starting the
new program. The default is to stay in the current directory.

• uid and gid are the user ID and group ID to run the subprocess as. Of course, changing identities will be more
likely to succeed if you start as root.

• usePTY specifies whether the child process should be run with a pty, or if it should just get a pair of pipes. Whether
a program needs to be run with a PTY or not depends on the particulars of that program. Often, programs which
primarily interact with users via a terminal do need a PTY.

• childFDs lets you specify how the child’s file descriptors should be set up. Each key is a file descriptor number
(an integer) as seen by the child. 0, 1, and 2 are usually stdin, stdout, and stderr, but some programs may be
instructed to use additional fds through command-line arguments or environment variables. Each value is either
an integer specifying one of the parent’s current file descriptors, the string “r” which creates a pipe that the parent
can read from, or the string “w” which creates a pipe that the parent can write to. If childFDs is not provided,
a default is used which creates the usual stdin-writer, stdout-reader, and stderr-reader pipes.

args and env have empty default values, but many programs depend upon them to be set correctly. At the very least,
args[0] should probably be the same as executable . If you just provide os.environ for env , the child program
will inherit the environment from the current process, which is usually the civilized thing to do (unless you want to
explicitly clean the environment as a security precaution). The default is to give an empty env to the child.

reactor.spawnProcess returns an instance that implements IProcessTransport.
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Writing a ProcessProtocol

The ProcessProtocol you pass to spawnProcess is your interaction with the process. It has a very similar signature to
a regular Protocol, but it has several extra methods to deal with events specific to a process. In our example, we will
interface with ‘wc’ to create a word count of user-given text. First, we’ll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol(protocol.ProcessProtocol):

def __init__(self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, it has the connectionMade method called. In our protocol, we
will write our text to the standard input of our process and then close standard input, to let the process know we are
done writing to it.

...
def connectionMade(self):

self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has received the data, and it’s time for us to read the results. Instead of being received
in dataReceived , data from standard output is received in outReceived . This is to distinguish it from data on
standard error.

...
def outReceived(self, data):

fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words = int(data[fieldLength:fieldLength*2])
chars = int(data[fieldLength*2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the connection to the process. Then it sends the results on to the
final method, receiveCounts. This is for users of the class to override, so as to do other things with the data. For our
demonstration, we will just print the results.

...
def receiveCounts(self, lines, words, chars):

print('Received counts from wc.')
print('Lines:', lines)
print('Words:', words)
print('Characters:', chars)

We’re done! To use our WCProcessProtocol, we create an instance, and pass it to spawnProcess.

from twisted.internet import reactor
wcProcess = WCProcessProtocol("accessing protocols through Twisted is fun!\n")
reactor.spawnProcess(wcProcess, 'wc', ['wc'])
reactor.run()

2.1. Developer Guides 149



Twisted Documentation, Release 23.8.0

Things that can happen to your ProcessProtocol

These are the methods that you can usefully override in your subclass of ProcessProtocol :

• .connectionMade() : This is called when the program is started, and makes a good place to write data into
the stdin pipe (using self.transport.write ).

• .outReceived(data) : This is called with data that was received from the process’ stdout pipe. Pipes tend to
provide data in larger chunks than sockets (one kilobyte is a common buffer size), so you may not experience the
“random dribs and drabs” behavior typical of network sockets, but regardless you should be prepared to deal if
you don’t get all your data in a single call. To do it properly, outReceived ought to simply accumulate the data
and put off doing anything with it until the process has finished.

• .errReceived(data) : This is called with data from the process’ stderr pipe. It behaves just like outReceived
.

• .inConnectionLost : This is called when the reactor notices that the process’ stdin pipe has closed. Programs
don’t typically close their own stdin, so this will probably get called when your ProcessProtocol has shut down
the write side with self.transport.loseConnection .

• .outConnectionLost : This is called when the program closes its stdout pipe. This usually happens when the
program terminates.

• .errConnectionLost : Same as outConnectionLost , but for stderr instead of stdout.

• .processExited(status) : This is called when the child process has been reaped, and receives information
about the process’ exit status. The status is passed in the form of a Failure instance, created with a .value
that either holds a ProcessDone object if the process terminated normally (it died of natural causes instead of
receiving a signal, and if the exit code was 0), or a ProcessTerminated object (with an .exitCode attribute)
if something went wrong.

• .processEnded(status) : This is called when all the file descriptors associated with the child process have
been closed and the process has been reaped. This means it is the last callback which will be made onto a
ProcessProtocol . The status parameter has the same meaning as it does for processExited .

The base-class definitions of most of these functions are no-ops. This will result in all stdout and stderr being thrown
away. Note that it is important for data you don’t care about to be thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a full pipe.

Things you can do from your ProcessProtocol

The following are the basic ways to control the child process:

• self.transport.write(data) : Stuff some data in the stdin pipe. Note that this write method will queue
any data that can’t be written immediately. Writing will resume in the future when the pipe becomes writable
again.

• self.transport.closeStdin : Close the stdin pipe. Programs which act as filters (reading from stdin, mod-
ifying the data, writing to stdout) usually take this as a sign that they should finish their job and terminate. For
these programs, it is important to close stdin when you’re done with it, otherwise the child process will never
quit.

• self.transport.closeStdout : Not usually called, since you’re putting the process into a state where any
attempt to write to stdout will cause a SIGPIPE error. This isn’t a nice thing to do to the poor process.

• self.transport.closeStderr : Not usually called, same reason as closeStdout .

• self.transport.loseConnection : Close all three pipes.

• self.transport.signalProcess('KILL') : Kill the child process. This will eventually result in
processEnded being called.
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Verbose Example

Here is an example that is rather verbose about exactly when all the methods are called. It writes a number of lines into
the wc program and then parses the output.

process.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import re

from twisted.internet import protocol, reactor

class MyPP(protocol.ProcessProtocol):
def __init__(self, verses):

self.verses = verses
self.data = ""

def connectionMade(self):
print("connectionMade!")
for i in range(self.verses):

self.transport.write(
"Aleph-null bottles of beer on the wall,\n"
+ "Aleph-null bottles of beer,\n"
+ "Take one down and pass it around,\n"
+ "Aleph-null bottles of beer on the wall.\n"

)
self.transport.closeStdin() # tell them we're done

def outReceived(self, data):
print("outReceived! with %d bytes!" % len(data))
self.data = self.data + data

def errReceived(self, data):
print("errReceived! with %d bytes!" % len(data))

def inConnectionLost(self):
print("inConnectionLost! stdin is closed! (we probably did it)")

def outConnectionLost(self):
print("outConnectionLost! The child closed their stdout!")
# now is the time to examine what they wrote
# print("I saw them write:", self.data)
(dummy, lines, words, chars, file) = re.split(r"\s+", self.data)
print("I saw %s lines" % lines)

def errConnectionLost(self):
print("errConnectionLost! The child closed their stderr.")

(continues on next page)
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(continued from previous page)

def processExited(self, reason):
print("processExited, status %d" % (reason.value.exitCode,))

def processEnded(self, reason):
print("processEnded, status %d" % (reason.value.exitCode,))
print("quitting")
reactor.stop()

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

The exact output of this program depends upon the relative timing of some un-synchronized events. In particular, the
program may observe the child process close its stderr pipe before or after it reads data from the stdout pipe. One
possible transcript would look like this:

% ./process.py
connectionMade!
inConnectionLost! stdin is closed! (we probably did it)
errConnectionLost! The child closed their stderr.
outReceived! with 24 bytes!
outConnectionLost! The child closed their stdout!
I saw 40 lines
processEnded, status 0
quitting
Main loop terminated.
%

Doing it the Easy Way

Frequently, one just needs a simple way to get all the output from a program. In the blocking world, you might use
commands.getoutput from the standard library, but using that in an event-driven program will cause everything else
to stall until the command finishes. (in addition, the SIGCHLD handler used by that function does not play well with
Twisted’s own signal handling). For these cases, the twisted.internet.utils.getProcessOutput() function
can be used. Here is a simple example:

quotes.py

from cStringIO import StringIO

from twisted.internet import protocol, reactor, utils
from twisted.python import failure

class FortuneQuoter(protocol.Protocol):

fortune = "/usr/games/fortune"

def connectionMade(self):
output = utils.getProcessOutput(self.fortune)
output.addCallbacks(self.writeResponse, self.noResponse)

(continues on next page)
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(continued from previous page)

def writeResponse(self, resp):
self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

if __name__ == "__main__":
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, f)
reactor.run()

If you only need the final exit code (like commands.getstatusoutput(cmd)[0] ), the twisted.internet.utils.
getProcessValue() function is useful. Here is an example:

trueandfalse.py

from twisted.internet import reactor, utils

def printTrueValue(val):
print("/bin/true exits with rc=%d" % val)
output = utils.getProcessValue("/bin/false")
output.addCallback(printFalseValue)

def printFalseValue(val):
print("/bin/false exits with rc=%d" % val)
reactor.stop()

output = utils.getProcessValue("/bin/true")
output.addCallback(printTrueValue)
reactor.run()

Mapping File Descriptors

“stdin” , “stdout” , and “stderr” are just conventions. Programs which operate as filters generally accept input on fd0,
write their output on fd1, and emit error messages on fd2. This is common enough that the standard C library provides
macros like “stdin” to mean fd0, and shells interpret the pipe character “|” to mean “redirect fd1 from one command
into fd0 of the next command” .

But these are just conventions, and programs are free to use additional file descriptors or even ignore the standard three
entirely. The”childFDs” argument allows you to specify exactly what kind of files descriptors the child process should
be given.

Each child FD can be put into one of three states:

• Mapped to a parent FD: this causes the child’s reads and writes to come from or go to the same source/destination
as the parent.
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• Feeding into a pipe which can be read by the parent.

• Feeding from a pipe which the parent writes into.

Mapping the child FDs to the parent’s is very commonly used to send the child’s stderr output to the same place as the
parent’s. When you run a program from the shell, it will typically leave fds 0, 1, and 2 mapped to the shell’s 0, 1, and
2, allowing you to see the child program’s output on the same terminal you used to launch the child. Likewise, inetd
will typically map both stdin and stdout to the network socket, and may map stderr to the same socket or to some kind
of logging mechanism. This allows the child program to be implemented with no knowledge of the network: it merely
speaks its protocol by doing reads on fd0 and writes on fd1.

Feeding into a parent’s read pipe is used to gather output from the child, and is by far the most common way of interacting
with child processes.

Feeding from a parent’s write pipe allows the parent to control the child. Programs like “bc” or “ftp” can be controlled
this way, by writing commands into their stdin stream.

The “childFDs” dictionary maps file descriptor numbers (as will be seen by the child process) to one of these three
states. To map the fd to one of the parent’s fds, simply provide the fd number as the value. To map it to a read pipe,
use the string “r” as the value. To map it to a write pipe, use the string “w” .

For example, the default mapping sets up the standard stdin/stdout/stderr pipes. It is implemented with the following
dictionary:

childFDs = { 0: "w", 1: "r", 2: "r" }

To launch a process which reads and writes to the same places that the parent python program does, use this:

childFDs = { 0: 0, 1: 1, 2: 2}

To write into an additional fd (say it is fd number 4), use this:

childFDs = { 0: "w", 1: "r", 2: "r" , 4: "w"}

ProcessProtocols with extra file descriptors

When you provide a “childFDs” dictionary with more than the normal three fds, you need additional methods to access
those pipes. These methods are more generalized than the .outReceived ones described above. In fact, those methods
(outReceived and errReceived ) are actually just wrappers left in for compatibility with older code, written before
this generalized fd mapping was implemented. The new list of things that can happen to your ProcessProtocol is as
follows:

• .connectionMade : This is called when the program is started.

• .childDataReceived(childFD, data) : This is called with data that was received from one of the process’
output pipes (i.e. where the childFDs value was “r” . The actual file number (from the point of view of the child
process) is in “childFD” . For compatibility, the default implementation of .childDataReceived dispatches
to .outReceived or .errReceived when “childFD” is 1 or 2.

• .childConnectionLost(childFD) : This is called when the reactor notices that one of the process’ pipes
has been closed. This either means you have just closed down the parent’s end of the pipe (with .transport.
closeChildFD ), the child closed the pipe explicitly (sometimes to indicate EOF), or the child process has
terminated and the kernel has closed all of its pipes. The “childFD” argument tells you which pipe was closed.
Note that you can only find out about file descriptors which were mapped to pipes: when they are mapped to exist-
ing fds the parent has no way to notice when they’ve been closed. For compatibility, the default implementation
dispatches to .inConnectionLost , .outConnectionLost , or .errConnectionLost .
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• .processEnded(status) : This is called when the child process has been reaped, and all pipes have been
closed. This insures that all data written by the child prior to its death will be received before .processEnded
is invoked.

In addition to those methods, there are other methods available to influence the child process:

• self.transport.writeToChild(childFD, data) : Stuff some data into an input pipe. .write simply
writes to childFD=0.

• self.transport.closeChildFD(childFD) : Close one of the child’s pipes. Closing an input pipe is a com-
mon way to indicate EOF to the child process. Closing an output pipe is neither very friendly nor very useful.

Examples

GnuPG, the encryption program, can use additional file descriptors to accept a passphrase and emit status output. These
are distinct from stdin (used to accept the crypttext), stdout (used to emit the plaintext), and stderr (used to emit human-
readable status/warning messages). The passphrase FD reads until the pipe is closed and uses the resulting string to
unlock the secret key that performs the actual decryption. The status FD emits machine-parseable status messages to
indicate the validity of the signature, which key the message was encrypted to, etc.

gpg accepts command-line arguments to specify what these fds are, and then assumes that they have been opened by
the parent before the gpg process is started. It simply performs reads and writes to these fd numbers.

To invoke gpg in decryption/verification mode, you would do something like the following:

class GPGProtocol(ProcessProtocol):
def __init__(self, crypttext):

self.crypttext = crypttext
self.plaintext = ""
self.status = ""

def connectionMade(self):
self.transport.writeToChild(3, self.passphrase)
self.transport.closeChildFD(3)
self.transport.writeToChild(0, self.crypttext)
self.transport.closeChildFD(0)

def childDataReceived(self, childFD, data):
if childFD == 1: self.plaintext += data
if childFD == 4: self.status += data

def processEnded(self, status):
rc = status.value.exitCode
if rc == 0:

self.deferred.callback(self)
else:

self.deferred.errback(rc)

def decrypt(crypttext):
gp = GPGProtocol(crypttext)
gp.deferred = Deferred()
cmd = ["gpg", "--decrypt", "--passphrase-fd", "3", "--status-fd", "4",

"--batch"]
p = reactor.spawnProcess(gp, cmd[0], cmd, env=None,

childFDs={0:"w", 1:"r", 2:2, 3:"w", 4:"r"})
return gp.deferred

In this example, the status output could be parsed after the fact. It could, of course, be parsed on the fly, as it is a simple
line-oriented protocol. Methods from LineReceiver could be mixed in to make this parsing more convenient.
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The stderr mapping (“2:2” ) used will cause any GPG errors to be emitted by the parent program, just as if those errors
had caused in the parent itself. This is sometimes desirable (it roughly corresponds to letting exceptions propagate
upwards), especially if you do not expect to encounter errors in the child process and want them to be more visible to
the end user. The alternative is to map stderr to a read-pipe and handle any such output from within the ProcessProtocol
(roughly corresponding to catching the exception locally).

2.1.13 Introduction to Deferreds

This document introduces Deferreds, Twisted’s preferred mechanism for controlling the flow of asynchronous code.
Don’t worry if you don’t know what that means yet – that’s why you are here!

It is intended for newcomers to Twisted, and was written particularly to help people read and understand code that
already uses Deferreds.

This document assumes you have a good working knowledge of Python. It assumes no knowledge of Twisted.

By the end of the document, you should understand what Deferreds are and how they can be used to coordinate
asynchronous code. In particular, you should be able to:

• Read and understand code that uses Deferreds

• Translate from synchronous code to asynchronous code and back again

• Implement any sort of error-handling for asynchronous code that you wish

The joy of order

When you write Python code, one prevailing, deep, unassailled assumption is that a line of code within a block is only
ever executed after the preceding line is finished.

pod_bay_doors.open()
pod.launch()

The pod bay doors open, and only then does the pod launch. That’s wonderful. One-line-after-another is a built-in
mechanism in the language for encoding the order of execution. It’s clear, terse, and unambiguous.

Exceptions make things more complicated. If pod_bay_doors.open() raises an exception, then we cannot know
with certainty that it completed, and so it would be wrong to proceed blithely to the next line. Thus, Python gives us
try, except, finally, and else, which together model almost every conceivable way of handling a raised exception,
and tend to work really well.

Function application is the other way we encode order of execution:

pprint(sorted(x.get_names()))

First x.get_names() gets called, then sorted is called with its return value, and then pprint with whatever sorted
returns.

It can also be written as:

names = x.get_names()
sorted_names = sorted(names)
pprint(sorted_names)

Sometimes it leads us to encode the order when we don’t need to, as in this example:
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from __future__ import print_function

total = 0
for account in accounts:

total += account.get_balance()
print("Total balance ${}".format(total))

But that’s normally not such a big deal.

All in all, things are pretty good, and all of the explanation above is laboring familiar and obvious points. One line
comes after another and one thing happens after another, and both facts are inextricably tied.

But what if we had to do it differently?

A hypothetical problem

What if we could no longer rely on the previous line of code being finished (whatever that means) before we started
to interpret & execute the next line of code? What if pod_bay_doors.open() returned immediately, triggering
something somewhere else that would eventually open the pod bay doors, recklessly sending the Python interpreter
plunging into pod.launch() ?

That is, what would we do if the order of execution did not match the order of lines of Python? If “returning” no longer
meant “finishing”?

Asynchronous operations?

How would we prevent our pod from hurtling into the still-closed doors? How could we respond to a potential failure
to open the doors at all? What if opening the doors gave us some crucial information that we needed in order to launch
the pod? How would we get access to that information?

And, crucially, since we are writing code, how can we write our code so that we can build other code on top of it?

The components of a solution

We would still need a way of saying “do this only when that has finished”.

We would need a way of distinguishing between successful completion and interrupted processing, normally modeled
with try, except, else, and finally.

We need a mechanism for getting return failures and exception information from the thing that just executed to the thing
that needs to happen next.

We need somehow to be able to operate on results that we don’t have yet. Instead of acting, we need to make and encode
plans for how we would act if we could.

Unless we hack the interpreter somehow, we would need to build this with the Python language constructs we are given:
methods, functions, objects, and the like.

Perhaps we want something that looks a little like this:

placeholder = pod_bay_doors.open()
placeholder.when_done(pod.launch)
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One solution: Deferred

Twisted tackles this problem with Deferreds, a type of object designed to do one thing, and one thing only: encode
an order of execution separately from the order of lines in Python source code.

It doesn’t deal with threads, parallelism, signals, or subprocesses. It doesn’t know anything about an event loop, green-
lets, or scheduling. All it knows about is what order to do things in. How does it know that? Because we explicitly tell
it the order that we want.

Thus, instead of writing:

pod_bay_doors.open()
pod.launch()

We write:

d = pod_bay_doors.open()
d.addCallback(lambda ignored: pod.launch())

That introduced a dozen new concepts in a couple of lines of code, so let’s break it down. If you think you’ve got it,
you might want to skip to the next section.

Here, pod_bay_doors.open() is returning a Deferred, which we assign to d. We can think of d as a placeholder,
representing the value that open() will eventually return when it finally gets around to finishing.

To “do this next”, we add a callback to d. A callback is a function that will be called with whatever open() eventually
returns. In this case, we don’t care, so we make a function with a single, ignored parameter that just calls pod.
launch().

So, we’ve replaced the “order of lines is order of execution” with a deliberate, in-Python encoding of the order of
execution, where d represents the particular flow and d.addCallback replaces “new line”.

Of course, programs generally consist of more than two lines, and we still don’t know how to deal with failure.

Getting it right: The failure cases

In what follows, we are going to take each way of expressing order of operations in normal Python (using lines of code
and try/except) and translate them into an equivalent code built with Deferred objects.

This is going to be a bit painstaking, but if you want to really understand how to use Deferreds and maintain code that
uses them, it is worth understanding each example below.

One thing, then another, then another

Recall our example from earlier:

pprint(sorted(x.get_names()))

Also written as:

names = x.get_names()
sorted_names = sorted(names)
pprint(sorted_names)

What if neither get_names nor sorted can be relied on to finish before they return? That is, if both are asynchronous
operations?
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Well, in Twisted-speak they would return Deferreds and so we would write:

d = x.get_names()
d.addCallback(sorted)
d.addCallback(pprint)

Eventually, sorted will get called with whatever get_names finally delivers. When sorted finishes, pprint will be
called with whatever it delivers.

We could also write this as:

x.get_names().addCallback(sorted).addCallback(pprint)

Since d.addCallback returns d.

Simple failure handling

We often want to write code equivalent to this:

try:
x.get_names()

except Exception as e:
report_error(e)

How would we write this with Deferreds?

d = x.get_names()
d.addErrback(report_error)

errback is the Twisted name for a callback that is called when an error is received.

This glosses over an important detail. Instead of getting the exception object e, report_error would get a Failure
object, which has all of the useful information that e does, but is optimized for use with Deferreds.

We’ll dig into that a bit later, after we’ve dealt with all of the other combinations of exceptions.

Handle an error, but do something else on success

What if we want to do something after our try block if it actually worked? Abandoning our contrived examples and
reaching for generic variable names, we get:

try:
y = f()

except Exception as e:
g(e)

else:
h(y)

Well, we’d write it like this with Deferreds:

d = f()
d.addCallbacks(h, g)
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Where addCallbacks means “add a callback and an errback at the same time”. h is the callback, g is the errback.

Now that we have addCallbacks along with addErrback and addCallback, we can match any possible combination
of try, except, else, and finally by varying the order in which we call them. Explaining exactly how it works is
tricky (although the Deferred reference does rather a good job), but once we’re through all of the examples it ought to
be clearer.

Handle an error, then proceed anyway

What if we want to do something after our try/except block, regardless of whether or not there was an exception?
That is, what if we wanted to do the equivalent of this generic code:

try:
y = f()

except Exception as e:
y = g(e)

h(y)

And with Deferreds:

d = f()
d.addErrback(g)
d.addCallback(h)

Because addErrback returns d, we can chain the calls like so:

f().addErrback(g).addCallback(h)

The order of addErrback and addCallback matters. In the next section, we can see what would happen when we
swap them around.

Handle an error for the entire operation

What if we want to wrap up a multi-step operation in one exception handler?

try:
y = f()
z = h(y)

except Exception as e:
g(e)

With Deferreds, it would look like this:

d = f()
d.addCallback(h)
d.addErrback(g)

Or, more succinctly:

d = f().addCallback(h).addErrback(g)
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Do something regardless

What about finally? How do we do something regardless of whether or not there was an exception? How do we
translate this:

try:
y = f()

finally:
g()

Well, roughly we do this:

d = f()
d.addBoth(g)

This adds g as both the callback and the errback. It is equivalent to:

d.addCallbacks(g, g)

Why “roughly”? Because if f raises, g will be passed a Failure object representing the exception. Otherwise, g will
be passed the asynchronous equivalent of the return value of f() (i.e. y).

Coroutines with async/await

Note: New in version 16.4.

Python 3.5 introduced PEP 492 (“Coroutines with async and await syntax”) and native coroutines. Deferred.
fromCoroutine allows you to write coroutines with the async def syntax and await on Deferreds, similar to
inlineCallbacks. Rather than decorating every function that may await a Deferred (as you would with functions
that yield Deferreds with inlineCallbacks), you only need to call fromCoroutine with the outer-most coroutine
object to schedule it for execution. Coroutines can await other coroutines once running without needing to use this
function themselves.

Note: The ensureDeferred function also provides a way to convert a coroutine to a Deferred, but it’s interface is
more type-ambiguous; Deferred.fromCoroutine is meant to replace it.

Awaiting on a Deferred which fires with a Failure will raise the exception inside your coroutine as if it were regular
Python. If your coroutine raises an exception, it will be translated into a Failure fired on the Deferred that Deferred.
fromCoroutine returns for you. Calling return will cause the Deferred that Deferred.fromCoroutine returned
for you to fire with a result.

import json
from twisted.internet.defer import Deferred
from twisted.logger import Logger
log = Logger()

async def getUsers():
try:

return json.loads(await makeRequest("GET", "/users"))
except ConnectionError:

(continues on next page)
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(continued from previous page)

log.failure("makeRequest failed due to connection error")
return []

def do():
d = Deferred.fromCoroutine(getUsers())
d.addCallback(print)
return d

When writing coroutines, you do not need to use Deferred.fromCoroutine when you are writing a coroutine which
calls other coroutines which await on Deferreds; you can just await on it directly. For example:

async def foo():
res = await someFunctionThatReturnsADeferred()
return res

async def bar():
baz = await someOtherDeferredFunction()
fooResult = await foo()
return baz + fooResult

def myDeferredReturningFunction():
coro = bar()
return Deferred.fromCoroutine(coro)

Even though Deferreds were used in both coroutines, only bar had to be wrapped in Deferred.fromCoroutine to
return a Deferred.

Inline callbacks - using ‘yield’

Note: Unless your code supports Python 2 (and therefore needs compatibility with older versions of Twisted), writing
coroutines with the functionality described in “Coroutines with async/await” is preferred over inlineCallbacks.
Coroutines are supported by dedicated Python syntax, are compatible with asyncio, and provide higher performance.

Twisted features a decorator named inlineCallbacks which allows you to work with Deferreds without writing
callback functions.

This is done by writing your code as generators, which yield Deferreds instead of attaching callbacks.

Consider the following function written in the traditional Deferred style:

def getUsers():
d = makeRequest("GET", "/users")
d.addCallback(json.loads)
return d

using inlineCallbacks, we can write this as:

from twisted.internet.defer import inlineCallbacks, returnValue

@inlineCallbacks
def getUsers(self):

(continues on next page)
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responseBody = yield makeRequest("GET", "/users")
returnValue(json.loads(responseBody))

a couple of things are happening here:

1. instead of calling addCallback on the Deferred returned by makeRequest, we yield it. This causes Twisted
to return the Deferred‘s result to us.

2. we use returnValue to propagate the final result of our function. Because this function is a generator, we cannot
use the return statement; that would be a syntax error.

Note: New in version 15.0.

On Python 3, instead of writing returnValue(json.loads(responseBody)) you can instead write return json.
loads(responseBody). This can be a significant readability advantage, but unfortunately if you need compatibility
with Python 2, this isn’t an option.

Both versions of getUsers present exactly the same API to their callers: both return a Deferred that fires with the
parsed JSON body of the request. Though the inlineCallbacks version looks like synchronous code, which blocks
while waiting for the request to finish, each yield statement allows other code to run while waiting for the Deferred
being yielded to fire.

inlineCallbacks become even more powerful when dealing with complex control flow and error handling. For
example, what if makeRequest fails due to a connection error? For the sake of this example, let’s say we want to log
the exception and return an empty list.

def getUsers():
d = makeRequest("GET", "/users")

def connectionError(failure):
failure.trap(ConnectionError)
log.failure("makeRequest failed due to connection error",

failure)
return []

d.addCallbacks(json.loads, connectionError)
return d

With inlineCallbacks, we can rewrite this as:

@inlineCallbacks
def getUsers(self):

try:
responseBody = yield makeRequest("GET", "/users")

except ConnectionError:
log.failure("makeRequest failed due to connection error")
returnValue([])

returnValue(json.loads(responseBody))

Our exception handling is simplified because we can use Python’s familiar try / except syntax for handling
ConnectionErrors.
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Conclusion

You have been introduced to asynchronous code and have seen how to use Deferreds to:

• Do something after an asynchronous operation completes successfully

• Use the result of a successful asynchronous operation

• Catch errors in asynchronous operations

• Do one thing if an operation succeeds, and a different thing if it fails

• Do something after an error has been handled successfully

• Wrap multiple asynchronous operations with one error handler

• Do something after an asynchronous operation, regardless of whether it succeeded or failed

• Write code without callbacks using inlineCallbacks

• Write coroutines that interact with Deferreds using Deferred.fromCoroutine

These are very basic uses of Deferred. For detailed information about how they work, how to combine multiple
Deferreds, and how to write code that mixes synchronous and asynchronous APIs, see the Deferred reference. Alter-
natively, read about how to write functions that generate Deferreds.

2.1.14 Deferred Reference

This document is a guide to the behaviour of the twisted.internet.defer.Deferred object, and to various ways
you can use them when they are returned by functions.

This document assumes that you are familiar with the basic principle that the Twisted framework is structured around:
asynchronous, callback-based programming, where instead of having blocking code in your program or using threads
to run blocking code, you have functions that return immediately and then begin a callback chain when data is available.

After reading this document, the reader should expect to be able to deal with most simple APIs in Twisted and Twisted-
using code that return Deferreds.

• what sorts of things you can do when you get a Deferred from a function call; and

• how you can write your code to robustly handle errors in Deferred code.

Deferreds

Twisted uses the Deferred object to manage the callback sequence. The client application attaches a series of functions
to the deferred to be called in order when the results of the asynchronous request are available (this series of functions
is known as a series of callbacks, or a callback chain), together with a series of functions to be called if there is an
error in the asynchronous request (known as a series of errbacks or an errback chain). The asynchronous library
code calls the first callback when the result is available, or the first errback when an error occurs, and the Deferred
object then hands the results of each callback or errback function to the next function in the chain.
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Callbacks

A twisted.internet.defer.Deferred is a promise that a function will at some point have a result. We can attach
callback functions to a Deferred, and once it gets a result these callbacks will be called. In addition Deferreds allow the
developer to register a callback for an error, with the default behavior of logging the error. The deferred mechanism
standardizes the application programmer’s interface with all sorts of blocking or delayed operations.

from twisted.internet import reactor, defer

def getDummyData(inputData):
"""
This function is a dummy which simulates a delayed result and
returns a Deferred which will fire with that result. Don't try too
hard to understand this.
"""
print('getDummyData called')
deferred = defer.Deferred()
# simulate a delayed result by asking the reactor to fire the
# Deferred in 2 seconds time with the result inputData * 3
reactor.callLater(2, deferred.callback, inputData * 3)
return deferred

def cbPrintData(result):
"""
Data handling function to be added as a callback: handles the
data by printing the result
"""
print('Result received: {}'.format(result))

deferred = getDummyData(3)
deferred.addCallback(cbPrintData)

# manually set up the end of the process by asking the reactor to
# stop itself in 4 seconds time
reactor.callLater(4, reactor.stop)
# start up the Twisted reactor (event loop handler) manually
print('Starting the reactor')
reactor.run()

Multiple callbacks

Multiple callbacks can be added to a Deferred. The first callback in the Deferred’s callback chain will be called with
the result, the second with the result of the first callback, and so on. Why do we need this? Well, consider a Deferred
returned by twisted.enterprise.adbapi - the result of a SQL query. A web widget might add a callback that
converts this result into HTML, and pass the Deferred onwards, where the callback will be used by twisted to return
the result to the HTTP client. The callback chain will be bypassed in case of errors or exceptions.

from twisted.internet import reactor, defer

class Getter:
def gotResults(self, x):

"""
(continues on next page)
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The Deferred mechanism provides a mechanism to signal error
conditions. In this case, odd numbers are bad.

This function demonstrates a more complex way of starting
the callback chain by checking for expected results and
choosing whether to fire the callback or errback chain
"""
if self.d is None:

print("Nowhere to put results")
return

d = self.d
self.d = None
if x % 2 == 0:

d.callback(x*3)
else:

d.errback(ValueError("You used an odd number!"))

def _toHTML(self, r):
"""
This function converts r to HTML.

It is added to the callback chain by getDummyData in
order to demonstrate how a callback passes its own result
to the next callback
"""
return "Result: %s" % r

def getDummyData(self, x):
"""
The Deferred mechanism allows for chained callbacks.
In this example, the output of gotResults is first
passed through _toHTML on its way to printData.

Again this function is a dummy, simulating a delayed result
using callLater, rather than using a real asynchronous
setup.
"""
self.d = defer.Deferred()
# simulate a delayed result by asking the reactor to schedule
# gotResults in 2 seconds time
reactor.callLater(2, self.gotResults, x)
self.d.addCallback(self._toHTML)
return self.d

def cbPrintData(result):
print(result)

def ebPrintError(failure):
import sys
sys.stderr.write(str(failure))

(continues on next page)
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# this series of callbacks and errbacks will print an error message
g = Getter()
d = g.getDummyData(3)
d.addCallback(cbPrintData)
d.addErrback(ebPrintError)

# this series of callbacks and errbacks will print "Result: 12"
g = Getter()
d = g.getDummyData(4)
d.addCallback(cbPrintData)
d.addErrback(ebPrintError)

reactor.callLater(4, reactor.stop)
reactor.run()

Note: Pay particular attention to the handling of self.d in the gotResults method. Before the Deferred is fired
with a result or an error, the attribute is set to None so that the Getter instance no longer has a reference to the Deferred
about to be fired. This has several benefits. First, it avoids any chance Getter.gotResults will accidentally fire the
same Deferred more than once (which would result in an AlreadyCalledError exception). Second, it allows a
callback on that Deferred to call Getter.getDummyData (which sets a new value for the d attribute) without causing
problems. Third, it makes the Python garbage collector’s job easier by eliminating a reference cycle.

Visual Explanation

1. Requesting method (data sink) requests data, gets Deferred object.

2. Requesting method attaches callbacks to Deferred object.
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1. When the result is ready, give it to the Deferred object. .callback(result) if the operation succeeded, .
errback(failure) if it failed. Note that failure is typically an instance of a twisted.python.failure.
Failure instance.

2. Deferred object triggers previously-added (call/err)back with the result or failure. Execution then follows
the following rules, going down the chain of callbacks to be processed.

• Result of the callback is always passed as the first argument to the next callback, creating a chain of pro-
cessors.

• If a callback raises an exception, switch to errback.

• An unhandled failure gets passed down the line of errbacks, this creating an asynchronous analog to a series
to a series of except: statements.

• If an errback doesn’t raise an exception or return a twisted.python.failure.Failure instance, switch
to callback.

Errbacks

Deferred’s error handling is modeled after Python’s exception handling. In the case that no errors occur, all the callbacks
run, one after the other, as described above.

If the errback is called instead of the callback (e.g. because a DB query raised an error), then a twisted.python.
failure.Failure is passed into the first errback (you can add multiple errbacks, just like with callbacks). You can
think of your errbacks as being like except blocks of ordinary Python code.

Unless you explicitly raise an error in an except block, the Exception is caught and stops propagating, and normal
execution continues. The same thing happens with errbacks: unless you explicitly return a Failure or (re-)raise
an exception, the error stops propagating, and normal callbacks continue executing from that point (using the value
returned from the errback). If the errback does return a Failure or raise an exception, then that is passed to the next
errback, and so on.
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Note: If an errback doesn’t return anything, then it effectively returns None, meaning that callbacks will continue to be
executed after this errback. This may not be what you expect to happen, so be careful. Make sure your errbacks return
a Failure (probably the one that was passed to it), or a meaningful return value for the next callback.

Also, twisted.python.failure.Failure instances have a useful method called trap, allowing you to effectively
do the equivalent of:

try:
# code that may throw an exception
cookSpamAndEggs()

except (SpamException, EggException):
# Handle SpamExceptions and EggExceptions
...

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
# Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

If none of arguments passed to failure.trapmatch the error encapsulated in that Failure, then it re-raises the error.

There’s another potential “gotcha” here. There’s a method twisted.internet.defer.Deferred.
addCallbacks() which is similar to, but not exactly the same as, addCallback followed by addErrback. In
particular, consider these two cases:

# Case 1
d = getDeferredFromSomewhere()
d.addCallback(callback1) # A
d.addErrback(errback1) # B
d.addCallback(callback2)
d.addErrback(errback2)

# Case 2
d = getDeferredFromSomewhere()
d.addCallbacks(callback1, errback1) # C
d.addCallbacks(callback2, errback2)

If an error occurs in callback1, then for Case 1 errback1 will be called with the failure. For Case 2, errback2 will
be called. Be careful with your callbacks and errbacks.

What this means in a practical sense is in Case 1, the callback in line A will handle a success condition from
getDeferredFromSomewhere, and the errback in line B will handle any errors that occur from either the up-
stream source, or that occur in A. In Case 2, the errback in line C will only handle an error condition raised by
getDeferredFromSomewhere, it will not do any handling of errors raised in callback1.
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Unhandled Errors

If a Deferred is garbage-collected with an unhandled error (i.e. it would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. This means that you can typically get away with not adding
errbacks and still get errors logged. Be careful though; if you keep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see the error (and your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add an errback after your callbacks, even if all you do is:

# Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

Handling either synchronous or asynchronous results

In some applications, there are functions that might be either asynchronous or synchronous. For example, a user
authentication function might be able to check in memory whether a user is authenticated, allowing the authentication
function to return an immediate result, or it may need to wait on network data, in which case it should return a Deferred
to be fired when that data arrives. However, a function that wants to check if a user is authenticated will then need to
accept both immediate results and Deferreds.

In this example, the library function authenticateUser uses the application function isValidUser to authenticate
a user:

def authenticateUser(isValidUser, user):
if isValidUser(user):

print("User is authenticated")
else:

print("User is not authenticated")

However, it assumes that isValidUser returns immediately, whereas isValidUser may actually authenticate the
user asynchronously and return a Deferred. It is possible to adapt this trivial user authentication code to accept either a
synchronous isValidUser or an asynchronous isValidUser, allowing the library to handle either type of function. It
is, however, also possible to adapt synchronous functions to return Deferreds. This section describes both alternatives:
handling functions that might be synchronous or asynchronous in the library function (authenticateUser) or in the
application code.

Handling possible Deferreds in the library code

Here is an example of a synchronous user authentication function that might be passed to authenticateUser:

synch-validation.py

def synchronousIsValidUser(user):
"""
Return true if user is a valid user, false otherwise
"""
return user in ["Alice", "Angus", "Agnes"]

However, here’s an asynchronousIsValidUser function that returns a Deferred:

from twisted.internet import reactor, defer

(continues on next page)
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def asynchronousIsValidUser(user):
d = defer.Deferred()
reactor.callLater(2, d.callback, user in ["Alice", "Angus", "Agnes"])
return d

Our original implementation of authenticateUser expected isValidUser to be synchronous, but now we need
to change it to handle both synchronous and asynchronous implementations of isValidUser. For this, we use
maybeDeferred to call isValidUser, ensuring that the result of isValidUser is a Deferred, even if isValidUser
is a synchronous function:

from twisted.internet import defer

def printResult(result):
if result:

print("User is authenticated")
else:

print("User is not authenticated")

def authenticateUser(isValidUser, user):
d = defer.maybeDeferred(isValidUser, user)
d.addCallback(printResult)

Now isValidUser could be either synchronousIsValidUser or asynchronousIsValidUser.

It is also possible to modify synchronousIsValidUser to return a Deferred, see Generating Deferreds for more
information.

Cancellation

Motivation

A Deferred may take any amount of time to be called back; in fact, it may never be called back. Your users may not
be that patient. Since all actions taken when the Deferred completes are in your application or library’s callback code,
you always have the option of simply disregarding the result when you receive it, if it’s been too long. However, while
you’re ignoring it, the underlying operation represented by that Deferred is still chugging along in the background,
possibly consuming resources such as CPU time, memory, network bandwidth and maybe even disk space. So, when
the user has closed the window, hit the cancel button, disconnected from your server or sent a “stop” network message,
you will want to announce your indifference to the result of that operation so that the originator of the Deferred can
clean everything up and free those resources to be put to better use.

Cancellation for Applications which Consume Deferreds

Here’s a simple example. You’re connecting to an external host with an endpoint, but that host is really slow. You want
to put a “cancel” button into your application to terminate the connection attempt, so the user can try connecting to a
different host instead. Here’s a simple sketch of such an application, with the actual user interface left as an exercise
for the reader:

def startConnecting(someEndpoint):
def connected(it):

"Do something useful when connected."
return someEndpoint.connect(myFactory).addCallback(connected)

(continues on next page)
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# ...
connectionAttempt = startConnecting(endpoint)
def cancelClicked():

connectionAttempt.cancel()

Obviously (I hope), startConnecting is meant to be called by some UI element that lets the user choose what
host to connect to and then constructs an appropriate endpoint (perhaps using twisted.internet.endpoints.
clientFromString). Then, a cancel button, or similar, is hooked up to the cancelClicked.

When connectionAttempt.cancel is invoked, that will:

1. cause the underlying connection operation to be terminated, if it is still ongoing

2. cause the connectionAttempt Deferred to be completed, one way or another, in a timely manner

3. likely cause the connectionAttempt Deferred to be errbacked with CancelledError

You may notice that that set of consequences is very heavily qualified. Although cancellation indicates the calling API’s
desire for the underlying operation to be stopped, the underlying operation cannot necessarily react immediately. Even
in this very simple example, there is already one thing that might not be interruptible: platform-native name resolution
blocks, and therefore needs to be executed in a thread; the connection operation can’t be cancelled if it’s stuck waiting
for a name to be resolved in this manner. So, the Deferred that you are cancelling may not callback or errback right
away.

A Deferred may wait upon another Deferred at any point in its callback chain (see “Handling. . . asynchronous results”,
above). There’s no way for a particular point in the callback chain to know if everything is finished. Since multiple
layers of the callback chain may wish to cancel the same Deferred, any layer may call .cancel() at any time. The
.cancel() method never raises any exception or returns any value; you may call it repeatedly, even on a Deferred
which has already fired, or which has no remaining callbacks. The main reason for all these qualifications, aside from
specific examples, is that anyone who instantiates a Deferred may supply it with a cancellation function; that function
can do absolutely anything that it wants to. Ideally, anything it does will be in the service of stopping the operation your
requested, but there’s no way to guarantee any exact behavior across all Deferreds that might be cancelled. Cancellation
of Deferreds is best effort. This may be the case for a number of reasons:

1. The Deferred doesn’t know how to cancel the underlying operation.

2. The underlying operation may have reached an uncancellable state, because some irreversible operation has been
done.

3. The Deferred may already have a result, and so there’s nothing to cancel.

Calling cancel()will always succeed without an error regardless of whether or not cancellation was possible. In cases
1 and 2 the Deferred may well errback with a twisted.internet.defer.CancelledError while the underlying
operation continues. Deferred s that support cancellation should document what they do when cancelled, if they are
uncancellable in certain edge cases, etc..

If the cancelled Deferred is waiting on another Deferred, the cancellation will be forwarded to the other Deferred.
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Default Cancellation Behavior

All Deferreds support cancellation. However, by default, they support a very rudimentary form of cancellation which
doesn’t free any resources.

Consider this example of a Deferred which is ignorant of cancellation:

operation = Deferred()
def x(result):

print("Hooray, a result:" + repr(x))
operation.addCallback(x)
# ...
def operationDone():

operation.callback("completed")

A caller of an API that receives operation may call cancel on it. Since operation does not have a cancellation
function, one of two things will happen.

1. If operationDone has been called, and the operation has completed, nothing much will change. operation
will still have a result, and there are no more callbacks, so there’s no observable change in behavior.

2. If operationDone has not yet been invoked, then operation will be immediately errbacked with a
CancelledError.

However, once it’s cancelled, there’s no way to tell operationDone not to run; it will eventually call
operation.callback later. In normal operation, issuing callback on a Deferred that has already called
back results in an AlreadyCalledError, and this would cause an ugly traceback that could not be caught.
Therefore, .callback can be invoked exactly once, causing a no-op, on a Deferred which has been cancelled
but has no canceller. If you call it multiple times, you will still get an AlreadyCalledError exception.

Creating Cancellable Deferreds: Custom Cancellation Functions

Let’s imagine you are implementing an HTTP client, which returns a Deferred firing with the response from the server.
Cancellation is best achieved by closing the connection. In order to make cancellation do that, all you have to do is
pass a function to the constructor of the Deferred (it will get called with the Deferred that is being cancelled):

class HTTPClient(Protocol):
def request(self, method, path):

self.resultDeferred = Deferred(
lambda ignore: self.transport.abortConnection())

request = b"%s %s HTTP/1.0\r\n\r\n" % (method, path)
self.transport.write(request)
return self.resultDeferred

def dataReceived(self, data):
# ... parse HTTP response ...
# ... eventually call self.resultDeferred.callback() ...

Now if someone calls cancel() on the Deferred returned from HTTPClient.request(), the HTTP request will be
cancelled (assuming it’s not too late to do so). Care should be taken not to callback() a Deferred that has already
been cancelled.
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Timeouts

Timeouts are a special case of Cancellation. Let’s say we have a Deferred representing a task that may take a long
time. We want to put an upper bound on that task, so we want the Deferred to time out X seconds in the future.

A convenient API to do so is Deferred.addTimeout. By default, it will fail with a TimeoutError if the Deferred
hasn’t fired (with either an errback or a callback) within timeout seconds.

import random
from twisted.internet import task

def f():
return "Hopefully this will be called in 3 seconds or less"

def main(reactor):
delay = random.uniform(1, 5)

def called(result):
print("{0} seconds later:".format(delay), result)

d = task.deferLater(reactor, delay, f)
d.addTimeout(3, reactor).addBoth(called)

return d

# f() will be timed out if the random delay is greater than 3 seconds
task.react(main)

Deferred.addTimeout uses the Deferred.cancel function under the hood, but can distinguish between a user’s
call to Deferred.cancel and a cancellation due to a timeout. By default, Deferred.addTimeout translates a
CancelledError produced by the timeout into a TimeoutError.

However, if you provided a custom cancellation when creating the Deferred, then cancelling it may not produce a
CancelledError. In this case, the default behavior of Deferred.addTimeout is to preserve whatever callback or
errback value your custom cancellation function produced. This can be useful if, for instance, a cancellation or timeout
should produce a default value instead of an error.

Deferred.addTimeout also takes an optional callable onTimeoutCancel which is called immediately after the de-
ferred times out. onTimeoutCancel is not called if it the deferred is otherwise cancelled before the timeout. It takes
an arbitrary value, which is the value of the deferred at that exact time (probably a CancelledError Failure), and
the timeout. This can be useful if, for instance, the cancellation or timeout does not result in an error but you want to
log the timeout anyway. It can also be used to alter the return value.

from twisted.internet import task, defer

def logTimeout(result, timeout):
print("Got {0!r} but actually timed out after {1} seconds".format(

result, timeout))
return result + " (timed out)"

def main(reactor):
# generate a deferred with a custom canceller function, and never
# never callback or errback it to guarantee it gets timed out
d = defer.Deferred(lambda c: c.callback("Everything's ok!"))
d.addTimeout(2, reactor, onTimeoutCancel=logTimeout)

(continues on next page)
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d.addBoth(print)
return d

task.react(main)

Note that the exact place in the callback chain that Deferred.addTimeout is added determines how much of the
callback chain should be timed out. The timeout encompasses all the callbacks and errbacks added to the Deferred
before the call to addTimeout, and none of the callbacks and errbacks added after the call. The timeout also starts
counting down as soon as soon as it’s invoked.

DeferredList

Sometimes you want to be notified after several different events have all happened, rather than waiting for each one
individually. For example, you may want to wait for all the connections in a list to close. twisted.internet.defer.
DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you simply pass a list of the Deferreds you want it to wait for:

# Creates a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred3])

You can now treat the DeferredList like an ordinary Deferred; you can call addCallbacks and so on. The DeferredList
will call its callback when all the deferreds have completed. The callback will be called with a list of the results of the
Deferreds it contains, like so:

# A callback that unpacks and prints the results of a DeferredList
def printResult(result):

for (success, value) in result:
if success:

print('Success:', value)
else:

print('Failure:', value.getErrorMessage())

# Create three deferreds.
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()

# Pack them into a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred3], consumeErrors=True)

# Add our callback
dl.addCallback(printResult)

# Fire our three deferreds with various values.
deferred1.callback('one')
deferred2.errback(Exception('bang!'))
deferred3.callback('three')

# At this point, dl will fire its callback, printing:
# Success: one
# Failure: bang!

(continues on next page)
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# Success: three
# (note that defer.SUCCESS == True, and defer.FAILURE == False)

A standard DeferredList will never call errback, but failures in Deferreds passed to a DeferredList will still errback
unless consumeErrors is passed True. See below for more details about this and other flags which modify the behavior
of DeferredList.

Note: If you want to apply callbacks to the individual Deferreds that go into the DeferredList, you should be careful
about when those callbacks are added. The act of adding a Deferred to a DeferredList inserts a callback into that
Deferred (when that callback is run, it checks to see if the DeferredList has been completed yet). The important thing
to remember is that it is this callback which records the value that goes into the result list handed to the DeferredList’s
callback.

Therefore, if you add a callback to the Deferred after adding the Deferred to the DeferredList, the value returned by
that callback will not be given to the DeferredList’s callback. To avoid confusion, we recommend not adding callbacks
to a Deferred once it has been used in a DeferredList.

def printResult(result):
print(result)

def addTen(result):
return result + " ten"

# Deferred gets callback before DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred1.addCallback(addTen)
dl = defer.DeferredList([deferred1, deferred2])
dl.addCallback(printResult)
deferred1.callback("one") # fires addTen, checks DeferredList, stores "one ten"
deferred2.callback("two")
# At this point, dl will fire its callback, printing:
# [(1, 'one ten'), (1, 'two')]

# Deferred gets callback after DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2])
deferred1.addCallback(addTen) # will run *after* DeferredList gets its value
dl.addCallback(printResult)
deferred1.callback("one") # checks DeferredList, stores "one", fires addTen
deferred2.callback("two")
# At this point, dl will fire its callback, printing:
# [(1, 'one), (1, 'two')]
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Other behaviours

DeferredList accepts three keyword arguments that modify its behaviour: fireOnOneCallback , fireOnOneErrback
and consumeErrors. If fireOnOneCallback is set, the DeferredList will immediately call its callback as soon as
any of its Deferreds call their callback. Similarly, fireOnOneErrback will call errback as soon as any of the Deferreds
call their errback. Note that DeferredList is still one-shot, like ordinary Deferreds, so after a callback or errback has
been called the DeferredList will do nothing further (it will just silently ignore any other results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for all the results if everything succeeds,
but also want to know immediately if something fails.

The consumeErrors argument will stop the DeferredList from propagating any errors along the callback chains of
any Deferreds it contains (usually creating a DeferredList has no effect on the results passed along the callbacks and
errbacks of their Deferreds). Stopping errors at the DeferredList with this option will prevent “Unhandled error in
Deferred” warnings from the Deferreds it contains without needing to add extra errbacks1 . Passing a true value for the
consumeErrors parameter will not change the behavior of fireOnOneCallback or fireOnOneErrback.

gatherResults

A common use for DeferredList is to “join” a number of parallel asynchronous operations, finishing successfully if
all of the operations were successful, or failing if any one of the operations fails. In this case, twisted.internet.
defer.gatherResults() is a useful shortcut:

from twisted.internet import defer

d1 = defer.Deferred()
d2 = defer.Deferred()
d = defer.gatherResults([d1, d2], consumeErrors=True)

def cbPrintResult(result):
print(result)

d.addCallback(cbPrintResult)

d1.callback("one")
# nothing is printed yet; d is still awaiting completion of d2
d2.callback("two")
# printResult prints ["one", "two"]

The consumeErrors argument has the same meaning as it does for DeferredList: if true, it causes gatherResults
to consume any errors in the passed-in Deferreds. Always use this argument unless you are adding further callbacks
or errbacks to the passed-in Deferreds, or unless you know that they will not fail. Otherwise, a failure will result in an
unhandled error being logged by Twisted. This argument is available since Twisted 11.1.0.

1 Unless of course a later callback starts a fresh error — but as we’ve already noted, adding callbacks to a Deferred after its used in a DeferredList
is confusing and usually avoided.
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Class Overview

This is an overview API reference for Deferred from the point of using a Deferred returned by a function. It is not
meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its use.

There is a parallel overview of functions used by the Deferred’s creator in Generating Deferreds.

Basic Callback Functions

• addCallbacks(self, callback[, errback, callbackArgs, callbackKeywords, errbackArgs,
errbackKeywords])

This is the method you will use to interact with Deferred. It adds a pair of callbacks “parallel” to each other (see
diagram above) in the list of callbacks made when the Deferred is called back to. The signature of a method
added using addCallbacks should be myMethod(result, *methodAsrgs, **methodKeywords). If your
method is passed in the callback slot, for example, all arguments in the tuple callbackArgs will be passed
as *methodArgs to your method.

There are various convenience methods that are derivative of addCallbacks. I will not cover them in detail here,
but it is important to know about them in order to create concise code.

• addCallback(callback, *callbackArgs, **callbackKeywords)

Adds your callback at the next point in the processing chain, while adding an errback that will re-raise
its first argument, not affecting further processing in the error case.

Note that, while addCallbacks (plural) requires the arguments to be passed in a tuple, addCallback
(singular) takes all its remaining arguments as things to be passed to the callback function. The reason
is obvious: addCallbacks (plural) cannot tell whether the arguments are meant for the callback or the
errback, so they must be specifically marked by putting them into a tuple. addCallback (singular)
knows that everything is destined to go to the callback, so it can use Python’s “*” and “**” syntax to
collect the remaining arguments.

• addErrback(errback, *errbackArgs, **errbackKeywords)

Adds your errback at the next point in the processing chain, while adding a callback that will return its first
argument, not affecting further processing in the success case.

• addBoth(callbackOrErrback, *callbackOrErrbackArgs, **callbackOrErrbackKeywords)

This method adds the same callback into both sides of the processing chain at both points. Keep in mind that the
type of the first argument is indeterminate if you use this method! Use it for finally: style blocks.

Chaining Deferreds

If you need one Deferred to wait on another, all you need to do is return a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a method added to Deferred A using A.addCallbacks, Deferred A’s
processing chain will stop until Deferred B’s .callback() method is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s processing chain at the time.

Note: If a Deferred is somehow returned from its own callbacks (directly or indirectly), the behavior is undefined.
The Deferred code will make an attempt to detect this situation and produce a warning. In the future, this will become
an exception.
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If this seems confusing, don’t worry about it right now – when you run into a situation where you need this behavior,
you will probably recognize it immediately and realize why this happens. If you want to chain deferreds manually,
there is also a convenience method to help you.

• chainDeferred(otherDeferred)

Add otherDeferred to the end of this Deferred’s processing chain. When self.callback is called, the result of
my processing chain up to this point will be passed to otherDeferred.callback. Further additions to my
callback chain do not affect otherDeferred.

This is the same as self.addCallbacks(otherDeferred.callback, otherDeferred.errback).

See also

1. Generating Deferreds, an introduction to writing asynchronous functions that return Deferreds.

2.1.15 Generating Deferreds

Deferred objects are signals that a function you have called does not yet have the data you want available. When a
function returns a Deferred object, your calling function attaches callbacks to it to handle the data when available.

This document addresses the other half of the question: writing functions that return Deferreds, that is, constructing
Deferred objects, arranging for them to be returned immediately without blocking until data is available, and firing
their callbacks when the data is available.

This document assumes that you are familiar with the asynchronous model used by Twisted, and with using deferreds
returned by functions .

Class overview

This is an overview API reference for Deferred from the point of creating a Deferred and firing its callbacks and
errbacks. It is not meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its
use.

There is a parallel overview of functions used by calling function which the Deferred is returned to at Using Deferreds
.

Basic Callback Functions

• callback(result)

Run success callbacks with the given result. This can only be run once. Later calls to this or errback will
raise twisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added after this
point, addCallbacks will run the callbacks immediately.

• errback(failure)

Run error callbacks with the given failure. This can only be run once. Later calls to this or callback will
raise twisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added after this
point, addCallbacks will run the callbacks immediately.
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What Deferreds don’t do: make your code asynchronous

Deferreds do not make the code magically not block.

Let’s take this function as an example:

from twisted.internet import defer

TARGET = 10000

def largeFibonnaciNumber():
# create a Deferred object to return:
d = defer.Deferred()

# calculate the ten thousandth Fibonnaci number

first = 0
second = 1

for i in range(TARGET - 1):
new = first + second
first = second
second = new
if i % 100 == 0:

print("Progress: calculating the %dth Fibonnaci number" % i)

# give the Deferred the answer to pass to the callbacks:
d.callback(second)

# return the Deferred with the answer:
return d

import time

timeBefore = time.time()

# call the function and get our Deferred
d = largeFibonnaciNumber()

timeAfter = time.time()

print("Total time taken for largeFibonnaciNumber call: %0.3f seconds" % \
(timeAfter - timeBefore))

# add a callback to it to print the number

def printNumber(number):
print("The %dth Fibonacci number is %d" % (TARGET, number))

print("Adding the callback now.")

d.addCallback(printNumber)

You will notice that despite creating a Deferred in the largeFibonnaciNumber function, these things happened:
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• the “Total time taken for largeFibonnaciNumber call” output shows that the function did not return immediately
as asynchronous functions are expected to do; and

• rather than the callback being added before the result was available and called after the result is available, it isn’t
even added until after the calculation has been completed.

The function completed its calculation before returning, blocking the process until it had finished, which is exactly
what asynchronous functions are not meant to do. Deferreds are not a non-blocking talisman: they are a signal for
asynchronous functions to use to pass results onto callbacks, but using them does not guarantee that you have an
asynchronous function.

Advanced Processing Chain Control

• pause()

Cease calling any methods as they are added, and do not respond to callback , until self.unpause() is called.

• unpause()

If callback has been called on this Deferred already, call all the callbacks that have been added to this Deferred
since pause was called.

Whether it was called or not, this will put this Deferred in a state where further calls to addCallbacks or
callback will work as normal.

Returning Deferreds from synchronous functions

Sometimes you might wish to return a Deferred from a synchronous function. There are several reasons why, the major
two are maintaining API compatibility with another version of your function which returns a Deferred, or allowing for
the possibility that in the future your function might need to be asynchronous.

In the Using Deferreds reference, we gave the following example of a synchronous function:

synch-validation.py

def synchronousIsValidUser(user):
"""
Return true if user is a valid user, false otherwise
"""
return user in ["Alice", "Angus", "Agnes"]

While we can require that callers of our function wrap our synchronous result in a Deferred using maybeDeferred ,
for the sake of API compatibility it is better to return a Deferred ourselves using defer.succeed :

from twisted.internet import defer

def immediateIsValidUser(user):
'''
Returns a Deferred resulting in true if user is a valid user, false
otherwise
'''

result = user in ["Alice", "Angus", "Agnes"]

# return a Deferred object already called back with the value of result
return defer.succeed(result)
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There is an equivalent defer.fail method to return a Deferred with the errback chain already fired.

Integrating blocking code with Twisted

At some point, you are likely to need to call a blocking function: many functions in third party libraries will have long
running blocking functions. There is no way to ‘force’ a function to be asynchronous: it must be written that way
specifically. When using Twisted, your own code should be asynchronous, but there is no way to make third party
functions asynchronous other than rewriting them.

In this case, Twisted provides the ability to run the blocking code in a separate thread rather than letting it block your
application. The twisted.internet.threads.deferToThread() function will set up a thread to run your blocking
function, return a Deferred and later fire that Deferred when the thread completes.

Let’s assume our largeFibonnaciNumber function from above is in a third party library (returning the result of the
calculation, not a Deferred) and is not easily modifiable to be finished in discrete blocks. This example shows it being
called in a thread, unlike in the earlier section we’ll see that the operation does not block our entire program:

def largeFibonnaciNumber():
"""
Represent a long running blocking function by calculating
the TARGETth Fibonnaci number
"""
TARGET = 10000

first = 0
second = 1

for i in range(TARGET - 1):
new = first + second
first = second
second = new

return second

from twisted.internet import threads, reactor

def fibonacciCallback(result):
"""
Callback which manages the largeFibonnaciNumber result by
printing it out
"""
print("largeFibonnaciNumber result =", result)
# make sure the reactor stops after the callback chain finishes,
# just so that this example terminates
reactor.stop()

def run():
"""
Run a series of operations, deferring the largeFibonnaciNumber
operation to a thread and performing some other operations after
adding the callback
"""
# get our Deferred which will be called with the largeFibonnaciNumber result
d = threads.deferToThread(largeFibonnaciNumber)

(continues on next page)
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# add our callback to print it out
d.addCallback(fibonacciCallback)
print("1st line after the addition of the callback")
print("2nd line after the addition of the callback")

if __name__ == '__main__':
run()
reactor.run()

Possible sources of error

Deferreds greatly simplify the process of writing asynchronous code by providing a standard for registering callbacks,
but there are some subtle and sometimes confusing rules that you need to follow if you are going to use them. This
mostly applies to people who are writing new systems that use Deferreds internally, and not writers of applications that
just add callbacks to Deferreds produced and processed by other systems. Nevertheless, it is good to know.

Firing Deferreds more than once is impossible

Deferreds are one-shot. You can only call Deferred.callback or Deferred.errback once. The processing chain
continues each time you add new callbacks to an already-called-back-to Deferred.

Synchronous callback execution

If a Deferred already has a result available, addCallback may call the callback synchronously: that is, immediately
after it’s been added. In situations where callbacks modify state, it is might be desirable for the chain of processing to
halt until all callbacks are added. For this, it is possible to pause and unpause a Deferred’s processing chain while
you are adding lots of callbacks.

Be careful when you use these methods! If you pause a Deferred, it is your responsibility to make sure that you
unpause it. The function adding the callbacks must unpause a paused Deferred, it should never be the responsibility of
the code that actually fires the callback chain by calling callback or errback as this would negate its usefulness!

2.1.16 Scheduling tasks for the future

Let’s say we want to run a task X seconds in the future. The way to do that is defined in the reactor interface twisted.
internet.interfaces.IReactorTime :

from twisted.internet import reactor

def f(s):
print("this will run 3.5 seconds after it was scheduled: %s" % s)

reactor.callLater(3.5, f, "hello, world")

# f() will only be called if the event loop is started.
reactor.run()

If the result of the function is important or if it may be necessary to handle exceptions it raises, then the twisted.
internet.task.deferLater() utility conveniently takes care of creating a Deferred and setting up a delayed call:
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from twisted.internet import task
from twisted.internet import reactor

def f(s):
return "This will run 3.5 seconds after it was scheduled: %s" % s

d = task.deferLater(reactor, 3.5, f, "hello, world")
def called(result):

print(result)
d.addCallback(called)

# f() will only be called if the event loop is started.
reactor.run()

If we want a task to run every X seconds repeatedly, we can use twisted.internet.task.LoopingCall:

from twisted.internet import task
from twisted.internet import reactor

loopTimes = 3
failInTheEnd = False
_loopCounter = 0

def runEverySecond():
"""
Called at ever loop interval.
"""
global _loopCounter

if _loopCounter < loopTimes:
_loopCounter += 1
print('A new second has passed.')
return

if failInTheEnd:
raise Exception('Failure during loop execution.')

# We looped enough times.
loop.stop()
return

def cbLoopDone(result):
"""
Called when loop was stopped with success.
"""
print("Loop done.")
reactor.stop()

def ebLoopFailed(failure):
"""
Called when loop execution failed.

(continues on next page)
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"""
print(failure.getBriefTraceback())
reactor.stop()

loop = task.LoopingCall(runEverySecond)

# Start looping every 1 second.
loopDeferred = loop.start(1.0)

# Add callbacks for stop and failure.
loopDeferred.addCallback(cbLoopDone)
loopDeferred.addErrback(ebLoopFailed)

reactor.run()

If we want to cancel a task that we’ve scheduled:

from twisted.internet import reactor

def f():
print("I'll never run.")

callID = reactor.callLater(5, f)
callID.cancel()
reactor.run()

As with all reactor-based code, in order for scheduling to work the reactor must be started using reactor.run() .

See also

1. Timing out Deferreds

2.1.17 Using Threads in Twisted

How Twisted Uses Threads Itself

All callbacks registered with the reactor — for example, dataReceived, connectionLost, or any higher-level method
that comes from these, such as render_GET in twisted.web, or a callback added to a Deferred — are called from
reactor.run. The terminology around this is that we say these callbacks are run in the “main thread”, or “reactor
thread” or “I/O thread”.

Therefore, internally, Twisted makes very little use of threads. This is not to say that it makes no use of threads; there
are plenty of APIs which have no non-blocking equivalent, so when Twisted needs to call those, it calls them in a
thread. One prominent example of this is system hostname resolution: unless you have configured Twisted to use its
own DNS client in twisted.names, it will have to use your operating system’s blocking APIs to map host names to
IP addresses, in the reactor’s thread pool. However, this is something you only need to know about for resource-tuning
purposes, like setting the number of threads to use; otherwise, it is an implementation detail you can ignore.

It is a common mistake to think that because Twisted can manage multiple connections at once, things are happening
in multiple threads, and so you need to carefully manage locks. Lucky for you, Twisted does most things in one thread!
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This document explains how to interact with existing APIs which need to be run within their own threads because they
block. If you’re just using Twisted’s own APIs, the rule for threads is simply “don’t use them”.

Invoking Twisted From Other Threads

Methods within Twisted may only be invoked from the reactor thread unless otherwise noted. Very few things within
Twisted are thread-safe. For example, writing data to a transport from a protocol is not thread-safe. This means that
if you start a thread and call a Twisted method, you might get correct behavior. . . or you might get hangs, crashes, or
corrupted data. So don’t do it.

The right way to call methods on the reactor from another thread, and therefore any objects which might call methods
on the reactor, is to give a function to the reactor to execute within its own thread. This can be done using the function
callFromThread:

from twisted.internet import reactor
def notThreadSafe(someProtocol, message):

someProtocol.transport.write(b"a message: " + message)
def callFromWhateverThreadYouWant():

reactor.callFromThread(notThreadSafe, b"hello")

In this example, callFromWhateverThreadYouWant is thread-safe and can be invoked by any thread, but
notThreadSafe should only ever be called by code running in the thread where reactor.run is running.

Note: There are many objects within Twisted that represent values — for example, FilePath and URLPath — which
you may construct yourself. These may be safely constructed and used within a non-reactor thread as long as they are
not shared with other threads. However, you should be sure that these objects do not share any state, especially not with
the reactor. One good rule of thumb is that any object whose methods return Deferreds is almost certainly touching
the reactor at some point, and should never be accessed from a non-reactor thread.

Running Code In Threads

Sometimes we may want to run code in a non-reactor thread, to avoid blocking the reactor. Twisted provides a low-level
API for doing so, the callInThread method on the reactor.

For example, to run a method in a non-reactor thread we can do:

from twisted.internet import reactor

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print(x)

reactor.callInThread(aSillyBlockingMethod, "2 seconds have passed")
reactor.run()

callInThread will put your code into a queue, to be run by the next available thread in the reactor’s thread pool. This
means that depending on what other work has been submitted to the pool, your method may not run immediately.

Note: Keep in mind that callInThread can only concurrently run a fixed maximum number of tasks, and all users
of the reactor are sharing that limit. Therefore, you should not submit tasks which depend on other tasks in order to
complete to be executed by callInThread. An example of such a task would be something like this:
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q = Queue()

def blocker():
print(q.get() + q.get())

def unblocker(a, b):
q.put(a)
q.put(b)

In this case, blocker will block forever unless unblocker can successfully run to give it inputs; similarly, unblocker
might block forever if blocker is not run to consume its outputs. So if you had a threadpool of maximum size X, and
you ran for each in range(X): reactor.callInThread(blocker), the reactor threadpool would be wedged
forever, unable to process more work or even shut down.

See “Managing the Reactor Thread Pool” below to tune these limits.

Getting Results

callInThread and callFromThread allow you to move the execution of your code out of and into the reactor thread,
respectively, but that isn’t always enough.

When we run some code, we often want to know what its result was. For this, Twisted provides two methods:
deferToThread and blockingCallFromThread, defined in the twisted.internet.threads module.

To get a result from some blocking code back into the reactor thread, we can use deferToThread to execute it instead
of callFromThread.

from twisted.internet import reactor, threads

def doLongCalculation():
# .... do long calculation here ...
return 3

def printResult(x):
print(x)

# run method in thread and get result as defer.Deferred
d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult)
reactor.run()

Similarly, if you want some code running in a non-reactor thread to invoke some code in the reactor thread and get its
result, you can use blockingCallFromThread:

from twisted.internet import threads, reactor, defer
from twisted.web.client import Agent
from twisted.web.error import Error

def inThread():
agent = Agent(reactor)
try:

result = threads.blockingCallFromThread(
reactor,

(continues on next page)
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(continued from previous page)

agent.request,
b"GET",
b"https://twistedmatrix.com/",

)
except Exception as exc:

print(exc)
else:

print(result)
reactor.callFromThread(reactor.stop)

reactor.callInThread(inThread)
reactor.run()

blockingCallFromThread will return the object or raise the exception returned or raised by the function passed to it.
If the function passed to it returns a Deferred, it will return the value the deferred is fired with or raise the exception
it is failed with.

Managing the Reactor Thread Pool

We may want to modify the size of the thread pool, increasing or decreasing the number of threads in use. We can do
this:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(30)

The default size of the thread pool depends on the reactor being used; the default reactor uses a minimum size of 0 and
a maximum size of 10.

The reactor thread pool is implemented by ThreadPool. To access methods on this object for more advanced tuning
and monitoring (see the API documentation for details) you can get the thread pool with getThreadPool.

2.1.18 Producers and Consumers: Efficient High-Volume Streaming

The purpose of this guide is to describe the Twisted producer and consumer system. The producer system allows
applications to stream large amounts of data in a manner which is both memory and CPU efficient, and which does not
introduce a source of unacceptable latency into the reactor.

Readers should have at least a passing familiarity with the terminology associated with interfaces.

Push Producers

A push producer is one which will continue to generate data without external prompting until told to stop; a pull
producer will generate one chunk of data at a time in response to an explicit request for more data.

The push producer API is defined by the IPushProducer interface. It is best to create a push producer when data
generation is closedly tied to an event source. For example, a proxy which forwards incoming bytes from one socket to
another outgoing socket might be implemented using a push producer: the dataReceived takes the role of an event
source from which the producer generates bytes, and requires no external intervention in order to do so.

There are three methods which may be invoked on a push producer at various points in its lifetime: pauseProducing
, resumeProducing , and stopProducing .
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pauseProducing()

In order to avoid the possibility of using an unbounded amount of memory to buffer produced data which cannot be
processed quickly enough, it is necessary to be able to tell a push producer to stop producing data for a while. This is
done using the pauseProducing method. Implementers of a push producer should temporarily stop producing data
when this method is invoked.

resumeProducing()

After a push producer has been paused for some time, the excess of data which it produced will have been pro-
cessed and the producer may again begin producing data. When the time for this comes, the push producer will have
resumeProducing invoked on it.

stopProducing()

Most producers will generate some finite (albeit, perhaps, unknown in advance) amount of data and then stop, having
served their intended purpose. However, it is possible that before this happens an event will occur which renders the
remaining, unproduced data irrelevant. In these cases, producing it anyway would be wasteful. The stopProducing
method will be invoked on the push producer. The implementation should stop producing data and clean up any
resources owned by the producer.

Pull Producers

The pull producer API is defined by the IPullProducer interface. Pull producers are useful in cases where there is
no clear event source involved with the generation of data. For example, if the data is the result of some algorithmic
process that is bound only by CPU time, a pull producer is appropriate.

Pull producers are defined in terms of only two methods: resumeProducing and stopProducing .

resumeProducing()

Unlike push producers, a pull producer is expected to only produce data in response to resumeProducing being called.
This method will be called whenever more data is required. How much data to produce in response to this method call
depends on various factors: too little data and runtime costs will be dominated by the back-and-forth event notification
associated with a buffer becoming empty and requesting more data to process; too much data and memory usage will be
driven higher than it needs to be and the latency associated with creating so much data will cause overall performance
in the application to suffer. A good rule of thumb is to generate between 16 and 64 kilobytes of data at a time, but you
should experiment with various values to determine what is best for your application.

stopProducing()

This method has the same meaning for pull producers as it does for push producers.
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Consumers

This far, I’ve discussed the various external APIs of the two kinds of producers supported by Twisted. However, I have
not mentioned where the data a producer generates actually goes, nor what entity is responsible for invoking these
APIs. Both of these roles are filled by consumers . Consumers are defined by the one interface IConsumer .

IConsumer , defines three methods: registerProducer , unregisterProducer , and write .

registerProducer(producer, streaming)

So that a consumer can invoke methods on a producer, the consumer needs to be told about the producer. This is done
with the registerProducermethod. The first argument is either a IPullProducer or IPushProducer provider; the
second argument indicates which of these interfaces is provided: True for push producers, False for pull producers.

unregisterProducer()

Eventually a consumer will not longer be interested in a producer. This could be because the producer has finished
generating all its data, or because the consumer is moving on to something else, or any number of other reasons. In
any case, this method reverses the effects of registerProducer .

write(data)

As you might guess, this is the method which a producer calls when it has generated some data. Push producers
should call it as frequently as they like as long as they are not paused. Pull producers should call it once for each time
resumeProducing is called on them.

Further Reading

An example push producer application can be found in doc/examples/streaming.py .

• Components: Interfaces and Adapters

• FileSender : A Simple Pull Producer

2.1.19 Choosing a Reactor and GUI Toolkit Integration

Overview

Twisted provides a variety of implementations of the twisted.internet.reactor . The specialized implementations
are suited for different purposes and are designed to integrate better with particular platforms.

The epoll()-based reactor is Twisted’s default on Linux. Other platforms use poll() , or the most cross-platform reactor,
select() .

Platform-specific reactor implementations exist for:

• Poll for Linux

• Epoll for Linux 2.6

• WaitForMultipleObjects (WFMO) for Win32

• Input/Output Completion Port (IOCP) for Win32
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• KQueue for FreeBSD and macOS

• CoreFoundation for macOS

The remaining custom reactor implementations provide support for integrating with the native event loops of various
graphical toolkits. This lets your Twisted application use all of the usual Twisted APIs while still being a graphical
application.

Twisted currently integrates with the following graphical toolkits:

• GTK+ 2.0

• GTK+ 3.0 and GObject Introspection

• Tkinter

• wxPython

• Win32

• CoreFoundation

• PyUI

When using applications that are runnable using twistd , e.g. TACs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen using twistd ‘s -r option.

In all cases, the event loop is started by calling reactor.run() . In all cases, the event loop should be stopped with
reactor.stop() .

IMPORTANT: installing a reactor should be the first thing done in the app, since any code that does from twisted.
internet import reactor will automatically install the default reactor if the code hasn’t already installed one.

Reactor Functionality

Status TCP SSL UDP Thread-
ing

Pro-
cesses

Schedul-
ing

Plat-
forms

select() Stable Y Y Y Y Y Y Unix,
Win32

poll Stable Y Y Y Y Y Y Unix
WaitForMultipleObjects (WFMO)
for Win32

Experi-
mental

Y Y Y Y Y Y Win32

Input/Output Completion Port
(IOCP) for Win32

Experi-
mental

Y Y Y Y Y Y Win32

CoreFoundation Unmain-
tained

Y Y Y Y Y Y macOS

epoll Stable Y Y Y Y Y Y Linux
2.6

GTK+ Stable Y Y Y Y Y Y Unix,
Win32

wx Experi-
mental

Y Y Y Y Y Y Unix,
Win32

kqueue Stable Y Y Y Y Y Y FreeBSD
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General Purpose Reactors

Select()-based Reactor

The select reactor is the default on platforms that don’t provide a better alternative that covers all use cases. If the
select reactor is desired, it may be installed via:

from twisted.internet import selectreactor
selectreactor.install()

from twisted.internet import reactor

Platform-Specific Reactors

Poll-based Reactor

The PollReactor will work on any platform that provides select.poll . With larger numbers of connected sockets, it
may provide for better performance than the SelectReactor.

from twisted.internet import pollreactor
pollreactor.install()

from twisted.internet import reactor

KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kqueue mechanism for event scheduling. See instructions in
the twisted.internet.kqreactor ‘s docstring for installation notes.

from twisted.internet import kqreactor
kqreactor.install()

from twisted.internet import reactor

WaitForMultipleObjects (WFMO) for Win32

The Win32 reactor is not yet complete and has various limitations and issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it can be used for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()

from twisted.internet import reactor
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Input/Output Completion Port (IOCP) for Win32

Windows provides a fast, scalable event notification system known as IO Completion Ports, or IOCP for short. Twisted
includes a reactor based on IOCP which is nearly complete.

from twisted.internet import iocpreactor
iocpreactor.install()

from twisted.internet import reactor

Epoll-based Reactor

The EPollReactor will work on any platform that provides epoll , today only Linux 2.6 and over. The implementation
of the epoll reactor currently uses the Level Triggered interface, which is basically like poll() but scales much better.

from twisted.internet import epollreactor
epollreactor.install()

from twisted.internet import reactor

GUI Integration Reactors

GTK+

Twisted integrates with PyGTK version 2.0 using the gtk2reactor . An example Twisted application that uses GTK+
can be found in doc/core/examples/pbgtk2.py .

GTK-2.0 split the event loop out of the GUI toolkit and into a separate module called “glib” . To run an application
using the glib event loop, use the glib2reactor . This will be slightly faster than gtk2reactor (and does not require
a working X display), but cannot be used to run GUI applications.

from twisted.internet import gtk2reactor # for gtk-2.0
gtk2reactor.install()

from twisted.internet import reactor

from twisted.internet import glib2reactor # for non-GUI apps
glib2reactor.install()

from twisted.internet import reactor
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GTK+ 3.0 and GObject Introspection

Twisted integrates with GTK+ 3 and GObject through PyGObject’s introspection using the gtk3reactor and
gireactor reactors.

from twisted.internet import gtk3reactor
gtk3reactor.install()

from twisted.internet import reactor

from twisted.internet import gireactor # for non-GUI apps
gireactor.install()

from twisted.internet import reactor

GLib 3.0 introduces the concept of GApplication , a class that handles application uniqueness in a cross-platform
way and provides its own main loop. Its counterpart GtkApplication also handles application lifetime with respect
to open windows. Twisted supports registering these objects with the event loop, which should be done before running
the reactor:

from twisted.internet import gtk3reactor
gtk3reactor.install()

from gi.repository import Gtk
app = Gtk.Application(...)

from twisted import reactor
reactor.registerGApplication(app)
reactor.run()

wxPython

Twisted currently supports two methods of integrating wxPython. Unfortunately, neither method will work on all
wxPython platforms (such as GTK2 or Windows). It seems that the only portable way to integrate with wxPython is
to run it in a separate thread. One of these methods may be sufficient if your wx app is limited to a single platform.

As with Tkinter , the support for integrating Twisted with a wxPython application uses specialized support code rather
than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxAppInstance = wxApp(0)
wxsupport.install(myWxAppInstance)

However, this has issues when running on Windows, so Twisted now comes with alternative wxPython support using
a reactor. Using this method is probably better. Initialization is done in two stages. In the first, the reactor is installed:

from twisted.internet import wxreactor
wxreactor.install()

from twisted.internet import reactor
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Later, once a wxApp instance has been created, but before reactor.run() is called:

from twisted.internet import reactor
myWxAppInstance = wxApp(0)
reactor.registerWxApp(myWxAppInstance)

An example Twisted application that uses wxPython can be found in doc/core/examples/wxdemo.py .

CoreFoundation

Twisted integrates with PyObjC version 1.0. Sample applications using Cocoa and Twisted are available in the examples
directory under doc/core/examples/threadedselect/Cocoa .

from twisted.internet import cfreactor
cfreactor.install()

from twisted.internet import reactor

Non-Reactor GUI Integration

Tkinter

The support for Tkinter doesn’t use a specialized reactor. Instead, there is some specialized support code:

from tkinter import *
from twisted.internet import tksupport, reactor

root = Tk()

# Install the Reactor support
tksupport.install(root)

# at this point build Tk app as usual using the root object,
# and start the program with "reactor.run()", and stop it
# with "reactor.stop()".

PyUI

As with Tkinter , the support for integrating Twisted with a PyUI application uses specialized support code rather than
a simple reactor.

from twisted.internet import pyuisupport, reactor

pyuisupport.install(args=(640, 480), kw={'renderer': 'gl'})

An example Twisted application that uses PyUI can be found in doc/core/examples/pyuidemo.py .
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2.1.20 Getting Connected with Endpoints

Introduction

On a network, one can think of any given connection as a long wire, stretched between two points. Lots of stuff can
happen along the length of that wire - routers, switches, network address translation, and so on, but that is usually
invisible to the application passing data across it. Twisted strives to make the nature of the “wire” as transparent as
possible, with highly abstract interfaces for passing and receiving data, such as ITransport and IProtocol.

However, the application can’t be completely ignorant of the wire. In particular, it must do something to start the
connection, and to do so, it must identify the end points of the wire. There are different names for the roles of each end
point - “initiator” and “responder”, “connector” and “listener”, or “client” and “server” - but the common theme is that
one side of the connection waits around for someone to connect to it, and the other side does the connecting.

In Twisted 10.1, several new interfaces were introduced to describe each of these roles for stream-oriented connections:
IStreamServerEndpoint and IStreamClientEndpoint. The word “stream”, in this case, refers to endpoints which
treat a connection as a continuous stream of bytes, rather than a sequence of discrete datagrams: TCP is a “stream”
protocol whereas UDP is a “datagram” protocol.

Constructing and Using Endpoints

In both Writing Servers and Writing Clients, we covered basic usage of endpoints; you construct an appropriate type of
server or client endpoint, and then call listen (for servers) or connect (for clients).

In both of those tutorials, we constructed specific types of endpoints directly. However, in most programs, you will
want to allow the user to specify where to listen or connect, in a way which will allow the user to request different
strategies, without having to adjust your program. In order to allow this, you should use clientFromString or
serverFromString.

There’s Not Much To It

Each type of endpoint is just an interface with a single method that takes an argument. serverEndpoint.
listen(factory) will start listening on that endpoint with your protocol factory, and clientEndpoint.
connect(factory) will start a single connection attempt. Each of these APIs returns a value, though, which can
be important.

However, if you are not already, you should be very familiar with Deferreds, as they are returned by both connect and
listen methods, to indicate when the connection has connected or the listening port is up and running.

Servers and Stopping

IStreamServerEndpoint.listen returns a Deferred that fires with an IListeningPort. Note that this deferred
may errback. The most common cause of such an error would be that another program is already using the requested
port number, but the exact cause may vary depending on what type of endpoint you are listening on. If you receive
such an error, it means that your application is not actually listening, and will not receive any incoming connections.
It’s important to somehow alert an administrator of your server, in this case, especially if you only have one listening
port!

Note also that once this has succeeded, it will continue listening forever. If you need to stop listening for some reason,
in response to anything other than a full server shutdown (reactor.stop and / or twistd will usually handle that
case for you), make sure you keep a reference around to that listening port object so you can call IListeningPort.
stopListening on it. Finally, keep in mind that stopListening itself returns a Deferred, and the port may not
have fully stopped listening until that Deferred has fired.

196 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

Most server applications will not need to worry about these details. One example of a case where you would need to be
concerned with all of these events would be an implementation of a protocol like non-PASV FTP, where new listening
ports need to be bound for the lifetime of a particular action, then disposed of.

Clients and Cancelling

connectProtocol connects a Protocol instance to a given IStreamClientEndpoint. It returns a Deferredwhich
fires with the Protocol once the connection has been made. Connection attempts may fail, and so that Deferred may
also errback. If it does so, you will have to try again; no further attempts will be made. See the client documentation
for an example use.

connectProtocol is a wrapper around a lower-level API: IStreamClientEndpoint.connect will use a protocol
factory for a new outgoing connection attempt. It returns a Deferred which fires with the IProtocol returned from
the factory’s buildProtocol method, or errbacks with the connection failure.

Connection attempts may also take a long time, and your users may become bored and wander off. If this happens, and
your code decides, for whatever reason, that you’ve been waiting for the connection too long, you can call Deferred.
cancel on the Deferred returned from connect or connectProtocol, and the underlying machinery should give up
on the connection. This should cause the Deferred to errback, usually with CancelledError; although you should
consult the documentation for your particular endpoint type to see if it may do something different.

Although some endpoint types may imply a built-in timeout, the interface does not guarantee one. If you don’t have
any way for the application to cancel a wayward connection attempt, the attempt may just keep waiting forever. For
example, a very simple 30-second timeout could be implemented like this:

attempt = connectProtocol(myEndpoint, myProtocol)
reactor.callLater(30, attempt.cancel)

Note: If you’ve used ClientFactory before, keep in mind that the connect method takes a
Factory, not a ClientFactory. Even if you pass a ClientFactory to endpoint.connect, its
clientConnectionFailed and clientConnectionLost methods will not be called. In particular, clients
that extend ReconnectingClientFactory won’t reconnect. The next section describes how to set up reconnecting
clients on endpoints.

Persistent Client Connections

twisted.application.internet.ClientService can maintain a persistent outgoing connection to a server which
can be started and stopped along with your application.

One popular protocol to maintain a long-lived client connection to is IRC, so for an example of ClientService,
here’s how you would make a long-lived encrypted connection to an IRC server (other details, like how to authenticate,
omitted for brevity):

from twisted.internet.protocol import Factory
from twisted.internet.endpoints import clientFromString
from twisted.words.protocols.irc import IRCClient
from twisted.application.internet import ClientService
from twisted.internet import reactor

myEndpoint = clientFromString(reactor, "tls:example.com:6997")
myFactory = Factory.forProtocol(IRCClient)

(continues on next page)
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(continued from previous page)

myReconnectingService = ClientService(myEndpoint, myFactory)

If you already have a parent service, you can add the reconnecting service as a child service:

parentService.addService(myReconnectingService)

If you do not have a parent service, you can start and stop the reconnecting service using its startService and
stopService methods.

ClientService.stopService returns a Deferred that fires once the current connection closes or the current con-
nection attempt is cancelled.

Getting The Active Client

When maintaining a long-lived connection, it’s often useful to be able to get the current connection (if the connection is
active) or wait for the next connection (if a connection attempt is currently in progress). For example, we might want to
pass our ClientService from the previous example to some code that can send IRC notifications in response to some
external event. The ClientService.whenConnected method returns a Deferred that fires with the next available
Protocol instance. You can use it like so:

waitForConnection = myReconnectingService.whenConnected()
def connectedNow(clientForIRC):

clientForIRC.say("#bot-test", "hello, world!")
waitForConnection.addCallback(connectedNow)

Keep in mind that you may need to wrap this up for your particular application, since when no existing connection
is available, the callback is executed just as soon as the connection is established. For example, that little snippet is
slightly oversimplified: at the time connectedNow is run, the bot hasn’t authenticated or joined the channel yet, so its
message will be refused. A real-life IRC bot would need to have its own method for waiting until the connection is
fully ready for chat before chatting.

Reporting an Initial Failure

Often times, a failure of the very first connection attempt is special. It may indicate a problem that won’t go away
by just trying harder. The service may be configured with the wrong hostname, or the user may not have an internet
connection at all (perhaps they forgot to turn on their wifi adapter).

Applications can ask whenConnected to make their Deferred fail if the service makes one or more connection at-
tempts in a row without success. You can pass the failAfterFailures parameter into ClientService to set this
threshold.

By calling whenConnected(failAfterFailures=1) when the service is first started (just before or just after
startService), your application will get notification of an initial connection failure.

Setting it to 1 makes it fail after a single connection failure. Setting it to 2 means it will try once, wait a bit, try again,
and then either fail or succeed depending upon the outcome of the second connection attempt. You can use 3 or more
too, if you’re feeling particularly patient. The default of None means it will wait forever for a successful connection.

Regardless of failAfterFailures, the Deferred will always fail with CancelledError if the service is stopped
before a connection is made.
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waitForConnection = myReconnectingService.whenConnected(failAfterFailures=1)
def connectedNow(clientForIRC):

clientForIRC.say("#bot-test", "hello, world!")
def failed(f):

print("initial connection failed: %s" % (f,))
# now you should stop the service and report the error upwards

waitForConnection.addCallbacks(connectedNow, failed)

Retry Policies

ClientService will immediately attempt an outgoing connection when startService is called. If that connection
attempt fails for any reason (name resolution, connection refused, network unreachable, and so on), it will retry ac-
cording to the policy specified in the retryPolicy constructor argument. By default, ClientService will use an
exponential backoff algorithm with a minimum delay of 1 second and a maximum delay of 1 minute, and a jitter of
up to 1 additional second to prevent stampeding-herd performance cascades. This is a good default, and if you do not
have highly specialized requirements, you probably want to use it. If you need to tune these parameters, you have two
options:

1. You can pass your own timeout policy to ClientService’s constructor. A timeout policy is a callable that takes
the number of failed attempts, and computes a delay until the next connection attempt. So, for example, if you
are really really sure that you want to reconnect every single second if the service you are talking to goes down,
you can do this:

myReconnectingService = ClientService(myEndpoint, myFactory, retryPolicy=lambda␣
→˓ignored: 1)

Of course, unless you have only one client and only one server and they’re both on localhost, this sort of policy
is likely to cause massive performance degradation and thundering herd resource contention in the event of your
server’s failure, so you probably want to take the second option. . .

2. You can tweak the default exponential backoff policy with a few parameters by passing the result of twisted.
application.internet.backoffPolicy() to the retryPolicy argument. For example, if you want to
make it triple the delay between attempts, but start with a faster connection interval (half a second instead of one
second), you could do it like so:

myReconnectingService = ClientService(
myEndpoint, myFactory,
retryPolicy=backoffPolicy(initialDelay=0.5, factor=3.0)

)

Note: Before endpoints, reconnecting clients were created as subclasses of ReconnectingClientFactory. These
subclasses were required to call resetDelay. One of the many advantages of using endpoints is that these special
subclasses are no longer needed. ClientService accepts ordinary IProtocolFactory providers.
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Maximizing the Return on your Endpoint Investment

Directly constructing an endpoint in your application is rarely the best option, because it ties your application to a
particular type of transport. The strength of the endpoints API is in separating the construction of the endpoint (figuring
out where to connect or listen) and its activation (actually connecting or listening).

If you are implementing a library that needs to listen for connections or make outgoing connections, when possible, you
should write your code to accept client and server endpoints as parameters to functions or to your objects’ constructors.
That way, application code that calls your library can provide whatever endpoints are appropriate.

If you are writing an application and you need to construct endpoints yourself, you can allow users to specify arbitrary
endpoints described by a string using the clientFromString and serverFromString APIs. Since these APIs just
take a string, they provide flexibility: if Twisted adds support for new types of endpoints (for example, IPv6 endpoints,
or WebSocket endpoints), your application will automatically be able to take advantage of them with no changes to its
code.

Endpoints Aren’t Always the Answer

For many use-cases, especially the common case of a twistd plugin which runs a long-running server that just binds
a simple port, you might not want to use the endpoints APIs directly. Instead, you may want to construct an IService,
using strports.service, which will fit neatly into the required structure of the twistd plugin API . This doesn’t give
your application much control - the port starts listening at startup and stops listening at shutdown - but it does provide
the same flexibility in terms of what type of server endpoint your application will support.

It is, however, almost always preferable to use an endpoint rather than calling a lower-level APIs like connectTCP,
listenTCP, etc, directly. By accepting an arbitrary endpoint rather than requiring a specific reactor interface, you
leave your application open to lots of interesting transport-layer extensibility for the future.

Endpoint Types Included With Twisted

The parser used by clientFromString and serverFromString is extensible via third-party plugins, so the endpoints
available on your system depend on what packages you have installed. However, Twisted itself includes a set of basic
endpoints that will always be available.

Clients

TCP
Supported arguments: host, port, timeout. timeout is optional.

For example, tcp:host=twistedmatrix.com:port=80:timeout=15.

TLS
Required arguments: host, port.

Optional arguments: timeout, bindAddress, certificate, privateKey, trustRoots, endpoint.

• host is a (UTF-8 encoded) hostname to connect to, as well as the host name to verify against.

• port is a numeric port number to connect to.

• timeout and bindAddress have the same meaning as the timeout and bindAddress for TCP clients.

• certificate is the certificate to use for the client; it should be the path name of a PEM file containing a
certificate for which privateKey is the private key.
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• privateKey is the client’s private key, matching the certificate specified by certificate. It should
be the path name of a PEM file containing an X.509 client certificate. If certificate is specified
but privateKey is unspecified, Twisted will look for the certificate in the same file as specified by
certificate.

• trustRoots specifies a path to a directory of PEM-encoded certificate files. If you leave this unspecified,
Twisted will do its best to use the platform default set of trust roots, which should be the default WebTrust
set.

• the optional endpoint parameter changes the meaning of the tls: endpoint slightly. Rather than the
default of connecting over TCP with the same hostname used for verification, you can connect over any
endpoint type. If you specify the endpoint here, host and port are used for certificate verification purposes
only. Bear in mind you will need to backslash-escape the colons in the endpoint description here.

This client connects to the supplied hostname, validates the server’s hostname against the supplied hostname,
and then upgrades to TLS immediately after validation succeeds.

The simplest example of this would be: tls:example.com:443.

You can use the endpoint: feature with TCP if you want to connect to a host name; for example, if your DNS
is not working, but you know that the IP address 7.6.5.4 points to awesome.site.example.com, you could
specify: tls:awesome.site.example.com:443:endpoint=tcp\:7.6.5.4\:443.

You can use it with any other endpoint type as well, though; for example, if you had a local UNIX socket
that established a tunnel to awesome.site.example.com in /var/run/awesome.sock, you could instead
do tls:awesome.site.example.com:443:endpoint=unix\:/var/run/awesome.sock.

Or, from python code:

wrapped = HostnameEndpoint('example.com', 443)
contextFactory = optionsForClientTLS(hostname=u'example.com')
endpoint = wrapClientTLS(contextFactory, wrapped)
conn = endpoint.connect(Factory.forProtocol(Protocol))

UNIX
Supported arguments: path, timeout, checkPID. path gives a filesystem path to a listening UNIX domain
socket server. checkPID (optional) enables a check of the lock file Twisted-based UNIX domain socket servers
use to prove they are still running.

For example, unix:path=/var/run/web.sock.

TCP (Hostname)
Supported arguments: host, port, timeout. host is a hostname to connect to. timeout is optional. It is a
name-based TCP endpoint that returns the connection which is established first amongst the resolved addresses.

For example,

endpoint = HostnameEndpoint(reactor, "twistedmatrix.com", 80)
conn = endpoint.connect(Factory.forProtocol(Protocol))

SSL (Deprecated)

Note: You should generally prefer the “TLS” client endpoint, above, unless you need to work with versions
of Twisted older than 16.0. Among other things:

• the ssl: client endpoint requires that you pass ‘’both” hostname= (for hostname verification) as well
as host= (for a TCP connection address) in order to get hostname verification, which is required for
security, whereas tls: does the correct thing by default by using the same hostname for both.

• the ssl: client endpoint doesn’t work with IPv6, and the tls: endpoint does.
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All TCP arguments are supported, plus: certKey, privateKey, caCertsDir. certKey (optional) gives
a filesystem path to a certificate (PEM format). privateKey (optional) gives a filesystem path to a private
key (PEM format). caCertsDir (optional) gives a filesystem path to a directory containing trusted CA
certificates to use to verify the server certificate.

For example, ssl:host=twistedmatrix.com:port=443:caCertsDir=/etc/ssl/certs.

Servers

TCP (IPv4)
Supported arguments: port, interface, backlog. interface and backlog are optional. interface is an
IP address (belonging to the IPv4 address family) to bind to.

For example, tcp:port=80:interface=192.168.1.1.

TCP (IPv6)
All TCP (IPv4) arguments are supported, with interface taking an IPv6 address literal instead.

For example, tcp6:port=80:interface=2001\:0DB8\:f00e\:eb00\:\:1.

SSL
All TCP arguments are supported, plus: certKey, privateKey, extraCertChain, sslmethod, and
dhParameters. certKey (optional, defaults to the value of privateKey) gives a filesystem path to a certifi-
cate (PEM format). privateKey gives a filesystem path to a private key (PEM format). extraCertChain
gives a filesystem path to a file with one or more concatenated certificates in PEM format that establish the chain
from a root CA to the one that signed your certificate. sslmethod indicates which SSL/TLS version to use (a
value like TLSv1_3_METHOD). dhParameters gives a filesystem path to a file in PEM format with parameters
that are required for Diffie-Hellman key exchange. Since the this is required for the DHE-family of ciphers that
offer perfect forward secrecy (PFS), it is recommended to specify one. Such a file can be created using openssl
dhparam -out dh_param_1024.pem -2 1024. Please refer to OpenSSL’s documentation on dhparam for
further details.

For example, ssl:port=443:privateKey=/etc/ssl/server.pem:extraCertChain=/etc/ssl/chain.
pem:sslmethod=SSLv3_METHOD:dhParameters=dh_param_1024.pem.

UNIX
Supported arguments: address, mode, backlog, lockfile. address gives a filesystem path to listen on with
a UNIX domain socket server. mode (optional) gives the filesystem permission/mode (in octal) to apply to that
socket. lockfile enables use of a separate lock file to prove the server is still running.

For example, unix:address=/var/run/web.sock:lockfile=1.

systemd
Supported arguments: domain, name, and index. domain indicates which socket domain the inherited file
descriptor belongs to (eg INET, INET6). name indicates the name of a file descriptor inherited from systemd. The
is set by the systemd configuration for the socket. index indicates an offset into the array of file descriptors which
have been inherited from systemd. name should be preferred over index because the order of the descriptors
can be difficult to predict.

For example, systemd:domain=INET6:name=my-web-server.

See also Deploying Twisted with systemd.

PROXY
The PROXY protocol is a stream wrapper and can be applied any of the other server endpoints by placing
haproxy: in front of a normal port definition.
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For example, haproxy:tcp:port=80:interface=192.168.1.1 or haproxy:ssl:port=443:privateKey=/
etc/ssl/server.pem:extraCertChain=/etc/ssl/chain.pem:sslmethod=SSLv3_METHOD:dhParameters=dh_param_1024.
pem.

The PROXY protocol provides a way for load balancers and reverse proxies to send down the real IP of a connec-
tion’s source and destination without relying on X-Forwarded-For headers. A Twisted service using this endpoint
wrapper must run behind a service that sends valid PROXY protocol headers. For more on the protocol see the
formal specification. Both version one and two of the protocol are currently supported.

2.1.21 Components: Interfaces and Adapters

Object oriented programming languages allow programmers to reuse portions of existing code by creating new “classes”
of objects which subclass another class. When a class subclasses another, it is said to inherit all of its behaviour. The
subclass can then “override” and “extend” the behavior provided to it by the superclass. Inheritance is very useful in
many situations, but because it is so convenient to use, often becomes abused in large software systems, especially
when multiple inheritance is involved. One solution is to use delegation instead of “inheritance” where appropriate.
Delegation is simply the act of asking another object to perform a task for an object. To support this design pattern,
which is often referred to as the components pattern because it involves many small interacting components, interfaces
and adapters were created by the Zope 3 team.

“Interfaces” are simply markers which objects can use to say “I implement this interface”. Other objects may then make
requests like “Please give me an object which implements interface X for object type Y”. Objects which implement an
interface for another object type are called “adapters”.

The superclass-subclass relationship is said to be an is-a relationship. When designing object hierarchies, object mod-
ellers use subclassing when they can say that the subclass is the same class as the superclass. For example:

class Shape:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError("Subclasses must implement area")

class Triangle(Shape):
def area(self):

return (self.sideLength * self.sideLength) / 2

class Square(Shape):
def area(self):

return self.sideLength * self.sideLength

In the above example, a Triangle is-a Shape, so it subclasses Shape, and a Square is-a Shape, so it also subclasses
Shape.

However, subclassing can get complicated, especially when Multiple Inheritance enters the picture. Multiple Inheri-
tance allows a class to inherit from more than one base class. Software which relies heavily on inheritance often ends
up having both very wide and very deep inheritance trees, meaning that one class inherits from many superclasses
spread throughout the system. Since subclassing with Multiple Inheritance means implementation inheritance, locat-
ing a method’s actual implementation and ensuring the correct method is actually being invoked becomes a challenge.
For example:
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class Area:
sideLength = 0
def getSideLength(self):

return self.sideLength

def setSideLength(self, sideLength):
self.sideLength = sideLength

def area(self):
raise NotImplementedError("Subclasses must implement area")

class Color:
color = None
def setColor(self, color):
self.color = color

def getColor(self):
return self.color

class Square(Area, Color):
def area(self):

return self.sideLength * self.sideLength

The reason programmers like using implementation inheritance is because it makes code easier to read since the im-
plementation details of Area are in a separate place than the implementation details of Color. This is nice, because
conceivably an object could have a color but not an area, or an area but not a color. The problem, though, is that Square
is not really an Area or a Color, but has an area and color. Thus, we should really be using another object oriented tech-
nique called composition, which relies on delegation rather than inheritance to break code into small reusable chunks.
Let us continue with the Multiple Inheritance example, though, because it is often used in practice.

What if both the Color and the Area base class defined the same method, perhaps calculate? Where would the
implementation come from? The implementation that is located for Square().calculate() depends on the method
resolution order, or MRO, and can change when programmers change seemingly unrelated things by refactoring classes
in other parts of the system, causing obscure bugs. Our first thought might be to change the calculate method name to
avoid name clashes, to perhaps calculateArea and calculateColor. While explicit, this change could potentially
require a large number of changes throughout a system, and is error-prone, especially when attempting to integrate two
systems which you didn’t write.

Let’s imagine another example. We have an electric appliance, say a hair dryer. The hair dryer is American voltage.
We have two electric sockets, one of them an American 120 Volt socket, and one of them a United Kingdom 240 Volt
socket. If we plug the hair dryer into the 240 Volt socket, it is going to expect 120 Volt current and errors will result.
Going back and changing the hair dryer to support both plug120Volt and plug240Volt methods would be tedious,
and what if we decided we needed to plug the hair dryer into yet another type of socket? For example:

class HairDryer:
def plug(self, socket):

if socket.voltage() == 120:
print("I was plugged in properly and am operating.")

else:
print("I was plugged in improperly and ")
print("now you have no hair dryer any more.")

class AmericanSocket:
def voltage(self):

(continues on next page)
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(continued from previous page)

return 120

class UKSocket:
def voltage(self):

return 240

Given these classes, the following operations can be performed:

>>> hd = HairDryer()
>>> am = AmericanSocket()
>>> hd.plug(am)
I was plugged in properly and am operating.
>>> uk = UKSocket()
>>> hd.plug(uk)
I was plugged in improperly and
now you have no hair dryer any more.

We are going to attempt to solve this problem by writing an Adapter for the UKSocket which converts the voltage for
use with an American hair dryer. An Adapter is a class which is constructed with one and only one argument, the
“adaptee” or “original” object. In this example, we will show all code involved for clarity:

class AdaptToAmericanSocket:
def __init__(self, original):

self.original = original

def voltage(self):
return self.original.voltage() / 2

Now, we can use it as so:

>>> hd = HairDryer()
>>> uk = UKSocket()
>>> adapted = AdaptToAmericanSocket(uk)
>>> hd.plug(adapted)
I was plugged in properly and am operating.

So, as you can see, an adapter can ‘override’ the original implementation. It can also ‘extend’ the interface of the
original object by providing methods the original object did not have. Note that an Adapter must explicitly delegate
any method calls it does not wish to modify to the original, otherwise the Adapter cannot be used in places where the
original is expected. Usually this is not a problem, as an Adapter is created to conform an object to a particular interface
and then discarded.

Interfaces and Components in Twisted code

Adapters are a useful way of using multiple classes to factor code into discrete chunks. However, they are not very
interesting without some more infrastructure. If each piece of code which wished to use an adapted object had to
explicitly construct the adapter itself, the coupling between components would be too tight. We would like to achieve
“loose coupling”, and this is where twisted.python.components comes in.

First, we need to discuss Interfaces in more detail. As we mentioned earlier, an Interface is nothing more than a class
which is used as a marker. Interfaces should be subclasses of zope.interface.Interface, and have a very odd
look to python programmers not used to them:
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from zope.interface import Interface

class IAmericanSocket(Interface):
def voltage():
"""
Return the voltage produced by this socket object, as an integer.
"""

Notice how it looks just like a regular class definition, other than inheriting from Interface? However, the method
definitions inside the class block do not have any method body! Since Python does not have any native language-level
support for Interfaces like Java does, this is what distinguishes an Interface definition from a Class.

Now that we have a defined Interface, we can talk about objects using terms like this: “The AmericanSocket
class implements the IAmericanSocket interface” and “Please give me an object which adapts UKSocket to the
IAmericanSocket interface”. We can make declarations about what interfaces a certain class implements, and we
can request adapters which implement a certain interface for a specific class.

Let’s look at how we declare that a class implements an interface:

from zope.interface import implementer

@implementer(IAmericanSocket)
class AmericanSocket:

def voltage(self):
return 120

So, to declare that a class implements an interface, we simply decorate it with zope.interface.implementer.

Now, let’s say we want to rewrite the AdaptToAmericanSocket class as a real adapter. In this case we also specify it
as implementing IAmericanSocket:

from zope.interface import implementer

@implementer(IAmericanSocket)
class AdaptToAmericanSocket:

def __init__(self, original):
"""
Pass the original UKSocket object as original
"""
self.original = original

def voltage(self):
return self.original.voltage() / 2

Notice how we placed the implements declaration on this adapter class. So far, we have not achieved anything by using
components other than requiring us to type more. In order for components to be useful, we must use the component
registry. Since AdaptToAmericanSocket implements IAmericanSocket and regulates the voltage of a UKSocket
object, we can register AdaptToAmericanSocket as an IAmericanSocket adapter for the UKSocket class. It is
easier to see how this is done in code than to describe it:

from zope.interface import Interface, implementer
from twisted.python import components

class IAmericanSocket(Interface):
def voltage():

(continues on next page)
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"""
Return the voltage produced by this socket object, as an integer.
"""

@implementer(IAmericanSocket)
class AmericanSocket:

def voltage(self):
return 120

class UKSocket:
def voltage(self):

return 240

@implementer(IAmericanSocket)
class AdaptToAmericanSocket:

def __init__(self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

components.registerAdapter(
AdaptToAmericanSocket,
UKSocket,
IAmericanSocket)

Now, if we run this script in the interactive interpreter, we can discover a little more about how to use components. The
first thing we can do is discover whether an object implements an interface or not:

>>> IAmericanSocket.implementedBy(AmericanSocket)
True
>>> IAmericanSocket.implementedBy(UKSocket)
False
>>> am = AmericanSocket()
>>> uk = UKSocket()
>>> IAmericanSocket.providedBy(am)
True
>>> IAmericanSocket.providedBy(uk)
False

As you can see, the AmericanSocket instance claims to implement IAmericanSocket, but the UKSocket does
not. If we wanted to use the HairDryer with the AmericanSocket, we could know that it would be safe to do so
by checking whether it implements IAmericanSocket. However, if we decide we want to use HairDryer with a
UKSocket instance, we must adapt it to IAmericanSocket before doing so. We use the interface object to do this:

>>> IAmericanSocket(uk)
<__main__.AdaptToAmericanSocket instance at 0x1a5120>

When calling an interface with an object as an argument, the interface looks in the adapter registry for an adapter which
implements the interface for the given instance’s class. If it finds one, it constructs an instance of the Adapter class,
passing the constructor the original instance, and returns it. Now the HairDryer can safely be used with the adapted
UKSocket . But what happens if we attempt to adapt an object which already implements IAmericanSocket? We
simply get back the original instance:
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>>> IAmericanSocket(am)
<__main__.AmericanSocket instance at 0x36bff0>

So, we could write a new “smart” HairDryer which automatically looked up an adapter for the socket you tried to
plug it into:

class HairDryer:
def plug(self, socket):

adapted = IAmericanSocket(socket)
assert adapted.voltage() == 120, "BOOM"
print("I was plugged in properly and am operating")

Now, if we create an instance of our new “smart” HairDryer and attempt to plug it in to various sockets, the HairDryer
will adapt itself automatically depending on the type of socket it is plugged in to:

>>> am = AmericanSocket()
>>> uk = UKSocket()
>>> hd = HairDryer()
>>> hd.plug(am)
I was plugged in properly and am operating
>>> hd.plug(uk)
I was plugged in properly and am operating

Voila; the magic of components.

Components and Inheritance

If you inherit from a class which implements some interface, and your new subclass declares that it implements another
interface, the implements will be inherited by default.

For example, pb.Root is a class which implements IPBRoot. This interface indicates that an object has remotely-
invokable methods and can be used as the initial object served by a new Broker instance. It has an implements setting
like:

from zope.interface import implementer

@implementer(IPBRoot)
class Root(Referenceable):

pass

Suppose you have your own class which implements your IMyInterface interface:

from zope.interface import implementer, Interface

class IMyInterface(Interface):
pass

@implementer(IMyInterface)
class MyThing:

pass

Now if you want to make this class inherit from pb.Root, the interfaces code will automatically determine that it also
implements IPBRoot:
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from twisted.spread import pb
from zope.interface import implementer, Interface

class IMyInterface(Interface):
pass

@implementer(IMyInterface)
class MyThing(pb.Root):

pass

>>> from twisted.spread.flavors import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
True

If you want MyThing to inherit from pb.Root but not implement IPBRoot like pb.Root does, use
@implementer_only:

from twisted.spread import pb
from zope.interface import implementer_only, Interface

class IMyInterface(Interface):
pass

@implementer_only(IMyInterface)
class MyThing(pb.Root):

pass

>>> from twisted.spread.pb import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
False

2.1.22 Cred: Pluggable Authentication

Goals

Cred is a pluggable authentication system for servers. It allows any number of network protocols to connect and
authenticate to a system, and communicate to those aspects of the system which are meaningful to the specific protocol.
For example, Twisted’s POP3 support passes a “username and password” set of credentials to get back a mailbox for
the specified email account. IMAP does the same, but retrieves a slightly different view of the same mailbox, enabling
those features specific to IMAP which are not available in other mail protocols.

Cred is designed to allow both the backend implementation of the business logic - called the avatar - and the authenti-
cation database - called the credential checker - to be decided during deployment. For example, the same POP3 server
should be able to authenticate against the local UNIX password database or an LDAP server without having to know
anything about how or where mail is stored.

To sketch out how this works - a “Realm” corresponds to an application domain and is in charge of avatars, which
are network-accessible business logic objects. To connect this to an authentication database, a top-level object
called a Portal stores a realm, and a number of credential checkers. Something that wishes to log in, such as a
Protocol , stores a reference to the portal. Login consists of passing credentials and a request interface (e.g. POP3’s
IMailboxPOP3 ) to the portal. The portal passes the credentials to the appropriate credential checker, which returns an
avatar ID. The ID is passed to the realm, which returns the appropriate avatar. For a Portal that has a realm that creates
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mailbox objects and a credential checker that checks /etc/passwd, login consists of passing in a username/password
and the IMailboxPOP3 interface to the portal. The portal passes this to the /etc/passwd credential checker, gets back
a avatar ID corresponding to an email account, passes that to the realm and gets back a mailbox object for that email
account.

Putting all this together, here’s how a login request will typically be processed:

Cred objects

The Portal

This is the core of login, the point of integration between all the objects in the cred system. There is one concrete
implementation of Portal, and no interface - it does a very simple task. A Portal associates one (1) Realm with a
collection of CredentialChecker instances. (More on those later.)

If you are writing a protocol that needs to authenticate against something, you will need a reference to a Portal, and to
nothing else. This has only 2 methods -

• login (credentials, mind, *interfaces)

The docstring is quite expansive (see twisted.cred.portal ), but in brief, this is what you call when you need
to call in order to connect a user to the system. Typically you only pass in one interface, and the mind is None
. The interfaces are the possible interfaces the returned avatar is expected to implement, in order of preference.
The result is a deferred which fires a tuple of:

– interface the avatar implements (which was one of the interfaces passed in the *interfaces tuple)
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– an object that implements that interface (an avatar)

– logout, a 0-argument callable which disconnects the connection that was established by this call to login

The logout method has to be called when the avatar is logged out. For POP3 this means when the protocol is
disconnected or logged out, etc..

• registerChecker (checker, *credentialInterfaces)

which adds a CredentialChecker to the portal. The optional list of interfaces are interfaces of credentials that the
checker is able to check.

The CredentialChecker

This is an object implementing ICredentialsChecker which resolves some credentials to an avatar ID.

Whether the credentials are stored in an in-memory data structure, an Apache-style htaccess file, a UNIX password
database, an SSH key database, or any other form, an implementation of ICredentialsChecker is how this data is
connected to cred.

A credential checker stipulates some requirements of the credentials it can check by specifying a credentialInterfaces
attribute, which is a list of interfaces. Credentials passed to its requestAvatarId method must implement one of those
interfaces.

For the most part, these things will just check usernames and passwords and produce the username as the result, but
hopefully we will be seeing some public-key, challenge-response, and certificate based credential checker mechanisms
soon.

A credential checker should raise an error if it cannot authenticate the user, and return twisted.cred.checkers.
ANONYMOUS for anonymous access.

The Credentials

Oddly enough, this represents some credentials that the user presents. Usually this will just be a small static blob of
data, but in some cases it will actually be an object connected to a network protocol. For example, a username/password
pair is static, but a challenge/response server is an active state-machine that will require several method calls in order
to determine a result.

Twisted comes with a number of credentials interfaces and implementations in the twisted.cred.credentials
module, such as IUsernamePassword and IUsernameHashedPassword .

The Realm

A realm is an interface which connects your universe of “business objects” to the authentication system.

IRealm is another one-method interface:

• requestAvatar (avatarId, mind, *interfaces)

This method will typically be called from ‘Portal.login’. The avatarId is the one returned by a CredentialChecker.

Note: Note that avatarIdmust always be a string. In particular, do not use unicode strings. If internationalized
support is needed, it is recommended to use UTF-8, and take care of decoding in the realm.

The important thing to realize about this method is that if it is being called, the user has already authenticated
. Therefore, if possible, the Realm should create a new user if one does not already exist whenever possible.
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Of course, sometimes this will be impossible without more information, and that is the case that the interfaces
argument is for.

Since requestAvatar should be called from a Deferred callback, it may return a Deferred or a synchronous result.

The Avatar

An avatar is a business logic object for a specific user. For POP3, it’s a mailbox, for a first-person-shooter it’s the object
that interacts with the game, the actor as it were. Avatars are specific to an application, and each avatar represents a
single “user” .

The Mind

As mentioned before, the mind is usually None , so you can skip this bit if you want.

Masters of Perspective Broker already know this object as the ill-named “client object” . There is no “mind” class,
or even interface, but it is an object which serves an important role - any notifications which are to be relayed to an
authenticated client are passed through a ‘mind’. In addition, it allows passing more information to the realm during
login in addition to the avatar ID.

The name may seem rather unusual, but considering that a Mind is representative of the entity on the “other end” of a
network connection that is both receiving updates and issuing commands, I believe it is appropriate.

Although many protocols will not use this, it serves an important role. It is provided as an argument both to the Portal
and to the Realm, although a CredentialChecker should interact with a client program exclusively through a Credentials
instance.

Unlike the original Perspective Broker “client object” , a Mind’s implementation is most often dictated by the protocol
that is connecting rather than the Realm. A Realm which requires a particular interface to issue notifications will need
to wrap the Protocol’s mind implementation with an adapter in order to get one that conforms to its expected interface
- however, Perspective Broker will likely continue to use the model where the client object has a pre-specified remote
interface.

(If you don’t quite understand this, it’s fine. It’s hard to explain, and it’s not used in simple usages of cred, so feel free
to pass None until you find yourself requiring something like this.)

Responsibilities

Server protocol implementation

The protocol implementor should define the interface the avatar should implement, and design the protocol to have a
portal attached. When a user logs in using the protocol, a credential object is created, passed to the portal, and an avatar
with the appropriate interface is requested. When the user logs out or the protocol is disconnected, the avatar should
be logged out.

The protocol designer should not hardcode how users are authenticated or the realm implemented. For example, a
POP3 protocol implementation would require a portal whose realm returns avatars implementing IMailbox and whose
credential checker accepts username/password credentials, but that is all. Here’s a sketch of how the code might look
- note that USER and PASS are the protocol commands used to login, and the DELE command can only be used after
you are logged in:

pop3_server.py
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# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from zope.interface import Interface

from twisted.cred import credentials, error
from twisted.internet import defer
from twisted.protocols import basic
from twisted.python import log

class IMailbox(Interface):
"""
Interface specification for mailbox.
"""

def deleteMessage(index):
pass

class POP3(basic.LineReceiver):
# ...
def __init__(self, portal):

self.portal = portal

def do_DELE(self, i):
# uses self.mbox, which is set after login
i = int(i) - 1
self.mbox.deleteMessage(i)
self.successResponse()

def do_USER(self, user):
self._userIs = user
self.successResponse("USER accepted, send PASS")

def do_PASS(self, password):
if self._userIs is None:

self.failResponse("USER required before PASS")
return

user = self._userIs
self._userIs = None
d = defer.maybeDeferred(self.authenticateUserPASS, user, password)
d.addCallback(self._cbMailbox, user)

def authenticateUserPASS(self, user, password):
if self.portal is not None:

return self.portal.login(
credentials.UsernamePassword(user, password), None, IMailbox

)
raise error.UnauthorizedLogin()

def _cbMailbox(self, ial, user):
interface, avatar, logout = ial

(continues on next page)
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(continued from previous page)

if interface is not IMailbox:
self.failResponse("Authentication failed")
log.err("_cbMailbox() called with an interface other than IMailbox")
return

self.mbox = avatar
self._onLogout = logout
self.successResponse("Authentication succeeded")
log.msg("Authenticated login for " + user)

Application implementation

The application developer can implement realms and credential checkers. For example, they might implement a realm
that returns IMailbox implementing avatars, using MySQL for storage, or perhaps a credential checker that uses LDAP
for authentication. In the following example, the Realm for a simple remote object service (using Twisted’s Perspective
Broker protocol) is implemented:

from zope.interface import implementer

from twisted.spread import pb
from twisted.cred.portal import IRealm

class SimplePerspective(pb.Avatar):

def perspective_echo(self, text):
print('echoing',text)
return text

def logout(self):
print(self, "logged out")

@implementer(IRealm)
class SimpleRealm:

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective in interfaces:

avatar = SimplePerspective()
return pb.IPerspective, avatar, avatar.logout

else:
raise NotImplementedError("no interface")
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Deployment

Deployment involves tying together a protocol, an appropriate realm and a credential checker. For example, a POP3
server can be constructed by attaching to it a portal that wraps the MySQL-based realm and an /etc/passwd creden-
tial checker, or perhaps the LDAP credential checker if that is more useful. The following example shows how the
SimpleRealm in the previous example is deployed using an in-memory credential checker:

from twisted.spread import pb
from twisted.internet import reactor
from twisted.cred.portal import Portal
from twisted.cred.checkers import InMemoryUsernamePasswordDatabaseDontUse

portal = Portal(SimpleRealm())
checker = InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("guest", "password")
portal.registerChecker(checker)
reactor.listenTCP(9986, pb.PBServerFactory(portal))
reactor.run()

Cred plugins

Authentication with cred plugins

Cred offers a plugin architecture for authentication methods. The primary API for this architecture is the command-line;
the plugins are meant to be specified by the end-user when deploying a TAP (twistd plugin).

For more information on writing a twistd plugin and using cred plugins for your application, please refer to the Writing
a twistd plugin document.

Building a cred plugin

To build a plugin for cred, you should first define an authType , a short one-word string that defines your plugin to
the command-line. Once you have this, the convention is to create a file named myapp_plugins.py in the twisted.
plugins module path.

Below is an example file structure for an application that defines such a plugin:

• MyApplication/

– setup.py

– myapp/

∗ __init__.py

∗ cred.py

∗ server.py

– twisted/

∗ plugins/

· myapp_plugins.py

Once you have created this structure within your application, you can create the code for your cred plugin by building a
factory class which implements ICheckerFactory . These factory classes should not consist of a tremendous amount
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of code. Most of the real application logic should reside in the cred checker itself. (For help on building those, scroll
up.)

The core purpose of the CheckerFactory is to translate an argstring , which is passed on the command line, into a
suitable set of initialization parameters for a Checker class. In most cases this should be little more than constructing
a dictionary or a tuple of arguments, then passing them along to a new checker instance.

from zope.interface import implementer

from twisted import plugin
from twisted.cred.strcred import ICheckerFactory
from myapp.cred import SpecialChecker

# The class needs to implement both of these interfaces
# for the plugin system to find our factory.
@implementer(ICheckerFactory, plugin.IPlugin)
class SpecialCheckerFactory(object):

"""
A checker factory for a specialized (fictional) API.
"""
# This tells AuthOptionsMixin how to find this factory.
authType = "special"

# This is a one-line explanation of what arguments, if any,
# your particular cred plugin requires at the command-line.
argStringFormat = "A colon-separated key=value list."

# This help text can be multiple lines. It will be displayed
# when someone uses the "--help-auth-type special" command.
authHelp = """Some help text goes here ..."""

# This will be called once per command-line.
def generateChecker(self, argstring=""):

argdict = dict((x.split('=') for x in argstring.split(':')))
return SpecialChecker(**argdict)

# We need to instantiate our class for the plugin to work.
theSpecialCheckerFactory = SpecialCheckerFactory()

For more information on how your plugin can be used in your application (and by other application developers), please
see the Writing a twistd plugin document.

Conclusion

After reading through this tutorial, you should be able to

• Understand how the cred architecture applies to your application

• Integrate your application with cred’s object model

• Deploy an application that uses cred for authentication

• Allow your users to use command-line authentication plugins
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2.1.23 The Twisted Plugin System

The purpose of this guide is to describe the preferred way to write extensible Twisted applications (and consequently,
also to describe how to extend applications written in such a way). This extensibility is achieved through the definition
of one or more APIs and a mechanism for collecting code plugins which implement this API to provide some additional
functionality. At the base of this system is the twisted.plugin module.

Making an application extensible using the plugin system has several strong advantages over other techniques:

• It allows third-party developers to easily enhance your software in a way that is loosely coupled: only the plugin
API is required to remain stable.

• It allows new plugins to be discovered flexibly. For example, plugins can be loaded and saved when a program
is first run, or re-discovered each time the program starts up, or they can be polled for repeatedly at runtime
(allowing the discovery of new plugins installed after the program has started).

Writing Extensible Programs

Taking advantage of twisted.plugin is a two step process:

1. Define an interface which plugins will be required to implement. This is done using the zope.interface package
in the same way one would define an interface for any other purpose.

A convention for defining interfaces is do so in a file named like ProjectName/projectname/iprojectname.py .
The rest of this document will follow that convention: consider the following interface definition be in Matsim/
matsim/imatsim.py , an interface definition module for a hypothetical material simulation package.

2. At one or more places in your program, invoke twisted.plugin.getPlugins() and iterate over its result.

As an example of the first step, consider the following interface definition for a physical modelling system.

from zope.interface import Interface, Attribute

class IMaterial(Interface):
"""
An object with specific physical properties
"""
def yieldStress(temperature):

"""
Returns the pressure this material can support without
fracturing at the given temperature.

@type temperature: C{float}
@param temperature: Kelvins

@rtype: C{float}
@return: Pascals
"""

dielectricConstant = Attribute("""
@type dielectricConstant: C{complex}
@ivar dielectricConstant: The relative permittivity, with the
real part giving reflective surface properties and the
imaginary part giving the radio absorption coefficient.
""")

In another module, we might have a function that operates on objects providing the IMaterial interface:
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def displayMaterial(m):
print('A material with yield stress %s at 500 K' % (m.yieldStress(500),))
print('Also a dielectric constant of %s.' % (m.dielectricConstant,))

The last piece of required code is that which collects IMaterial providers and passes them to the displayMaterial
function.

from twisted.plugin import getPlugins
from matsim import imatsim

def displayAllKnownMaterials():
for material in getPlugins(imatsim.IMaterial):

displayMaterial(material)

Third party developers may now contribute different materials to be used by this modelling system by implementing
one or more plugins for the IMaterial interface.

Extending an Existing Program

The above code demonstrates how an extensible program might be written using Twisted’s plugin system. How do we
write plugins for it, though? Essentially, we create objects which provide the required interface and then make them
available at a particular location. Consider the following example.

from zope.interface import implementer
from twisted.plugin import IPlugin
from matsim import imatsim

@implementer(IPlugin, imatsim.IMaterial)
class SimpleMaterial(object):

def __init__(self, yieldStressFactor, dielectricConstant):
self._yieldStressFactor = yieldStressFactor
self.dielectricConstant = dielectricConstant

def yieldStress(self, temperature):
return self._yieldStressFactor * temperature

steelPlate = SimpleMaterial(2.06842719e11, 2.7 + 0.2j)
brassPlate = SimpleMaterial(1.03421359e11, 1.4 + 0.5j)

steelPlate and brassPlate now provide both IPlugin and IMaterial . All that remains is to make this module
available at an appropriate location. For this, there are two options. The first of these is primarily useful during
development: if a directory which has been added to sys.path (typically by adding it to the PYTHONPATH environment
variable) contains a directory named twisted/plugins/ , each .py file in that directory will be loaded as a source of
plugins. This directory must not be a Python package: including __init__.py will cause the directory to be skipped
and no plugins loaded from it. Second, each module in the installed version of Twisted’s twisted.plugins package
will also be loaded as a source of plugins.

Once this plugin is installed in one of these two ways, displayAllKnownMaterials can be run and we will see two
pairs of output: one for a steel plate and one for a brass plate.
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Alternate Plugin Packages

getPlugins takes one additional argument not mentioned above. If passed in, the 2nd argument should be a module or
package to be used instead of twisted.plugins as the plugin meta-package. If you are writing a plugin for a Twisted
interface, you should never need to pass this argument. However, if you have developed an interface of your own, you
may want to mandate that plugins for it are installed in your own plugins package, rather than in Twisted’s.

You may want to support yourproject/plugins/ directories for ease of development. To do so, you should make
yourproject/plugins/__init__.py contain at least the following lines.

from twisted.plugin import pluginPackagePaths
__path__.extend(pluginPackagePaths(__name__))
__all__ = []

The key behavior here is that interfaces are essentially paired with a particular plugin package. If plugins are installed
in a different package than the one the code which relies on the interface they provide, they will not be found when the
application goes to load them.

Plugin Caching

In the course of using the Twisted plugin system, you may notice dropin.cache files appearing at various locations.
These files are used to cache information about what plugins are present in the directory which contains them. At times,
this cached information may become out of date. Twisted uses the mtimes of various files involved in the plugin system
to determine when this cache may have become invalid. Twisted will try to re-write the cache each time it tries to use
it but finds it out of date.

For a site-wide install, it may not (indeed, should not) be possible for applications running as normal users to rewrite the
cache file. While these applications will still run and find correct plugin information, they may run more slowly than they
would if the cache was up to date, and they may also report exceptions if certain plugins have been removed but which
the cache still references. For these reasons, when installing or removing software which provides Twisted plugins, the
site administrator should be sure the cache is regenerated. Well-behaved package managers for such software should
take this task upon themselves, since it is trivially automatable. The canonical way to regenerate the cache is to run the
following Python code:

from twisted.plugin import IPlugin, getPlugins
list(getPlugins(IPlugin))

As mentioned, it is normal for exceptions to be raised once here if plugins have been removed.

Further Reading

• Components: Interfaces and Adapters

2.1.24 The Basics

Application

Twisted programs usually work with twisted.application.service.Application(). This class usually holds
all persistent configuration of a running server, such as:

• ports to bind to,

• places where connections to must be kept or attempted,
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• periodic actions to do,

• and almost everything else to do with your Application.

It is the root object in a tree of services implementing twisted.application.service.IService.

Other howtos describe how to write custom code for Applications, but this one describes how to use already written
code (which can be part of Twisted or from a third-party Twisted plugin developer). The Twisted distribution comes
with an important tool to deal with Applications: twistd(1).

Applications are just Python objects, which can be created and manipulated in the same ways as any other object.

twistd

The Twisted Daemon is a program that knows how to run Applications. Strictly speaking, twistd is not necessary.
Fetching the application, getting the IService component, calling startService(), scheduling stopService()
when the reactor shuts down, and then calling reactor.run() could be done manually.

However, twistd supplies many options which are highly useful for program set up:

• choosing a reactor (for more on reactors, see Choosing a Reactor),

• logging configuration (see the logger documentation for more),

• daemonizing (forking to the background),

• and more.

twistd supports all Applications mentioned above – and an additional one. Sometimes it is convenient to write the
code for building a class in straight Python. One big source of such Python files is the examples directory. When a
straight Python file which defines an Application object called application is used, use the -y option.

When twistd runs, it records its process id in a twistd.pid file (this can be configured via a command line switch).
In order to shutdown the twistd process, kill that pid. The usual way to do this would be:

kill `cat twistd.pid`

To prevent twistd from daemonizing, you can pass it the --no-daemon option (or -n, in conjunction with other short
options).

As always, the gory details are in the manual page.

2.1.25 Using the Twisted Application Framework

Introduction

Audience

The target audience of this document is a Twisted user who wants to deploy a significant amount of Twisted code in
a re-usable, standard and easily configurable fashion. A Twisted user who wishes to use the Application framework
needs to be familiar with developing Twisted servers and/or clients.
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Goals

• To introduce the Twisted Application infrastructure.

• To explain how to deploy your Twisted application using .tac files and twistd.

• To outline the existing Twisted services.

Overview

The Twisted Application infrastructure takes care of running and stopping your application. Using this infrastructure
frees you from from having to write a large amount of boilerplate code by hooking your application into existing tools
that manage daemonization, logging, choosing a reactor and more.

The major tool that manages Twisted applications is a command-line utility called twistd. twistd is cross platform,
and is the recommended tool for running Twisted applications.

The core component of the Twisted Application infrastructure is the twisted.application.service.
Application() object – an object which represents your application. However, Application doesn’t provide anything
that you’d want to manipulate directly. Instead, Application acts as a container of any “Services” (objects implementing
IService) that your application provides. Most of your interaction with the Application infrastructure will be done
through Services.

By “Service”, we mean anything in your application that can be started and stopped. Typical services include web
servers, FTP servers and SSH clients. Your Application object can contain many services, and can even contain struc-
tured hierarchies of Services using MultiService or your own custom IServiceCollection implementations. You
will most likely want to use these to manage Services which are dependent on other Services. For example, a proxying
Twisted application might want its server Service to only start up after the associated Client service.

An IService has two basic methods, startService()which is used to start the service, and stopService()which
is used to stop the service. The latter can return a Deferred, indicating service shutdown is not over until the result
fires. For example:

from twisted.internet import reactor
from twisted.application import service
from somemodule import EchoFactory

class EchoService(service.Service):
def __init__(self, portNum):

self.portNum = portNum

def startService(self):
self._port = reactor.listenTCP(self.portNum, EchoFactory())

def stopService(self):
return self._port.stopListening()

See Writing Servers for an explanation of EchoFactory and listenTCP.
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Using Services and Application

twistd and tac

To handle start-up and configuration of your Twisted application, the Twisted Application infrastructure uses .tac
files. .tac are Python files which configure an Application object and assign this object to the top-level variable
“application” .

The following is a simple example of a .tac file:

service.tac

# You can run this .tac file directly with:
# twistd -ny service.tac

"""
This is an example .tac file which starts a webserver on port 8080 and
serves files from the current working directory.

The important part of this, the part that makes it a .tac file, is
the final root-level section, which sets up the object called 'application'
which twistd will look for
"""

import os

from twisted.application import internet, service
from twisted.web import server, static

def getWebService():
"""
Return a service suitable for creating an application object.

This service is a simple web server that serves files on port 8080 from
underneath the current working directory.
"""
# create a resource to serve static files
fileServer = server.Site(static.File(os.getcwd()))
return internet.TCPServer(8080, fileServer)

# this is the core part of any tac file, the creation of the root-level
# application object
application = service.Application("Demo application")

# attach the service to its parent application
service = getWebService()
service.setServiceParent(application)

twistd is a program that runs Twisted applications using a .tac file. In its most simple form, it takes a single argument
-y and a tac file name. For example, you can run the above server with the command twistd -y service.tac.

By default, twistd daemonizes and logs to a file called twistd.log. More usually, when debugging, you will want
your application to run in the foreground and log to the command line. To run the above file like this, use the command

222 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

twistd -noy service.tac.

For more information, see the twistd man page.

Customizing twistd logging

twistd logging can be customized using the command line. This requires that a log observer factory be importable.
Given a file named my.py with the code:

from twisted.logger import textFileLogObserver

def logger():
return textFileLogObserver(open("/tmp/my.log", "w"))

Invoking twistd --logger my.logger ... will log to a file named /tmp/my.log (this simple example could
easily be replaced with use of the --logfile parameter to twistd).

Alternatively, the logging behavior can be customized through an API accessible from .tac files. The ILogObserver
component can be set on an Application in order to customize the default log observer that twistd will use.

Here is an example of how to use DailyLogFile, which rotates the log once per day.

from twisted.application.service import Application
from twisted.logger import ILogObserver, textFileLogObserver
from twisted.python.logfile import DailyLogFile

application = Application("myapp")
logfile = DailyLogFile("my.log", "/tmp")
application.setComponent(ILogObserver, textFileLogObserver(logfile))

Invoking twistd -y my.tac will create a log file at /tmp/my.log.

Services provided by Twisted

Twisted also provides pre-written IService implementations for common cases like listening on a TCP port, in the
twisted.application.internet module. Here’s a simple example of constructing a service that runs an echo
server on TCP port 7001:

from twisted.application import internet, service
from somemodule import EchoFactory

port = 7001
factory = EchoFactory()

echoService = internet.TCPServer(port, factory) # create the service

Each of these services (except TimerService) has a corresponding “connect” or “listen” method on the reactor, and the
constructors for the services take the same arguments as the reactor methods. The “connect” methods are for clients and
the “listen” methods are for servers. For example, TCPServer corresponds to reactor.listenTCP and TCPClient
corresponds to reactor.connectTCP.

TCPServer

TCPClient

Services which allow you to make connections and listen for connections on TCP ports.
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• listenTCP

• connectTCP

UNIXServer

UNIXClient

Services which listen and make connections over UNIX sockets.

• listenUNIX

• connectUNIX

SSLServer

SSLClient

Services which allow you to make SSL connections and run SSL servers.

• listenSSL

• connectSSL

UDPServer

A service which allows you to send and receive data over UDP.

• listenUDP

See also the UDP documentation.

UNIXDatagramServer

UNIXDatagramClient

Services which send and receive data over UNIX datagram sockets.

• listenUNIXDatagram

• connectUNIXDatagram

MulticastServer

A server for UDP socket methods that support multicast.

• listenMulticast

TimerService

A service to periodically call a function.

• TimerService

Service Collection

IServiceCollection objects contain IService objects. IService objects can be added to IServiceCollection by
calling setServiceParent and detached by using disownServiceParent.

The standard implementation of IServiceCollection is MultiService, which also implements IService. MultiService
is useful for creating a new Service which combines two or more existing Services. For example, you could create a
DNS Service as a MultiService which has a TCP and a UDP Service as children.
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from twisted.application import internet, service
from twisted.names import server, dns, hosts

port = 53

# Create a MultiService, and hook up a TCPServer and a UDPServer to it as
# children.
dnsService = service.MultiService()
hostsResolver = hosts.Resolver('/etc/hosts')
tcpFactory = server.DNSServerFactory([hostsResolver])
internet.TCPServer(port, tcpFactory).setServiceParent(dnsService)
udpFactory = dns.DNSDatagramProtocol(tcpFactory)
internet.UDPServer(port, udpFactory).setServiceParent(dnsService)

# Create an application as normal
application = service.Application("DNSExample")

# Connect our MultiService to the application, just like a normal service.
dnsService.setServiceParent(application)

2.1.26 Writing a twistd Plugin

This document describes adding subcommands to the twistd command, as a way to facilitate the deployment of your
applications.

The target audience of this document are those that have developed a Twisted application which needs a command
line-based deployment mechanism.

There are a few prerequisites to understanding this document:

• A basic understanding of the Twisted Plugin System (i.e., the twisted.plugin module) is necessary, however,
step-by-step instructions will be given. Reading The Twisted Plugin System is recommended, in particular the
“Extending an Existing Program” section.

• The Application infrastructure is used in twistd plugins; in particular, you should know how to expose your
program’s functionality as a Service.

• In order to parse command line arguments, the twistd plugin mechanism relies on twisted.python.usage ,
which is documented in Using usage.Options .

Goals

After reading this document, the reader should be able to expose their Service-using application as a subcommand of
twistd , taking into consideration whatever was passed on the command line.

2.1. Developer Guides 225



Twisted Documentation, Release 23.8.0

Alternatives to twistd Plugins

The major alternative to the twistd plugin mechanism is the .tac file, which is a simple script to be used with the
twistd -y/--python parameter. The twistd plugin mechanism exists to offer a more extensible command-line-driven
interface to your application. For more information on .tac files, see the document Using the Twisted Application
Framework .

Creating the Plugin

The following directory structure is assumed of your project:

• MyProject - Top level directory

– myproject - Python package

∗ __init__.py

During development of your project, Twisted plugins can be loaded from a special directory in your project, assuming
your top level directory ends up in sys.path. Create a directory named twisted containing a directory named
plugins , and add a file named myproject_plugin.py to it. This file will contain your plugin. Note that you must
not add any __init__.py files to this directory structure, and the plugin file should not be named myproject.py
(because that would conflict with your project’s module name).

In this file, define an object which provides the interfaces twisted.plugin.IPlugin and twisted.application.
service.IServiceMaker .

The tapname attribute of your IServiceMaker provider will be used as the subcommand name in a command like
twistd [subcommand] [args...] , and the options attribute (which should be a usage.Options subclass) will
be used to parse the given args.

from zope.interface import implementer

from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from twisted.application import internet

from myproject import MyFactory

class Options(usage.Options):
optParameters = [["port", "p", 1235, "The port number to listen on."]]

@implementer(IServiceMaker, IPlugin)
class MyServiceMaker(object):

tapname = "myproject"
description = "Run this! It'll make your dog happy."
options = Options

def makeService(self, options):
"""
Construct a TCPServer from a factory defined in myproject.
"""
return internet.TCPServer(int(options["port"]), MyFactory())

(continues on next page)
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(continued from previous page)

# Now construct an object which *provides* the relevant interfaces
# The name of this variable is irrelevant, as long as there is *some*
# name bound to a provider of IPlugin and IServiceMaker.
serviceMaker = MyServiceMaker()

Now running twistd --help should print myproject in the list of available subcommands, followed by the descrip-
tion that we specified in the plugin. twistd -n myproject would, assuming we defined a MyFactory factory inside
myproject , start a listening server on port 1235 with that factory.

Using cred with your TAP

Twisted ships with a robust authentication framework to use with your application. If your server needs authentication
functionality, and you haven’t read about twisted.cred yet, read up on it first.

If you are building a twistd plugin and you want to support a wide variety of authentication patterns, Twisted provides
an easy-to-use mixin for your Options subclass: strcred.AuthOptionMixin . The following code is an example of
using this mixin:

from twisted.cred import credentials, portal, strcred
from twisted.python import usage
from twisted.plugin import IPlugin
from twisted.application.service import IServiceMaker
from myserver import myservice

class ServerOptions(usage.Options, strcred.AuthOptionMixin):
# This part is optional; it tells AuthOptionMixin what
# kinds of credential interfaces the user can give us.
supportedInterfaces = (credentials.IUsernamePassword,)

optParameters = [
["port", "p", 1234, "Server port number"],
["host", "h", "localhost", "Server hostname"]]

@implementer(IServiceMaker, IPlugin)
class MyServerServiceMaker(object):

tapname = "myserver"
description = "This server does nothing productive."
options = ServerOptions

def makeService(self, options):
"""Construct a service object."""
# The realm is a custom object that your server defines.
realm = myservice.MyServerRealm(options["host"])

# The portal is something Cred can provide, as long as
# you have a list of checkers that you'll support. This
# list is provided my AuthOptionMixin.
portal = portal.Portal(realm, options["credCheckers"])

(continues on next page)
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(continued from previous page)

# OR, if you know you might get multiple interfaces, and
# only want to give your application one of them, you
# also have that option with AuthOptionMixin:
interface = credentials.IUsernamePassword
portal = portal.Portal(realm, options["credInterfaces"][interface])

# The protocol factory is, like the realm, something you implement.
factory = myservice.ServerFactory(realm, portal)

# Finally, return a service that will listen for connections.
return internet.TCPServer(int(options["port"]), factory)

# As in our example above, we have to construct an object that
# provides the IPlugin and IServiceMaker interfaces.
serviceMaker = MyServerServiceMaker()

Now that you have your TAP configured to support any authentication we can throw at it, you’re ready to use it. Here is
an example of starting your server using the /etc/passwd file for authentication. (Clearly, this won’t work on servers
with shadow passwords.)

$ twistd myserver --auth passwd:/etc/passwd

For a full list of cred plugins supported, see twisted.plugins , or use the command-line help:

$ twistd myserver --help-auth
$ twistd myserver --help-auth-type passwd

Deploy your Application Using Python Packages

To deploy your application one possibility is to wrap it up in a Python package. For this you need to write a special file
setup.py, which contains metadata of the package. You would have to extend the layout of your files like this:

• MyProject - Top level directory

– setup.py - Description file for the package

∗ myproject - Python package

· __init__.py

∗ twisted

· plugins

· myproject_plugins.py - Dropin file containing the actual plugin

from setuptools import setup, find_packages

setup(
name='MyApplication',
version='0.1dev',
# it is necesary to extend the found package list with the twisted.plugin
# directory. It cannot be automatically detected, because it should not
# contain a __init__.py file.

(continues on next page)
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packages=find_packages() + ['twisted.plugins'],
install_requires=[

'twisted',
],

)

To create the Python package from the directory the standard setup tools can be used:

$ python3 setup.py sdist

This command creates a dist directory in your project folder with the compressed archive file MyApplication-0.
1dev.tar.gz. This archive contains all the code and additional files if specified. This file can be copied and used for
deployment.

To install the application just use pip. It will also install all requirements specified in setup.py.

$ pip install MyApplication-0.1dev.tar.gz

For more information about packaging in Python have a look at the official Python packaging user guide or hitchhiker’s
guide to packaging.

Conclusion

You should now be able to

• Create a twistd plugin

• Incorporate authentication into your plugin

• Use it from your development environment

• Install it correctly and use it in deployment

2.1.27 Deploying Twisted with systemd

Introduction

In this tutorial you will learn how to start a Twisted service using systemd. You will also learn how to start the service
using socket activation.

Note: The examples in this tutorial demonstrate how to launch a Twisted web server, but the same techniques apply
to any Twisted service.
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Prerequisites

Twisted

You will need a version of Twisted >= 12.2 for the socket activation section of this tutorial.

This tutorial was written on a Fedora 18 Linux operating system with a system wide installation of Twisted
and Twisted Web.

If you have installed Twisted locally eg in your home directory or in a virtualenv, you will need to modify
the paths in some of the following examples.

Test your Twisted installation by starting a twistd web server on TCP port 8080 with the following
command:

$ twistd --nodaemon web --listen tcp:8080 --path /srv/www/www.example.com/
→˓static
2013-01-28 13:21:35+0000 [-] Log opened.
2013-01-28 13:21:35+0000 [-] twistd 12.3.0 (/usr/bin/python 2.7.3) starting up.
2013-01-28 13:21:35+0000 [-] reactor class: twisted.internet.epollreactor.
→˓EPollReactor.
2013-01-28 13:21:35+0000 [-] Site starting on 8080
2013-01-28 13:21:35+0000 [-] Starting factory <twisted.web.server.Site␣
→˓instance at 0x7f57eb66efc8>

This assumes that you have the following static web page in the following directory structure:

# tree /srv/
/srv/

www
www.example.com

static
index.html

<!doctype html>
<html lang=en>
<head>
<meta charset=utf-8>
<title>Example Site</title>

</head>
<body>
<h1>Example Site</h1>

</body>
</html>

Now try connecting to http://localhost:8080 in your web browser.

If you do not see your web page or if twistd didn’t start, you should investigate and fix the problem before
continuing.
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Basic Systemd Service Configuration

The essential configuration file for a systemd service is the service file.

Later in this tutorial, you will learn about some other types of configuration file, which are used to control when and
how your service is started.

But we will begin by configuring systemd to start a Twisted web server immediately on system boot.

Create a systemd service file

Create the service file at /etc/systemd/system/www.example.com.service with the following content:

/etc/systemd/system/www.example.com.service

[Unit]
Description=Example Web Server

[Service]
ExecStart=/usr/bin/twistd \

--nodaemon \
--pidfile= \
web --listen tcp:8080 --path .

WorkingDirectory=/srv/www/www.example.com/static

User=nobody
Group=nobody

Restart=always

[Install]
WantedBy=multi-user.target

This configuration file contains the following note worthy directives:

ExecStart

Always include the full path to twistd in case you have multiple versions installed.

The --nodaemon flag makes twistd run in the foreground. Systemd works best with child processes that
remain in the foreground.

The --pidfile= flag prevents twistd from writing a pidfile. A pidfile is not necessary when Twisted
runs as a foreground process.

The --path flag specifies the location of the website files. In this example we use “.” which makes twistd
serve files from its current working directory (see below).

WorkingDirectory

Systemd can configure the working environment of its child processes.

In this example the working directory of twistd is set to that of the static website.

User / Group

Systemd can also control the effective user and group of its child processes.

This example uses an un-privileged user “nobody” and un-privileged group “nobody”.
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This is an important security measure which ensures that the Twisted sub-process can not access restricted
areas of the file system.

Restart

Systemd can automatically restart a child process if it exits or crashes unexpectedly.

In this example the Restart option is set to always, which ensures that twistd will be restarted under
all circumstances.

WantedBy

Systemd service dependencies are controlled by WantedBy and RequiredBy directives in the [Install]
section of configuration file.

The special multi-user.target is used in this example so that systemd starts the twistd web service when
it reaches the multi-user stage of the boot sequence.

There are many more service directives which are documented in the systemd.directives man page.

Reload systemd

$ sudo systemctl daemon-reload

This forces systemd to read the new configuration file.

Always run systemctl daemon-reload after changing any of the systemd configuration files.

Start the service

$ sudo systemctl start www.example.com

twistd should now be running and listening on TCP port 8080. You can verify this using the systemctl status
command. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; enabled)
Active: active (running) since Mon 2013-01-28 16:16:26 GMT; 1s ago

Main PID: 10695 (twistd)
CGroup: name=systemd:/system/www.example.com.service

10695 /usr/bin/python /usr/bin/twistd --nodaemon --pidfile= web --
→˓listen tcp:8080 --path .

Jan 28 16:16:26 zorin.lan systemd[1]: Starting Example Web Server...
Jan 28 16:16:26 zorin.lan systemd[1]: Started Example Web Server.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Log opened.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] twistd 12.1.0 (/
→˓usr/bin/python 2.7.3) starting up.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] reactor class:␣
→˓twisted.internet.epollreactor.EPollReactor.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Site starting on␣
→˓8080
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Starting factory
→˓<twisted.web.server.Site instance at 0x159b758>
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The systemctl status command is convenient because it shows you both the current status of the service and a
short log of the service output.

This is especially useful for debugging and diagnosing service startup problems.

The twistd subprocess will log messages to stderr and systemd will log these messages to syslog. You can verify
this by monitoring the syslog messages or by using the new journalctl tool in Fedora.

See the systemctl man page for details of other systemctl command line options.

Enable the service

We’ve seen how to start the service manually, but now we need to “enable” it so that it starts automatically at boot time.

Enable the service with the following command:

$ sudo systemctl enable www.example.com.service
ln -s '/etc/systemd/system/www.example.com.service' '/etc/systemd/system/multi-user.
→˓target.wants/www.example.com.service'

This creates a symlink to the service file in the multi-user.target.wants directory.

The Twisted web server will now be started automatically at boot time.

The multi-user.target is an example of a “special” systemd unit. Later in this tutorial you will learn how to use
another special unit - the sockets.target.

Test that the service is automatically restarted

The Restart=always option in the www.example.com.service file ensures that systemd will restart the twistd
process if and when it exits unexpectedly.

You can read about other Restart options in the systemd.service man page.

Try killing the twistd process and then checking its status again:

$ sudo kill 12543

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; disabled)
Active: active (running) since Mon 2013-01-28 17:47:37 GMT; 1s ago

Main PID: 12611 (twistd)

The “Active” time stamp shows that the twistd process was restarted within 1 second.

Now stop the service before you proceed to the next section.

$ sudo systemctl stop www.example.com.service

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; enabled)
Active: inactive (dead) since Mon 2013-01-28 16:51:12 GMT; 1s ago

Process: 10695 ExecStart=/usr/bin/twistd --nodaemon --pidfile= web --port 8080 -
→˓-path . (code=exited, status=0/SUCCESS)
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Socket Activation

First you need to understand what “socket activation” is. This extract from the systemd daemon man page explains it
quite clearly.

In a socket-based activation scheme the creation and binding of the listening socket as primary communi-
cation channel of daemons to local (and sometimes remote) clients is moved out of the daemon code and
into the init system.

Based on per-daemon configuration the init system installs the sockets and then hands them off to the
spawned process as soon as the respective daemon is to be started.

Optionally activation of the service can be delayed until the first inbound traffic arrives at the socket, to
implement on-demand activation of daemons.

However, the primary advantage of this scheme is that all providers and all consumers of the sockets can
be started in parallel as soon as all sockets are established.

In addition to that daemons can be restarted with losing only a minimal number of client transactions or
even any client request at all (the latter is particularly true for state-less protocols, such as DNS or syslog),
because the socket stays bound and accessible during the restart, and all requests are queued while the
daemon cannot process them.

Another benefit of socket activation is that systemd can listen on privileged ports and start Twisted with privileges
already dropped. This allows a Twisted service to be configured and restarted by a non-root user.

Twisted (since version 12.2) includes a systemd endpoint API and a corresponding string ports syntax which allows a
Twisted service to inherit a listening socket from systemd.

The following example builds on the previous example, demonstrating how to enable socket activation for a simple
Twisted web server.

Note: Before continuing, stop the previous example service with the following command:

$ sudo systemctl stop www.example.com.service

Create a systemd.socket file

Create the systemd.socket file at /etc/systemd/system/www.example.com.socket with the following content:

/etc/systemd/system/www.example.com.socket

[Socket]
ListenStream=0.0.0.0:80
FileDescriptorName=my-web-port

[Install]
WantedBy=sockets.target

This configuration file contains the following important directives:

ListenStream=0.0.0.0:80

This option configures systemd to create a listening TCP socket bound to all local IPv4 addresses on port
80.

WantedBy=sockets.target
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This is a special target used by all socket activated services. systemd will automatically bind to all such
socket activation ports during boot up.

FileDescriptorName=my-web-port

This option names the file descriptor for the socket. The name allows a specific inherited descriptor to be
chosen reliably out of set of several inherited descriptors.

You also need to modify the www.example.com.service file as follows:

/etc/systemd/system/www.example.com.service

[Unit]
Description=Example Web Server
Requires=www.example.com.socket

[Service]
ExecStart=/usr/bin/twistd \

--nodaemon \
--pidfile= \
web --listen systemd:domain=INET:name=my-web-port --path .

WorkingDirectory=/srv/www/www.example.com/static

User=nobody
Group=nobody

Restart=always

Note the following important directives and changes:

ExecStart

The domain=INET endpoint argument makes twistd treat the inherited file descriptor as an IPv4 socket.

The name=my-web-port endpoint argument makes twistd adopt the file descriptor inherited from
systemd named my-web-port.

Socket activation is also technically possible with other socket families and types, but Twisted currently
only accepts IPv4 and IPv6 TCP sockets. See Limitations and Known Issues below.

Requires

The service no longer knows how to bind the listening port for itself. The corresponding socket unit must
be started so it can pass the listening port on to the twistd process.

[Install]

In this example, the [Install] section has been moved to the socket configuration file.

Reload systemd so that it reads the updated configuration files.

$ sudo systemctl daemon-reload
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Start and enable the socket

You can now start systemd listening on the socket with the following command:

$ sudo systemctl start www.example.com.socket

This command refers specifically to the socket configuration file, not the service file.

systemd should now be listening on port 80

$ systemctl status www.example.com.socket
www.example.com.socket

Loaded: loaded (/etc/systemd/system/www.example.com.socket; disabled)
Active: active (listening) since Tue 2013-01-29 14:53:17 GMT; 7s ago

Jan 29 14:53:17 zorin.lan systemd[1]: Listening on www.example.com.socket.

But twistd should not yet have started. You can verify this using the systemctl command. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; static)
Active: inactive (dead) since Tue 2013-01-29 14:48:42 GMT; 6min ago

Enable the socket, so that it will be started automatically with the other socket activated services during boot up.

$ sudo systemctl enable www.example.com.socket
ln -s '/etc/systemd/system/www.example.com.socket' '/etc/systemd/system/sockets.target.
→˓wants/www.example.com.socket'

Activate the port to start the service

Now try connecting to http://localhost:80 in your web browser.

systemd will accept the connection and start twistd, passing it the listening socket. You can verify this by using
systemctl to report the status of the service. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; static)
Active: active (running) since Tue 2013-01-29 15:02:20 GMT; 3s ago

Main PID: 25605 (twistd)
CGroup: name=systemd:/system/www.example.com.service

25605 /usr/bin/python /usr/bin/twistd --nodaemon --pidfile= web --
→˓port systemd:domain=INET:name=my-web-port --path .

Jan 29 15:02:20 zorin.lan systemd[1]: Started Example Web Server.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Log opened.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] twistd 12.1.0 (/
→˓usr/bin/python 2.7.3) starting up.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] reactor class:␣
→˓twisted.internet.epollreactor.EPollReactor.
Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Site starting on 80

(continues on next page)
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Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Starting factory
→˓<twisted.web.server.Site instance at 0x24be758>

Conclusion

In this tutorial you have learned how to deploy a Twisted service using systemd. You have also learned how the service
can be started on demand, using socket activation.

Limitations and Known Issues

1. Twisted can not accept datagram sockets from systemd.

2. Twisted does not support listening for SSL connections on sockets inherited from systemd.

Further Reading

• systemd Documentation

2.1.28 Logging with twisted.logger

The Basics

Logging consists of two main endpoints: applications that emit events, and observers that receive and handle those
events. An event is simply a dict object containing the relevant data that describes something interesting that has
occurred in the application. For example: a web server might emit an event after handling each request that includes
the URI of requested resource, the response’s status code, a count of bytes transferred, and so on. All of that information
might be contained in a pair of objects representing the request and response, so logging this event could be as simple
as:

log.info(request=request, response=response)

The above API would seem confusing to users of many logging systems, which are built around the idea of emitting
strings to a file. There is, after all, no string in the above call. In such systems, one might expect the API to look like
this instead:

log.info(
"{uri}: status={status}, bytes={size}, etc..."
.format(uri=request.uri, status=response.code, size=response.size)

)

Here, a string is rendered by formatting data from our request and response objects. The string can be easily appended
to a log file, to be later read by an administrator, or perhaps teased out via some scripts or log gathering tools.

One disadvantage to this is that a strings meant to be human-readable are not necessarily easy (or even possible) for
software to handle reliably. While text files are a common medium for storing logs, one might want to write code that
notices certain types of events and does something other than store the event.

In the web server example, if many requests from a given IP address are resulting in failed authentication, someone
might be trying to break in to the server. Perhaps blocking requests from that IP address would be useful. An observer
receiving the above event as a string would have to resort to parsing the string to extract the relevant information,
which may perform poorly and, depending on how well events are formatted, it may also be difficult to avoid bugs.

2.1. Developer Guides 237

http://www.freedesktop.org/wiki/Software/systemd/


Twisted Documentation, Release 23.8.0

Additionally, any information not encoded into the string is simply unavailable; if the IP address isn’t in the string, it
cannot be obtained from the event.

However, if the request and response objects are available to the observer, as in the first example, it would be possible
to write an observer that accessed any attributes of those objects. It would also be a lot easier to write an observer that
emitted structured information by serializing these objects into a format such as JSON, rows in a database, etc.

Events-as-strings do have the advantage that it’s obvious what an observer that writes strings, for example to a file,
would emit. We can solve this more flexibly by providing an optional format string in events that can be used for this
purpose:

log.info(
"{request.uri}: status={response.status}, bytes={response.size}, etc...",
request=request, response=response

)

Note that this looks very much like the events-as-strings version of the API, except that the string is not rendered by the
caller; we leave that to the observer, if and when it is needed . The observer also has direct access to the request and
response objects, as well as their attributes. Now a text-based observer can format the text in a prescribed way, and an
observer that wants to handle these events in some other manner can do so as well.

Usage for emitting applications

The first thing that an application that emits logging events needs to do is to instantiate a Logger object, which provides
the API to emit events. A Logger may be created globally for a module:

from twisted.logger import Logger
log = Logger()

def handleData(data):
log.debug("Got data: {data!r}.", data=data)

A Logger can also be associated with a class:

from twisted.logger import Logger

class Foo(object):
log = Logger()

def oops(self, data):
self.log.error(

"Oops! Invalid data from server: {data!r}",
data=data

)

When associated with a class in this manner, the "log_source" key is set in the event. For example:

logsource.py

from twisted.logger import Logger

class MyObject:
log = Logger()

(continues on next page)
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def __init__(self, value):
self.value = value

def doSomething(self, something):
self.log.info(

"Object with value {log_source.value!r} doing {something}.",
something=something,

)

MyObject(7).doSomething("a task")

This example will show the string “object with value 7 doing a task” because the log_source key is automatically set
to the MyObject instance that the Logger is retrieved from.

Capturing Failures

Logger provides a failure method, which allows one to capture a Failure object conveniently:

from twisted.logger import Logger
log = Logger()

try:
1 / 0

except BaseException:
log.failure("Math is hard!")

The emitted event will have the "log_failure" key set, which is a Failure that captures the exception. This can be
used by my observers to obtain a traceback. For example, FileLogObserver will append the traceback to it’s output:

Math is hard!

Traceback (most recent call last):
--- <exception caught here> ---
File "/tmp/test.py", line 8, in <module>
1/0

exceptions.ZeroDivisionError: integer division or modulo by zero

Note that this API is meant to capture unexpected and unhandled errors (that is: bugs, which is why tracebacks are
preserved). As such, it defaults to logging at the critical level. It is generally more appropriate to instead use
log.error() when logging an expected error condition that was appropriately handled by the software.
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Namespaces

All Logger s have a namespace, which can be used to categorize events. Namespaces may be specified by passing
in a namespace argument to Logger ‘s initializer, but if none is given, the logger will derive its namespace from the
module name of the callable that instantiated it, or, in the case of a class, from the fully qualified name of the class. A
Logger will add a log_namespace key to the events it emits.

In the first example above, the namespace would be some.module , and in the second example, it would be some.
module.Foo .

Log levels

Logger s provide a number of methods for emitting events. These methods all have the same signature, but each will
attach a specific log_level key to events. Log levels are defined by the LogLevel constants container. These are:

debug

Debugging events: Information of use to a developer of the software, not generally of interest to someone
running the software unless they are attempting to diagnose a software issue.

info

Informational events: Routine information about the status of an application, such as incoming connec-
tions, startup of a subsystem, etc.

warn

Warning events: Events that may require greater attention than informational events but are not a systemic
failure condition, such as authorization failures, bad data from a network client, etc. Such events are of
potential interest to system administrators, and should ideally be phrased in such a way, or documented,
so as to indicate an action that an administrator might take to mitigate the warning.

error

Error conditions: Events indicating a systemic failure. For example, resource exhaustion, or the loss of
connectivity to an external system, such as a database or API endpoint, without which no useful work
can proceed. Similar to warnings, errors related to operational parameters may be actionable to system
administrators and should provide references to resources which an administrator might use to resolve
them.

critical

Critical failures: Errors indicating systemic failure (ie. service outage), data corruption, imminent data
loss, etc. which must be handled immediately. This includes errors unanticipated by the software, such as
unhandled exceptions, wherein the cause and consequences are unknown.

In the first example above, the call to log.debug will add a log_level key to the emitted event with a value of
LogLevel.debug . In the second example, calling self.log.error would use a value of LogLevel.error .

The above descriptions are simply guidance, but it is worth noting that log levels have a reduced value if they are used
inconsistently. If one module in an application considers a message informational, and another module considers a
similar message an error, then filtering based on log levels becomes harder. This is increasingly likely if the modules
in question are developed by different parties, as will often be the case with externally source libraries and frameworks.
(If a module tends to use higher levels than another, namespaces may be used to calibrate the relative use of log levels,
but that is obviously suboptimal.) Sticking to the above guidelines will hopefully help here.
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Emitter method signatures

The emitter methods (debug , info , warn , etc.) all take an optional format string as a first argument, followed by
keyword arguments that will be included in the emitted event.

Note that all three examples in the opening section of this HOWTO fit this signature. The first omits the format, which
doesn’t lend itself well to text logging. The second omits the keyword arguments, which hostile to anything other than
text logging, and is therefore ill-advised. Finally, the third provides both, which is the recommended usage.

These methods are all convenience wrappers around the emit method, which takes a LogLevel as its first argument.

Format strings

Format strings provide observers with a standard way to format an event as text suitable for a human being to read.
Formatting is accomplished using the function eventAsText. When writing a format string, take care to present it
in a manner which would make as much sense as possible to a human reader. Particularly, format strings need not be
written with an eye towards parseability or machine-readability. If you want to save your log events along with their
structure and then analyze them later, see the next section, on “saving events for later” .

Format strings should be

unicode , and use PEP 3101 syntax to describe how the event should be rendered as human-readable text. For legacy
support and convenience in python 2, UTF-8-encoded bytes are also accepted for format strings, but unicode is pre-
ferred. There are two variations from PEP 3101 in the format strings used by this module:

1. Positional (numerical) field names (eg. {0} ) are not permitted. Event keys are not ordered, which means
positional field names do not make sense in this context. However, this is not an accidental limitation, but an
intentional design decision. As software evolves, log messages often grow to include additional information,
while still logging the same conceptual event. By using meaningful names rather than opaque indexes for event
keys, these identifiers are more robust against future changes in the format of messages and the information
provided.

2. Field names ending in parentheses (eg. {foo()} ) will call the referenced object with no arguments, then call
str on the result, rather than calling str on the referenced object directly. This extension to PEP 3101 format
syntax is provided to make it as easy as possible to defer potentially expensive work until a log message must
be emitted. For example, let’s say that we wanted to log a message with some useful, but potentially expensive
information from the ‘request’ object:

log.info("{request.uri} useful, but expensive: {request.usefulButExpensive()}",
request=request)

In the case where this log message is filtered out as uninteresting and not saved, no formatting work is done at all
; and since we can use PEP3101 attribute-access syntax in conjunction with this parenthesis extension, the caller
does not even need to build a function or bound method object to pass as a separate key. There is no support for
specifying arguments in the format string; the goal is to make it idiomatic to express that work be done later, not
to implement a full Python expression evaluator.

2.1. Developer Guides 241

http://www.python.org/dev/peps/pep-3101/


Twisted Documentation, Release 23.8.0

Event keys added by the system

The logging system will add keys to emitted events. All event keys that are inserted by the logging system with have
a log_ prefix, to avoid namespace collisions with application-provided event keys. Applications should therefore not
insert event keys using the log_ prefix, as that prefix is reserved for the logging system. System-provided event keys
include:

log_logger

Logger object that the event was emitted to.

log_source

The source object that emitted the event. When a Logger is accessed as an attribute of a class, the class
is the source. When accessed as an attribute of an instance, the instance is the source. In other cases, the
source is None .

log_level

The LogLevel associated with the event.

log_namespace

The namespace associated with the event.

log_format

The format string provided for use by observers that wish to render the event as text. This may be None ,
if no format string was provided.

log_time

The time that the event was emitted, as returned by time .

log_failure

A Failure object captured when the event was emitted.

Avoid mutable event keys

Emitting applications should be cautious about inserting objects into events which may be mutated later. While ob-
servers are called synchronously, it is possible that an observer will do something like queue up the event for later
serialization, in which case the serialized object may be different than intended.

Capturing log events for testing

If you want to test that your code is logging the expected events, you can use the LogCapture context manager:

from twisted.logger import Logger, LogLevel, capturedLogs
from twisted.trial.unittest import TestCase

class SomeTests(TestCase):

def test_capture(self):
foo = object()

with capturedLogs() as captured:
self.log.debug("Capture this, please", foo=foo)

(continues on next page)
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(continued from previous page)

self.assertTrue(len(captured) == 1)
self.assertEqual(captured[0]["log_format"], "Capture this, please")
self.assertEqual(captured[0]["log_level"], LogLevel.debug)
self.assertEqual(captured[0]["foo"], foo)

Saving events for later

For compatibility reasons, twistd will log to a text-based format by default. However, it’s much better to use a
structured log file format which preserves information about the events being logged. twisted.logger provides two
APIs: jsonFileLogObserver and eventsFromJSONLogFile, which allow you to save and retrieve structured log
events with a basic level of fidelity. Log events are serialized as JSON dictionaries, with serialization rules that are as
lenient as possible; any unknown values are replaced with simple placeholder values.

jsonFileLogObserver will create a log observer that will save events as structured data, like so:

saver.py

import io

from twisted.logger import Logger, jsonFileLogObserver

log = Logger(observer=jsonFileLogObserver(open("log.json", "a")), namespace="saver")

def loggit(values):
log.info("Some values: {values!r}", values=values)

loggit([1234, 5678])
loggit([9876, 5432])

And eventsFromJSONLogFile can load those events again; here, you can see that the event has preserved enough
information to be formatted as human-readable again:

loader.py

import io
import sys

from twisted.logger import eventsFromJSONLogFile, textFileLogObserver

output = textFileLogObserver(sys.stdout)

for event in eventsFromJSONLogFile(open("log.json")):
output(event)

You can also, of course, feel free to access any of the keys in the event object as you load them, as well; basic structures
such as lists, numbers, dictionaries and strings (anything serializable with JSON) will be preserved:

loader-math.py
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import io

from twisted.logger import eventsFromJSONLogFile

for event in eventsFromJSONLogFile(open("log.json")):
print(sum(event["values"]))

Implementing an observer

An observer must provide the ILogObserver interface. That interface simply describes a 1-argument callable that
takes a dict , so a simple implementation may simply use the handy provider decorator on a function that takes one
argument:

from zope.interface import provider
from twisted.logger import ILogObserver, eventAsText

@provider(ILogObserver)
def simpleObserver(event):

print(eventAsText(event))

The eventAsText function returns a textual (unicode ) representation of the event.

While it is recommended, in most cases it is not required that observers declare their compliance with ILogObserver .
This flexibility exists to allow for pre-existing callables and lambda expressions to be used as observers. As an example,
if one would like to accumulate events in a list , then list.append may be used as an observer.

When implementing your own log observer, however, you should always keep in mind that unlike most objects within
Twisted, a log observer must be thread safe .

Specifically, a log observer:

• must be prepared to be called from threads other than the main thread (or I/O thread, or reactor thread)

• must be prepared to be called from multiple threads concurrently

• must not interact with other Twisted APIs that are not explicitly thread-safe without first taking precautions like
using callFromThread

Keep in mind that this is true even if you elect not to explicitly interact with any threads from your program. Twisted
itself may log messages from threads, and Twisted may internally use APIs like callInThread ; for example, Twisted
uses threads to look up hostnames when making an outgoing connection.

Given this extra wrinkle, it’s usually best to see if you can find an existing log observer implementation that does what
you need before implementing your own; thread safety can be tricky to implement. Luckily, twisted.logger comes
with several useful observers, which are documented below.
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Writing an observer for event analysis

Twisted includes log observers which take care of most of the “normal” uses of logging, like writing messages to a file,
saving them as text, filtering them, and so on. There are two common reasons you might want to write a log observer
of your own. The first is to ship log messages over to a different kind of external system which Twisted itself does not
support. If you’ve read the above, you now know enough to do that; simply implement a function that converts the
dictionary to something amenable to your external system or file format, and send it there or save it. The second task
is to do some kind of analysis, either real-time within your process or after the fact offline.

You’re probably going to have to aggregate information from your own code and from libraries you’re using, including
Twisted itself, and you may not have much in the way of control over how those messages are organized. You’re also
probably trying to aggregate information from ad-hoc messages into some kind of structure.

One way to extract such semi-structured information is to feed your logs into an external system like logstash , and
process them there. Such systems are quite powerful and twisted.logger does not try to replace them. However,
such systems are necessarily external, and therefore if you want to react to the log analysis within your application - for
example, denying access in response to an abusive client - you would have to write some glue code to push messages
from your log-analysis system back into your application. For such cases, it’s useful to be able to write log analysis
code as a log observer.

Assuming that the libraries whose log events you’re interested in analyzing are making use of twisted.logger , you
can analyze log events either live as they’re being logged, or loaded from a saved log file.

If you’re writing code to log events directly for potential analysis, then you should simply structure your messages
to include all necessary information as serialization-friendly values in events, and then simply pull them out, like the
loader-math.py example above.

However, let’s say you’re trying to interact with a system that logs messages like so:

ad_hoc.py

from twisted.logger import Logger

class AdHoc:
log = Logger(namespace="ad_hoc")

def __init__(self, a, b):
self.a = a
self.b = b

def logMessage(self):
self.log.info(

"message from {log_source} "
"where a is {log_source.a} and b is {log_source.b}"

)

In this example, the AdHoc object is not itself serializable, but it has two relevant attributes, which the log message’s
format string calls out as attributes of the log_source field, as described above: a and b .

To analyze this event, we can’t pursue the same strategy shown above in loader-math.py . We don’t have any
key/value pairs of the log event to examine directly; a and b are not present as keys themselves. We could look for
the log_source key within the event and access its a and b attributes, but that wouldn’t work once the event had been
serialized and loaded again, since an AdHoc instance isn’t a basic type that can be saved to JSON.

Luckily, twisted.logger provides an API for doing just this: extractField . You use it like so:

analyze.py
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from twisted.logger import extractField

fmt = "message from {log_source} " "where a is {log_source.a} and b is {log_source.b}"

def analyze(event):
if event.get("log_format") == fmt:

a = extractField("log_source.a", event)
b = extractField("log_source.b", event)
print("A + B = " + repr(a + b))

This analyze function can then be used in two ways. First, you can analyze your application “live”, as it’s running.

online_analyze.py

from ad_hoc import AdHoc
from analyze import analyze

from twisted.logger import globalLogPublisher

globalLogPublisher.addObserver(analyze)

AdHoc(3, 4).logMessage()

If you run this script, you will see that it extracts the values from the AdHoc object’s log message.

However, you can also analyze output from a saved log file, using the exact same code. First, you’ll need to produce a
log file with a message from an AdHoc object in it:

ad_hoc_save.py

import io

from ad_hoc import AdHoc

from twisted.logger import globalLogPublisher, jsonFileLogObserver

globalLogPublisher.addObserver(jsonFileLogObserver(open("log.json", "a")))

AdHoc(3, 4).logMessage()

If you run that script, it will produce a log.json file which can be analyzed in the same manner as the loader.py
example above:

offline_analyze.py

import io

from analyze import analyze

from twisted.logger import eventsFromJSONLogFile

for event in eventsFromJSONLogFile(open("log.json")):
analyze(event)
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When doing analysis, it always seems like you should have saved more structured data for later. However, log mes-
sages are often written early on in development, in an ad-hoc way, before a solid understanding has developed about
what information will be useful and what will be redundant. Log messages are therefore a stream-of-consciousness
commentary on what is going on as a system is being developed.

extractField lets you acknowledge the messy reality of how log messages are written, but still take advantage of
structured analysis later on. Just always be sure to use event format fields, not string concatenation, to reference infor-
mation about a particular event, and you’ll be able to easily pull apart hastily-written ad-hoc messages from multiple
versions of a system, either as it’s running or once you’ve saved a log file.

Registering an observer

One way to register an observer is to construct a Logger object with it:

from twisted.logger import Logger
from myobservers import PrintingObserver

log = Logger(observer=PrintingObserver())

log.info("Hello")

This will cause all of a logger’s events to be sent to the given observer. In the above example, all events emitted by the
logger (eg. "Hello" ) will be printed. While that is useful in some cases, it is common to register multiple observers,
and to do so globally for all (or most) loggers in an application.

The global log publisher

The global log publisher is a log observer whose purpose is to capture log events not directed to a specific observer.
In a typical application, the majority of log events will be emitted to the global log publisher. Observers can register
themselves with the global log publisher in order to be forwarded these events.

When a Logger is created without specifying an observer to send events to, the logger will send its events to the global
log publisher, which is accessible via the name globalLogPublisher .

The global log publisher is a singleton instance of a private subclass of LogPublisher , which is itself an
ILogObserver . What this means is that the global log publisher accepts events like any other observer, and that it for-
wards those events to other observers. Observers can be registered to be forwarded events by calling the LogPublisher
method addObserver , and unregister by calling removeObserver :

from twisted.logger import globalLogPublisher
from myobservers import PrintingObserver

log = Logger()

globalLogPublisher.addObserver(PrintingObserver())

log.info("Hello")

The result here is the same as the previous example, except that additional observers can be (and may already have
been) registered. We know that "Hello" will be printed. We don’t know, but it’s very possible, that the same event
will also be handled by other observers.

There is no supported API to discover what other observers are registered with a LogPublisher ; in general, one
doesn’t need to know. If an application is running in twistd , for example, it’s likely that an observer is streaming
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events to a file by the time the application code is in play. If it is running in a twistd web container, there will probably
be another observer writing to the access log.

A caveat here is that events are dict objects, which are mutable, so it is possible for an observer to modify an event that
it sees. Because doing so will modify what other observers will see, modifying a received event can be problematic and
should be strongly discouraged. It can be particularly harmful to edit or remove the content of an existing event key.
Furthermore, no guarantees are made as to the order in which observers are called, so the effect of such modifications
on other observers may be non-deterministic.

Starting the global log publisher

When the global log publisher is created, it uses a LimitedHistoryLogObserver (see below) to store events that are
logged by the application in memory until logging is started. Logging is started by registering the first set of observers
with the global log publisher by calling beginLoggingTo :

from twisted.logger import globalLogBeginner
from myobservers import PrintingObserver

log = Logger()

log.info("Hello")

observers = [PrintingObserver()]

globalLogBeginner.beginLoggingTo(observers)

log.info("Hello, again")

This:

• Adds the given observers (in this example, the PrintingObserver ) to the global log observer

• Forwards all of the events that were stored in memory prior to calling beginLoggingTo to these observers

• Gets rid of the LimitedHistoryLogObserver , as it is no longer needed.

It is an error to call beginLoggingTo more than once.

Note: If the global log publisher is never started, the in-memory event buffer holds (a bounded number of) log events
indefinitely. This may unexpectedly increase application memory or CPU usage. It is highly recommended that the
global log publisher be started as early as feasible.

Provided log observers

This module provides a number of pre-built observers for applications to use:

LogPublisher

Forwards events to other publishers. This allows one to create a graph of observers.

LimitedHistoryLogObserver

Stores a limited number of received events, and can re-play those stored events to another observer later.
This is useful for keeping recent logging history in memory for inspection when other log outputs are not
available.
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FileLogObserver

Formats events as text, prefixed with a time stamp and a “system identifier”, and writes them to a file. The
system identifier defaults to a combination of the event’s namespace and level.

FilteringLogObserver

Forwards events to another observer after applying a set of filter predicates (providers of
ILogFilterPredicate ). LogLevelFilterPredicate is a predicate that be configured to keep track
of which log levels to filter for different namespaces, and will filter out events that are not at the appropriate
level or higher.

Compatibility with standard library logging

STDLibLogObserver is provided for compatibility with the standard library’s logging module. Log levels are
mapped between the two systems, and the various attributes of standard library log records are filled in properly.

Note that standard library logging is a blocking API, and logging can be configured to block for long periods (eg. it
may write to the network). No protection is provided to prevent blocking, so such configurations may cause Twisted
applications to perform poorly.

Compatibility with twisted.python.log

This module provides some facilities to enable the existing twisted.python.log module to compatibly forward it’s
messages to this module. As such, existing clients of twisted.python.log will begin using this module indirectly,
with no changes to the older module’s API.

Incrementally porting observers

Observers have an incremental path for porting to the new module. LegacyLogObserverWrapper is an
ILogObserver that wraps a log observer written for the older module. This allows an old-style observer to be registered
with a new-style logger or log publisher compatibly.

2.1.29 Twisted’s Legacy Logging System: twisted.python.log

Note: There is now a new logging system in Twisted (you can read about how to use it here and its API reference
here) which is a replacement for twisted.python.log.

The old logging API, described here, remains for compatibility, and is now implemented as a client of the new logging
system.

New code should adopt the new API.
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Basic usage

Twisted provides a simple and flexible logging system in the twisted.python.log module. It has three commonly
used functions:

msg

Logs a new message. For example:

from twisted.python import log
log.msg('Hello, world.')

err

Writes a failure to the log, including traceback information (if any). You can pass it a Failure or Exception
instance, or nothing. If you pass something else, it will be converted to a string with repr and logged.

If you pass nothing, it will construct a Failure from the currently active exception, which makes it conve-
nient to use in an except clause:

try:
x = 1 / 0

except BaseException:
log.err() # will log the ZeroDivisionError

startLogging

Starts logging to a given file-like object. For example:

log.startLogging(open('/var/log/foo.log', 'w'))

or:

log.startLogging(sys.stdout)

or:

from twisted.python.logfile import DailyLogFile

log.startLogging(DailyLogFile.fromFullPath("/var/log/foo.log"))

By default, startLogging will also redirect anything written to sys.stdout and sys.stderr to the
log. You can disable this by passing setStdout=False to startLogging .

Before startLogging is called, log messages will be discarded and errors will be written to stderr.

Logging and twistd

If you are using twistd to run your daemon, it will take care of calling startLogging for you, and will also rotate
log files. See twistd and tac and the twistd man page for details of using twistd.
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Log files

The twisted.python.logfile module provides some standard classes suitable for use with startLogging , such
as DailyLogFile , which will rotate the log to a new file once per day.

Using the standard library logging module

If your application uses the Python standard library logging module or you want to use its easy configuration but don’t
want to lose twisted-produced messages, the observer PythonLoggingObserver should be useful to you.

You just start it like any other observer:

observer = log.PythonLoggingObserver()
observer.start()

Then configure the standard library logging module to behave as you want.

This method allows you to customize the log level received by the standard library logging module using the logLevel
keyword:

log.msg("This is important!", logLevel=logging.CRITICAL)
log.msg("Don't mind", logLevel=logging.DEBUG)

Unless logLevel is provided, logging.INFO is used for log.msg and logging.ERROR is used for log.err .

One special care should be made when you use special configuration of the standard library logging module:
some handlers (e.g. SMTP, HTTP) use the network and so can block inside the reactor loop. Nothing in
PythonLoggingObserver is done to prevent that.

Writing log observers

Log observers are the basis of the Twisted logging system. Whenever log.msg (or log.err ) is called, an event is
emitted. The event is passed to each observer which has been registered. There can be any number of observers,
and each can treat the event in any way desired. An example of a log observer in Twisted is the emit method of
FileLogObserver . FileLogObserver , used by startLogging , writes events to a log file. A log observer is just
a callable that accepts a dictionary as its only argument. You can then register it to receive all log events (in addition
to any other observers):

twisted.python.log.addObserver(yourCallable)

The dictionary will have at least two items:

message

The message (a list, usually of strings) for this log event, as passed to log.msg or the message in the failure
passed to log.err .

isError

This is a boolean that will be true if this event came from a call to log.err . If this is set, there may be a
failure item in the dictionary as will, with a Failure object in it.

Other items the built in logging functionality may add include:

printed

This message was captured from sys.stdout , i.e. this message came from a print statement. If
isError is also true, it came from sys.stderr .
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You can pass additional items to the event dictionary by passing keyword arguments to log.msg and log.err . The
standard log observers will ignore dictionary items they don’t use.

Important notes:

• Never block in a log observer, as it may run in main Twisted thread. This means you can’t use socket or syslog
standard library logging backends.

• The observer needs to be thread safe if you anticipate using threads in your program.

Customizing twistd logging

The behavior of the logging that twistd does can be customized either with the --logger option or by setting the
ILogObserver component on the application object. See the Application document for more information.

2.1.30 Symbolic Constants

Note: twisted.python.constants has been deprecated in Twisted, and the same code has been spun out into
Constantly. The API is identical, just install it from PyPI and replace import twisted.python.constants with
import constantly in your code.

2.1.31 twisted.enterprise.adbapi: Twisted RDBMS support

Abstract

Twisted is an asynchronous networking framework, but most database API implementations unfortunately have block-
ing interfaces – for this reason, twisted.enterprise.adbapi was created. It is a non-blocking interface to the
standardized DB-API 2.0 API, which allows you to access a number of different RDBMSes.

What you should already know

• Python :-)

• How to write a simple Twisted Server (see this tutorial to learn how)

• Familiarity with using database interfaces (see the documentation for DBAPI 2.0)

Quick Overview

Twisted is an asynchronous framework. This means standard database modules cannot be used directly, as they typically
work something like:

# Create connection...
db = dbmodule.connect('mydb', 'andrew', 'password')
# ...which blocks for an unknown amount of time

# Create a cursor
cursor = db.cursor()

# Do a query...
(continues on next page)
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(continued from previous page)

resultset = cursor.query('SELECT * FROM table WHERE ...')
# ...which could take a long time, perhaps even minutes.

Those delays are unacceptable when using an asynchronous framework such as Twisted. For this reason, Twisted
provides twisted.enterprise.adbapi, an asynchronous wrapper for any DB-API 2.0-compliant module.

adbapiwill do blocking database operations in separate threads, which trigger callbacks in the originating thread when
they complete. In the meantime, the original thread can continue doing normal work, like servicing other requests.

How do I use adbapi?

Rather than creating a database connection directly, use the adbapi.ConnectionPool class to manage a connections
for you. This allows adbapi to use multiple connections, one per thread. This is easy:

# Using the "dbmodule" from the previous example, create a ConnectionPool
from twisted.enterprise import adbapi
dbpool = adbapi.ConnectionPool("dbmodule", 'mydb', 'andrew', 'password')

Things to note about doing this:

• There is no need to import dbmodule directly. You just pass the name to adbapi.ConnectionPool’s construc-
tor.

• The parameters you would pass to dbmodule.connect are passed as extra arguments to adbapi.
ConnectionPool’s constructor. Keyword parameters work as well.

Now we can do a database query:

# equivalent of cursor.execute(statement), return cursor.fetchall():
def getAge(user):

return dbpool.runQuery("SELECT age FROM users WHERE name = ?", user)

def printResult(l):
if l:

print(l[0][0], "years old")
else:

print("No such user")

getAge("joe").addCallback(printResult)

This is straightforward, except perhaps for the return value of getAge. It returns a Deferred, which allows arbitrary
callbacks to be called upon completion (or upon failure). More documentation on Deferred is available here.

In addition to runQuery, there is also runOperation and runInteraction that gets called with a callable (e.g. a
function). The function will be called in the thread with a adbapi.Transaction, which basically mimics a DB-API
cursor. In all cases a database transaction will be committed after your database usage is finished, unless an exception
is raised in which case it will be rolled back.

def _getAge(txn, user):
# this will run in a thread, we can use blocking calls
txn.execute("SELECT * FROM foo")
# ... other cursor commands called on txn ...
txn.execute("SELECT age FROM users WHERE name = ?", user)
result = txn.fetchall()

(continues on next page)
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(continued from previous page)

if result:
return result[0][0]

else:
return None

def getAge(user):
return dbpool.runInteraction(_getAge, user)

def printResult(age):
if age != None:

print(age, "years old")
else:

print("No such user")

getAge("joe").addCallback(printResult)

Also worth noting is that these examples assumes that dbmodule uses the “qmarks” paramstyle (see the DB-API
specification). If your dbmodule uses a different paramstyle (e.g. pyformat) then use that. Twisted doesn’t attempt
to offer any sort of magic parameter munging – runQuery(query, params, ...) maps directly onto cursor.
execute(query, params, ...).

Examples of various database adapters

Notice that the first argument is the module name you would usually import and get connect(...) from, and that
following arguments are whatever arguments you’d call connect(...) with.

from twisted.enterprise import adbapi

# PostgreSQL PyPgSQL
cp = adbapi.ConnectionPool("pyPgSQL.PgSQL", database="test")

# MySQL
cp = adbapi.ConnectionPool("MySQLdb", db="test")

And that’s it!

That’s all you need to know to use a database from within Twisted. You probably should read the adbapi module’s
documentation to get an idea of the other functions it has, but hopefully this document presents the core ideas.

2.1.32 Parsing command-lines with usage.Options

Introduction

There is frequently a need for programs to parse a UNIX-like command line program: options preceded by - or -- ,
sometimes followed by a parameter, followed by a list of arguments. The twisted.python.usage provides a class,
Options , to facilitate such parsing.

While Python has the getopt module for doing this, it provides a very low level of abstraction for options. Twisted
has a higher level of abstraction, in the class twisted.python.usage.Options . It uses Python’s reflection facilities
to provide an easy to use yet flexible interface to the command line. While most command line processors either force
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the application writer to write their own loops, or have arbitrary limitations on the command line (the most common
one being not being able to have more than one instance of a specific option, thus rendering the idiom program -v
-v -v impossible), Twisted allows the programmer to decide how much control they want.

The Options class is used by subclassing. Since a lot of time it will be used in the twisted.tap package, where the
local conventions require the specific options parsing class to also be called Options , it is usually imported with

from twisted.python import usage

Boolean Options

For simple boolean options, define the attribute optFlags like this:

class Options(usage.Options):

optFlags = [["fast", "f", "Act quickly"], ["safe", "s", "Act safely"]]

optFlags should be a list of 3-lists. The first element is the long name, and will be used on the command line as
--fast . The second one is the short name, and will be used on the command line as -f . The last element is a
description of the flag and will be used to generate the usage information text. The long name also determines the
name of the key that will be set on the Options instance. Its value will be 1 if the option was seen, 0 otherwise. Here
is an example for usage:

from __future__ import print_function

class Options(usage.Options):

optFlags = [
["fast", "f", "Act quickly"],
["good", "g", "Act well"],
["cheap", "c", "Act cheaply"]

]

command_line = ["-g", "--fast"]

options = Options()
try:

options.parseOptions(command_line)
except usage.UsageError as errortext:

print('{}: {}'.format(sys.argv[0], errortext))
print('{}: Try --help for usage details.'.format(sys.argv[0]))
sys.exit(1)

if options['fast']:
print("fast", end='')

if options['good']:
print("good", end='')

if options['cheap']:
print("cheap", end='')

print()

The above will print fast good .

Note here that Options fully supports the mapping interface. You can access it mostly just like you can access any other
dict. Options are stored as mapping items in the Options instance: parameters as ‘paramname’: ‘value’ and flags as
‘flagname’: 1 or 0.
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Inheritance, Or: How I Learned to Stop Worrying and Love the Superclass

Sometimes there is a need for several option processors with a unifying core. Perhaps you want all your commands to
understand -q /--quiet means to be quiet, or something similar. On the face of it, this looks impossible: in Python,
the subclass’s optFlags would shadow the superclass’s. However, usage.Options uses special reflection code to get
all of the optFlags defined in the hierarchy. So the following:

class BaseOptions(usage.Options):

optFlags = [["quiet", "q", None]]

class SpecificOptions(BaseOptions):

optFlags = [
["fast", "f", None], ["good", "g", None], ["cheap", "c", None]

]

Is the same as:

class SpecificOptions(usage.Options):

optFlags = [
["quiet", "q", "Silence output"],
["fast", "f", "Run quickly"],
["good", "g", "Don't validate input"],
["cheap", "c", "Use cheap resources"]

]

Parameters

Parameters are specified using the attribute optParameters . They must be given a default. If you want to make sure
you got the parameter from the command line, give a non-string default. Since the command line only has strings, this
is completely reliable.

Here is an example:

from __future__ import print_function

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don't validate input"],
["cheap", "c", "Use cheap resources"]

]
optParameters = [["user", "u", None, "The user name"]]

config = Options()
try:

config.parseOptions() # When given no argument, parses sys.argv[1:]
except usage.UsageError as errortext:

(continues on next page)
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print('{}: {}'.format(sys.argv[0], errortext))
print('{}: Try --help for usage details.'.format(sys.argv[0]))
sys.exit(1)

if config['user'] is not None:
print("Hello", config['user'])

print("So, you want it:")

if config['fast']:
print("fast", end='')

if config['good']:
print("good", end='')

if config['cheap']:
print("cheap", end='')

print()

Like optFlags , optParameters works smoothly with inheritance.

Option Subcommands

It is useful, on occasion, to group a set of options together based on the logical “action” to which they belong. For
this, the usage.Options class allows you to define a set of “subcommands” , each of which can provide its own
usage.Options instance to handle its particular options.

Here is an example for an Options class that might parse options like those the cvs program takes

from twisted.python import usage

class ImportOptions(usage.Options):
optParameters = [

['module', 'm', None, None], ['vendor', 'v', None, None],
['release', 'r', None]

]

class CheckoutOptions(usage.Options):
optParameters = [['module', 'm', None, None], ['tag', 'r', None, None]]

class Options(usage.Options):
subCommands = [['import', None, ImportOptions, "Do an Import"],

['checkout', None, CheckoutOptions, "Do a Checkout"]]

optParameters = [
['compression', 'z', 0, 'Use compression'],
['repository', 'r', None, 'Specify an alternate repository']

]

config = Options(); config.parseOptions()
if config.subCommand == 'import':

doImport(config.subOptions)
elif config.subCommand == 'checkout':

doCheckout(config.subOptions)

The subCommands attribute of Options directs the parser to the two other Options subclasses when the strings
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"import" or "checkout" are present on the command line. All options after the given command string are passed to
the specified Options subclass for further parsing. Only one subcommand may be specified at a time. After parsing has
completed, the Options instance has two new attributes - subCommand and subOptions - which hold the command
string and the Options instance used to parse the remaining options.

Generic Code For Options

Sometimes, just setting an attribute on the basis of the options is not flexible enough. In those cases, Twisted does not
even attempt to provide abstractions such as “counts” or “lists” , but rather lets you call your own method, which will
be called whenever the option is encountered.

Here is an example of counting verbosity

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self['verbosity'] = 0 # default

def opt_verbose(self):
self['verbosity'] = self['verbosity']+1

def opt_quiet(self):
self['verbosity'] = self['verbosity']-1

opt_v = opt_verbose
opt_q = opt_quiet

Command lines that look like command -v -v -v -v will increase verbosity to 4, while command -q -q -q will
decrease verbosity to -3.

The usage.Options class knows that these are parameter-less options, since the methods do not receive an argument.
Here is an example for a method with a parameter:

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self['symbols'] = []

def opt_define(self, symbol):
self['symbols'].append(symbol)

opt_D = opt_define

This example is useful for the common idiom of having command -DFOO -DBAR to define symbols.
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Parsing Arguments

usage.Options does not stop helping when the last parameter is gone. All the other arguments are sent into a function
which should deal with them. Here is an example for a cmp like command.

from twisted.python import usage

class Options(usage.Options):

optParameters = [["max_differences", "d", 1, None]]

def parseArgs(self, origin, changed):
self['origin'] = origin
self['changed'] = changed

The command should look like command origin changed .

If you want to have a variable number of left-over arguments, just use def parseArgs(self, *args): . This is
useful for commands like the UNIX cat(1) .

Post Processing

Sometimes, you want to perform post processing of options to patch up inconsistencies, and the like. Here is an
example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [
["fast", "f", "Run quickly"],
["good", "g", "Don't validate input"],
["cheap", "c", "Use cheap resources"]

]

def postOptions(self):
if self['fast'] and self['good'] and self['cheap']:

raise usage.UsageError("can't have it all, brother")

Type enforcement

By default, all options are handled as strings. You may want to enforce the type of your option in some specific case,
the classic example being port number. Any callable can be specified in the fifth row of optParameters and will be
called with the string value passed in parameter.

from twisted.python import usage

class Options(usage.Options):
optParameters = [

["shiny_integer", "s", 1, None, int],
["dummy_float", "d", 3.14159, None, float],

]
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Note that default values are not coerced, so you should either declare it with the good type (as above) or handle it when
you use your options.

The coerce function may have a coerceDoc attribute, the content of which will be printed after the documentation of
the option. It’s particularly useful for reusing the function at multiple places.

def oneTwoThree(val):
val = int(val)
if val not in range(1, 4):

raise ValueError("Not in range")
return val

oneTwoThree.coerceDoc = "Must be 1, 2 or 3."

from twisted.python import usage

class Options(usage.Options):
optParameters = [["one_choice", "o", 1, None, oneTwoThree]]

This example code will print the following help when added to your program:

$ python myprogram.py --help
Usage: myprogram [options]
Options:
-o, --one_choice= [default: 0]. Must be 1, 2 or 3.

Shell tab-completion

The Options class may provide tab-completion to interactive command shells. Only zsh is supported at present, but
there is some interest in supporting bash in the future.

Support is automatic for all of the commands shipped with Twisted. Zsh has shipped, for a number of years, a comple-
tion function which ties in to the support provided by the Options class.

If you are writing a twistd plugin, then tab-completion for your twistd sub-command is also automatic.

For other commands you may easily provide zsh tab-completion support. Copy the file “twisted/python/twisted-
completion.zsh” and name it something like “_mycommand”. A leading underscore with no extension is zsh’s conven-
tion for completion function files.

Edit the new file and change the first line to refer only to your new command(s), like so:

#compdef mycommand

Then ensure this file is made available to the shell by placing it in one of the directories appearing in zsh’s $fpath.
Restart zsh, and ensure advanced completion is enabled (autoload -U compinit; compinit) . You should then
be able to type the name of your command and press Tab to have your command-line options completed.
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Completion metadata

Optionally, a special attribute, compData , may be defined on your Options subclass in order to provide more infor-
mation to the shell-completion system. The attribute should be an instance of I DON’T KNOW WHAT TO DO WITH
THIS LINK!

In addition, compData may be defined on parent classes in your inheritance hiearchy. The information from each I
DON’T KNOW WHAT TO DO WITH THIS LINK!

2.1.33 DirDBM: Directory-based Storage

dirdbm.DirDBM

twisted.persisted.dirdbm.DirDBM is a DBM-like storage system. That is, it stores mappings between keys and
values, like a Python dictionary, except that it stores the values in files in a directory - each entry is a different file. The
keys must always be strings, as are the values. Other than that, DirDBM objects act just like Python dictionaries.

DirDBM is useful for cases when you want to store small amounts of data in an organized fashion, without having to
deal with the complexity of a RDBMS or other sophisticated database. It is simple, easy to use, cross-platform, and
doesn’t require any external C libraries, unlike Python’s built-in DBM modules.

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.DirDBM("/tmp/dir")
>>> d["librarian"] = "ook"
>>> d["librarian"]
'ook'
>>> d.keys()
['librarian']
>>> del d["librarian"]
>>> d.items()
[]

dirdbm.Shelf

Sometimes it is necessary to persist more complicated objects than strings. With some care, dirdbm.Shelf can
transparently persist them. Shelf works exactly like DirDBM , except that the values (but not the keys) can be arbitrary
picklable objects. However, notice that mutating an object after it has been stored in the Shelf has no effect on the
Shelf. When mutating objects, it is necessary to explicitly store them back in the Shelf afterwards:

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.Shelf("/tmp/dir2")
>>> d["key"] = [1, 2]
>>> d["key"]
[1, 2]
>>> l = d["key"]
>>> l.append(3)
>>> d["key"]
[1, 2]
>>> d["key"] = l
>>> d["key"]
[1, 2, 3]
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2.1.34 Writing tests for Twisted code using Trial

Trial basics

Trial is Twisted’s testing framework. It provides a library for writing test cases and utility functions for working
with the Twisted environment in your tests, and a command-line utility for running your tests. Trial is built on the
Python standard library’s unittest module. For more information on how Trial finds tests, see the loadModule
documentation.

To run all the Twisted tests, do:

$ python -m twisted.trial twisted

Refer to the Trial man page for other command-line options.

Trial directories

You might notice a new _trial_temp folder in the current working directory after Trial completes the tests. This
folder is the working directory for the Trial process. It can be used by unit tests and allows them to write whatever data
they like to disk, and not worry about polluting the current working directory.

Folders named _trial_temp-<counter> are created if two instances of Trial are run in parallel from the same direc-
tory, so as to avoid giving two different test-runs the same temporary directory.

The twisted.python.lockfile utility is used to lock the _trial_temp directories. On Linux, this results in sym-
links to pids. On Windows, directories are created with a single file with a pid as the contents. These lock files will be
cleaned up if Trial exits normally and otherwise they will be left behind. They should be cleaned up the next time Trial
tries to use the directory they lock, but it’s also safe to delete them manually if desired.

Twisted-specific quirks: reactor, Deferreds, callLater

The standard Python unittest framework, from which Trial is derived, is ideal for testing code with a fairly linear
flow of control. Twisted is an asynchronous networking framework which provides a clean, sensible way to establish
functions that are run in response to events (like timers and incoming data), which creates a highly non-linear flow of
control. Trial has a few extensions which help to test this kind of code. This section provides some hints on how to use
these extensions and how to best structure your tests.

Leave the Reactor as you found it

Trial runs the entire test suite (over four thousand tests) in a single process, with a single reactor. Therefore it is important
that your test leave the reactor in the same state as it found it. Leftover timers may expire during somebody else’s
unsuspecting test. Leftover connection attempts may complete (and fail) during a later test. These lead to intermittent
failures that wander from test to test and are very time-consuming to track down.

If your test leaves event sources in the reactor, Trial will fail the test. The tearDown method is a good place to put
cleanup code: it is always run regardless of whether your test passes or fails (like a finally clause in a try-except-
finally construct). Exceptions in tearDown are flagged as errors and flunk the test. TestCase.addCleanup is another
useful tool for cleaning up. With it, you can register callables to clean up resources as the test allocates them. Generally,
code should be written so that only resources allocated in the tests need to be cleaned up in the tests. Resources which
are allocated internally by the implementation should be cleaned up by the implementation.

If your code uses Deferreds or depends on the reactor running, you can return a Deferred from your test method, setUp,
or tearDown and Trial will do the right thing. That is, it will run the reactor for you until the Deferred has triggered
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and its callbacks have been run. Don’t use reactor.run() , reactor.stop() , reactor.crash() or reactor.
iterate() in your tests.

Calls to reactor.callLater create IDelayedCall s. These need to be run or cancelled during a test, otherwise
they will outlive the test. This would be bad, because they could interfere with a later test, causing confusing failures
in unrelated tests! For this reason, Trial checks the reactor to make sure there are no leftover IDelayedCall s in the
reactor after a test, and will fail the test if there are. The cleanest and simplest way to make sure this all works is to
return a Deferred from your test.

Similarly, sockets created during a test should be closed by the end of the test. This applies to both listening ports and
client connections. So, calls to reactor.listenTCP (and listenUNIX , and so on) return IListeningPort s, and
these should be cleaned up before a test ends by calling their stopListeningmethod. Calls to reactor.connectTCP
return IConnector s, which should be cleaned up by calling their disconnectmethod. Trial will warn about unclosed
sockets.

The golden rule is: If your tests call a function which returns a Deferred, your test should return a Deferred.

Using Timers to Detect Failing Tests

It is common for tests to establish some kind of fail-safe timeout that will terminate the test in case something unexpected
has happened and none of the normal test-failure paths are followed. This timeout puts an upper bound on the time that
a test can consume, and prevents the entire test suite from stalling because of a single test. This is especially important
for the Twisted test suite, because it is run automatically by the buildbot whenever changes are committed to the Git
repository.

The way to do this in Trial is to set the .timeout attribute on your unit test method. Set the attribute to the number
of seconds you wish to elapse before the test raises a timeout error. Trial has a default timeout which will be applied
even if the timeout attribute is not set. The Trial default timeout is usually sufficient and should be overridden only
in unusual cases.

Interacting with warnings in tests

Trial includes specific support for interacting with Python’s warnings module. This support allows warning-emitting
code to be written test-driven, just as any other code would be. It also improves the way in which warnings reporting
when a test suite is running.

TestCase.flushWarnings allows tests to be written which make assertions about what warnings have been emitted
during a particular test method. In order to test a warning with flushWarnings , write a test which first invokes the
code which will emit a warning and then calls flushWarnings and makes assertions about the result. For example:

class SomeWarningsTests(TestCase):
def test_warning(self):

warnings.warn("foo is bad")
self.assertEqual(len(self.flushWarnings()), 1)

Warnings emitted in tests which are not flushed will be included by the default reporter in its output after the result of
the test. If Python’s warnings filter system (see the-W command option to Python ) is configured to treat a warning as
an error, then unflushed warnings will causes tests to fail and will be included in the summary section of the default
reporter. Note that unlike usual operation, when warnings.warn is called as part of a test method, it will not raise an
exception when warnings have been configured as errors. However, if called outside of a test method (for example, at
module scope in a test module or a module imported by a test module) then it will raise an exception.
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Parallel test

In many situations, your unit tests may run faster if they are allowed to run in parallel, such that blocking I/O calls allow
other tests to continue. Trial, like unittest, supports the -j parameter. Run trial -j 3 to run 3 test runners at the same
time.

This requires care in your test creation. Obviously, you need to ensure that your code is otherwise content to work in
a parallel fashion while working within Twisted. . . and if you are using weird global variables in places, parallel tests
might reveal this.

However, if you have a test that fires up a schema on an external database in the setUp function, does some operations
on it in the test, and then deletes that schema in the tearDown function, your tests will behave in an unpredictable
fashion as they tromp upon each other if they have their own schema. And this won’t actually indicate a real error in
your code, merely a testing-specific race-condition.

2.1.35 Extremely Low-Level Socket Operations

Introduction

Beyond supporting streams of data (SOCK_STREAM) or datagrams (SOCK_DGRAM), POSIX sockets have addi-
tional features not accessible via send(2) and recv(2). These features include things like scatter/gather I/O, duplicating
file descriptors into other processes, and accessing out-of-band data.

Twisted includes a wrapper around the two C APIs which make these things possible, sendmsg and recvmsg . This doc-
ument covers their usage. It is intended for Twisted maintainers. Application developers looking for this functionality
should look for the high-level APIs Twisted provides on top of these wrappers.

sendmsg

sendmsg(2) exposes nearly all sender-side functionality of a socket. For a SOCK_STREAM socket, it can send bytes
that become part of the stream of data being carried over the connection. For a SOCK_DGRAM socket, it can send
bytes that become datagrams sent from the socket. It can send data from multiple memory locations (gather I/O). Over
AF_UNIX sockets, it can copy file descriptors into whichever process is receiving on the other side. The wrapper
included in Twisted, sendmsg, exposes many (but not all) of these features. This document covers the usage of the
features it does expose. The primary limitation of this wrapper is that the interface supports sending only one iovec at
a time.

recvmsg

Likewise, recvmsg(2) exposes nearly all the receiver-side functionality of a socket. It can receive stream data over
from a SOCK_STREAM socket or datagrams from a SOCK_DGRAM socket. It can receive that data into multiple
memory locations (scatter I/O), and it can receive those copied file descriptors. The wrapper included in Twisted,
recvmsg, exposes many (but not all) of these features. This document covers the usage of the features it does expose.
The primary limitation of this wrapper is that the interface supports receiving only one iovec at a time.
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Sending And Receiving Regular Data

sendmsg can be used in a way which makes it equivalent to using the send call. The first argument to sendmsg is (in
this case and all others) a socket over which to send the data. The second argument is a bytestring giving the data to
send.

On the other end, recvmsg can be used to replace a recv call. The first argument to recvmsg is (again, in all cases) a
socket over which to receive the data. The second argument is an integer giving the maximum number of bytes of data
to receive.

send_replacement.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Demonstration of sending bytes over a TCP connection using sendmsg.
"""

from socket import socketpair

from twisted.python.sendmsg import recvmsg, sendmsg

def main():
foo, bar = socketpair()
sent = sendmsg(foo, b"Hello, world")
print("Sent", sent, "bytes")
(received, ancillary, flags) = recvmsg(bar, 1024)
print("Received", repr(received))
print("Extra stuff, boring in this case", flags, ancillary)

if __name__ == "__main__":
main()

Copying File Descriptors

Used with an AF_UNIX socket, sendmsg send a copy of a file descriptor into whatever process is receiving on the
other end of the socket. This is done using the ancillary data argument. Ancillary data consists of a list of three-tuples.
A three-tuple constructed with SOL_SOCKET, SCM_RIGHTS, and a platform-endian packed file descriptor number
will copy that file descriptor.

File descriptors copied this way must be received using a recvmsg call. No special arguments are required to receive
these descriptors. They will appear, encoded as a native-order string, in the ancillary data list returned by recvmsg.

copy_descriptor.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Demonstration of copying a file descriptor over an AF_UNIX connection using

(continues on next page)
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sendmsg.
"""

from os import pipe, read, write
from socket import SOL_SOCKET, socketpair
from struct import pack, unpack

from twisted.python.sendmsg import SCM_RIGHTS, recvmsg, sendmsg

def main():
foo, bar = socketpair()
reader, writer = pipe()

# Send a copy of the descriptor. Notice that there must be at least one
# byte of normal data passed in.
sent = sendmsg(foo, b"\x00", [(SOL_SOCKET, SCM_RIGHTS, pack("i", reader))])

# Receive the copy, including that one byte of normal data.
data, ancillary, flags = recvmsg(bar, 1024)
duplicate = unpack("i", ancillary[0][2])[0]

# Demonstrate that the copy works just like the original
write(writer, b"Hello, world")
print("Read from original (%d): %r" % (reader, read(reader, 6)))
print("Read from duplicate (%d): %r" % (duplicate, read(duplicate, 6)))

if __name__ == "__main__":
main()

2.1.36 Asynchronous Messaging Protocol Overview

The purpose of this guide is to describe the uses for and usage of twisted.protocols.amp beyond what is explained
in the API documentation. It will show you how to implement an AMP server which can respond to commands or
interact directly with individual messages. It will also show you how to implement an AMP client which can issue
commands to a server.

AMP is a bidirectional command/response-oriented protocol intended to be extended with application-specific request
types and handlers. Various simple data types are supported and support for new data types can be added by applica-
tions.
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Setting Up

AMP runs over a stream-oriented connection-based protocol, such as TCP or SSL. Before you can use any features of
the AMP protocol, you need a connection. The protocol class to use to establish an AMP connection is AMP . Connection
setup works as it does for almost all protocols in Twisted. For example, you can set up a listening AMP server using a
server endpoint:

basic_server.tac

from twisted.application.internet import StreamServerEndpointService
from twisted.application.service import Application
from twisted.internet import reactor
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet.protocol import Factory
from twisted.protocols.amp import AMP

application = Application("basic AMP server")

endpoint = TCP4ServerEndpoint(reactor, 8750)
factory = Factory()
factory.protocol = AMP
service = StreamServerEndpointService(endpoint, factory)
service.setServiceParent(application)

And you can connect to an AMP server using a client endpoint:

basic_client.py

if __name__ == "__main__":
import basic_client

raise SystemExit(basic_client.main())

from sys import stdout

from twisted.internet import reactor
from twisted.internet.endpoints import TCP4ClientEndpoint
from twisted.internet.protocol import Factory
from twisted.protocols.amp import AMP
from twisted.python.log import err, startLogging

def connect():
endpoint = TCP4ClientEndpoint(reactor, "127.0.0.1", 8750)
return endpoint.connect(Factory.forProtocol(AMP))

def main():
startLogging(stdout)

d = connect()
d.addErrback(err, "Connection failed")

def done(ignored):
reactor.stop()

(continues on next page)
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d.addCallback(done)

reactor.run()

Commands

Either side of an AMP connection can issue a command to the other side. Each kind of command is represented as a
subclass of Command . A Command defines arguments, response values, and error conditions.

from twisted.protocols.amp import Integer, String, Unicode, Command

class UsernameUnavailable(Exception):
pass

class RegisterUser(Command):
arguments = [('username', Unicode()),

('publickey', String())]

response = [('uid', Integer())]

errors = {UsernameUnavailable: 'username-unavailable'}

The definition of the command’s signature - its arguments, response, and possible error conditions - is separate from
the implementation of the behavior to execute when the command is received. The Command subclass only defines the
former.

Commands are issued by calling callRemote on either side of the connection. This method returns a Deferredwhich
eventually fires with the result of the command.

command_client.py

if __name__ == "__main__":
import command_client

raise SystemExit(command_client.main())

from sys import stdout

from basic_client import connect

from twisted.internet import reactor
from twisted.protocols.amp import Command, Integer, String, Unicode
from twisted.python.log import err, startLogging

class UsernameUnavailable(Exception):
pass

class RegisterUser(Command):
arguments = [("username", Unicode()), ("publickey", String())]

(continues on next page)
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response = [("uid", Integer())]

errors = {UsernameUnavailable: "username-unavailable"}

def main():
startLogging(stdout)

d = connect()

def connected(protocol):
return protocol.callRemote(

RegisterUser,
username="alice",
publickey="ssh-rsa AAAAB3NzaC1yc2 alice@actinium",

)

d.addCallback(connected)

def registered(result):
print("Registration result:", result)

d.addCallback(registered)

d.addErrback(err, "Failed to register")

def finished(ignored):
reactor.stop()

d.addCallback(finished)

reactor.run()

Locators

The logic for handling a command can be specified as an object separate from the AMP instance which interprets and
formats bytes over the network.

from twisted.protocols.amp import CommandLocator
from twisted.python.filepath import FilePath

class UsernameUnavailable(Exception):
pass

class UserRegistration(CommandLocator):
uidCounter = 0

@RegisterUser.responder
def register(self, username, publickey):

path = FilePath(username)
(continues on next page)
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if path.exists():
raise UsernameUnavailable()

self.uidCounter += 1
path.setContent('%d %s\n' % (self.uidCounter, publickey))
return self.uidCounter

When you define a separate CommandLocator subclass, use it by passing an instance of it to the AMP initializer.

factory = Factory()
factory.protocol = lambda: AMP(locator=UserRegistration())

If no locator is passed in, AMP acts as its own locator. Command responders can be defined on an AMP subclass, just as
the responder was defined on the UserRegistration example above.

Box Receivers

AMP conversations consist of an exchange of messages called boxes . A box consists of a sequence of pairs of key
and value (for example, the pair username and alice ). Boxes are generally represented as dict instances. Normally
boxes are passed back and forth to implement the command request/response features described above. The logic for
handling each box can be specified as an object separate from the AMP instance.

from zope.interface import implementer

from twisted.protocols.amp import IBoxReceiver

@implementer(IBoxReceiver)
class BoxReflector(object):

def startReceivingBoxes(self, boxSender):
self.boxSender = boxSender

def ampBoxReceived(self, box):
self.boxSender.sendBox(box)

def stopReceivingBoxes(self, reason):
self.boxSender = None

These methods parallel those of IProtocol . Startup notification is given by startReceivingBoxes . The argument
passed to it is an IBoxSender provider, which can be used to send boxes back out over the network. ampBoxReceived
delivers notification for a complete box having been received. And last, stopReceivingBoxes notifies the object that
no more boxes will be received and no more can be sent. The argument passed to it is a Failure which may contain
details about what caused the conversation to end.

To use a custom IBoxReceiver , pass it to the AMP initializer.

factory = Factory()
factory.protocol = lambda: AMP(boxReceiver=BoxReflector())

If no box receiver is passed in, AMP acts as its own box receiver. It handles boxes by treating them as command requests
or responses and delivering them to the appropriate responder or as a result to a callRemote Deferred .
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2.1.37 Overview of Twisted Spread

Perspective Broker (affectionately known as “PB” ) is an asynchronous, symmetric1 network protocol for secure, remote
method calls and transferring of objects. PB is “translucent, not transparent” , meaning that it is very visible and obvious
to see the difference between local method calls and potentially remote method calls, but remote method calls are still
extremely convenient to make, and it is easy to emulate them to have objects which work both locally and remotely.

PB supports user-defined serialized data in return values, which can be either copied each time the value is returned,
or “cached” : only copied once and updated by notifications.

PB gets its name from the fact that access to objects is through a “perspective” . This means that when you are
responding to a remote method call, you can establish who is making the call.

Rationale

No other currently existing protocols have all the properties of PB at the same time. The particularly interesting combi-
nation of attributes, though, is that PB is flexible and lightweight, allowing for rapid development, while still powerful
enough to do two-way method calls and user-defined data types.

It is important to have these attributes in order to allow for a protocol which is extensible. One of the facets of this
flexibility is that PB can integrate an arbitrary number of services could be aggregated over a single connection, as well
as publish and call new methods on existing objects without restarting the server or client.

2.1.38 Introduction to Perspective Broker

Introduction

Suppose you find yourself in control of both ends of the wire: you have two programs that need to talk to each other, and
you get to use any protocol you want. If you can think of your problem in terms of objects that need to make method
calls on each other, then chances are good that you can use Twisted’s Perspective Broker protocol rather than trying to
shoehorn your needs into something like HTTP, or implementing yet another RPC mechanism1 .

The Perspective Broker system (abbreviated “PB” , spawning numerous sandwich-related puns) is based upon a few
central concepts:

• serialization : taking fairly arbitrary objects and types, turning them into a chunk of bytes, sending them over a
wire, then reconstituting them on the other end. By keeping careful track of object ids, the serialized objects can
contain references to other objects and the remote copy will still be useful.

• remote method calls : doing something to a local object and causing a method to get run on a distant one. The
local object is called a RemoteReference , and you “do something” by running its .callRemote method.

This document will contain several examples that will (hopefully) appear redundant and verbose once you’ve figured
out what’s going on. To begin with, much of the code will just be labelled “magic” : don’t worry about how these parts
work yet. It will be explained more fully later.

1 There is a negotiation phase for the banana serialization protocol with particular roles for listener and initiator, so it’s not completely symmetric,
but after the connection is fully established, the protocol is completely symmetrical.

1 Most of Twisted is like this. Hell, most of Unix is like this: if you think it would be useful, someone else has probably thought that way in the
past, and acted on it, and you can take advantage of the tool they created to solve the same problem you’re facing now.
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Object Roadmap

To start with, here are the major classes, interfaces, and functions involved in PB, with links to the file where they are
defined (all of which are under twisted/, of course). Don’t worry about understanding what they all do yet: it’s easier
to figure them out through their interaction than explaining them one at a time.

• Factory : internet/protocol.py

• PBServerFactory : spread/pb.py

• Broker : spread/pb.py

Other classes that are involved at some point:

• RemoteReference : spread/pb.py

• pb.Root : spread/pb.py , actually defined as twisted.spread.flavors.Root in spread/flavors.py

• pb.Referenceable : spread/pb.py , actually defined as twisted.spread.flavors.Referenceable in
spread/flavors.py

Classes and interfaces that get involved when you start to care about authorization and security:

• Portal : cred/portal.py

• IRealm : cred/portal.py

• IPerspective : spread/pb.py , which you will usually be interacting with via pb.Avatar (a basic imple-
mentor of the interface).

Subclassing and Implementing

Technically you can subclass anything you want, but technically you could also write a whole new framework, which
would just waste a lot of time. Knowing which classes are useful to subclass or which interfaces to implement is one
of the bits of knowledge that’s crucial to using PB (and all of Twisted) successfully. Here are some hints to get started:

• pb.Root , pb.Referenceable : you’ll subclass these to make remotely-referenceable objects (i.e., objects
which you can call methods on remotely) using PB. You don’t need to change any of the existing behavior, just
inherit all of it and add the remotely-accessible methods that you want to export.

• pb.Avatar : You’ll be subclassing this when you get into PB programming with authorization. This is an
implementor of IPerspective.

• ICredentialsChecker : Implement this if you want to authenticate your users against some sort of data store:
i.e., an LDAP database, an RDBMS, etc. There are already a few implementations of this for various back-ends
in twisted.cred.checkers.

Things you can Call Remotely

At this writing, there are three “flavors” of objects that can be accessed remotely through RemoteReference objects.
Each of these flavors has a rule for how the callRemote message is transformed into a local method call on the server.
In order to use one of these “flavors” , subclass them and name your published methods with the appropriate prefix.

• twisted.spread.pb.IPerspective implementors

This is the first interface we deal with. It is a “perspective” onto your PB application. Perspectives are slightly
special because they are usually the first object that a given user can access in your application (after they log
on). A user should only receive a reference to their own perspective. PB works hard to verify, as best it can, that
any method that can be called on a perspective directly is being called on behalf of the user who is represented
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by that perspective. (Services with unusual requirements for “on behalf of” , such as simulations with the ability
to posses another player’s avatar, are accomplished by providing indirected access to another user’s perspective.)

Perspectives are not usually serialized as remote references, so do not return an IPerspective-implementor di-
rectly.

The way most people will want to implement IPerspective is by subclassing pb.Avatar. Remotely accessible
methods on pb.Avatar instances are named with the perspective_ prefix.

• twisted.spread.pb.Referenceable

Referenceable objects are the simplest kind of PB object. You can call methods on them and return them from
methods to provide access to other objects’ methods.

However, when a method is called on a Referenceable, it’s not possible to tell who called it.

Remotely accessible methods on Referenceables are named with the remote_ prefix.

• twisted.spread.pb.Viewable

Viewable objects are remotely referenceable objects which have the additional requirement that it must be possi-
ble to tell who is calling them. The argument list to a Viewable’s remote methods is modified in order to include
the Perspective representing the calling user.

Remotely accessible methods on Viewables are named with the view_ prefix.

Things you can Copy Remotely

In addition to returning objects that you can call remote methods on, you can return structured copies of local objects.

There are 2 basic flavors that allow for copying objects remotely. Again, you can use these by subclassing them. In
order to specify what state you want to have copied when these are serialized, you can either use the Python default
__getstate__ or specialized method calls for that flavor.

• twisted.spread.pb.Copyable

This is the simpler kind of object that can be copied. Every time this object is returned from a method or passed
as an argument, it is serialized and unserialized.

Copyable provides a method you can override, getStateToCopyFor(perspective) , which allows you to
decide what an object will look like for the perspective who is requesting it. The perspective argument will
be the perspective which is either passing an argument or returning a result an instance of your Copyable class.

For security reasons, in order to allow a particular Copyable class to actually be copied, you must declare a
RemoteCopy handler for that Copyable subclass. The easiest way to do this is to declare both in the same
module, like so:

from twisted.spread import flavors
class Foo(flavors.Copyable):

pass
class RemoteFoo(flavors.RemoteCopy):

pass
flavors.setUnjellyableForClass(Foo, RemoteFoo)

In this case, each time a Foo is copied between peers, a RemoteFoo will be instantiated and populated with the
Foo’s state. If you do not do this, PB will complain that there have been security violations, and it may close the
connection.

• twisted.spread.pb.Cacheable
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Let me preface this with a warning: Cacheable may be hard to understand. The motivation for it may be unclear
if you don’t have some experience with real-world applications that use remote method calling of some kind.
Once you understand why you need it, what it does will likely seem simple and obvious, but if you get confused
by this, forget about it and come back later. It’s possible to use PB without understanding Cacheable at all.

Cacheable is a flavor which is designed to be copied only when necessary, and updated on the fly as changes are
made to it. When passed as an argument or a return value, if a Cacheable exists on the side of the connection it
is being copied to, it will be referred to by ID and not copied.

Cacheable is designed to minimize errors involved in replicating an object between multiple servers, especially
those related to having stale information. In order to do this, Cacheable automatically registers observers and
queries state atomically, together. You can override the method getStateToCacheAndObserveFor(self,
perspective, observer) in order to specify how your observers will be stored and updated.

Similar to getStateToCopyFor , getStateToCacheAndObserveFor gets passed a perspective. It also gets
passed an observer , which is a remote reference to a “secret” fourth referenceable flavor: RemoteCache .

A RemoteCache is simply the object that represents your Cacheable on the other side of the connection. It is
registered using the same method as RemoteCopy , above. RemoteCache is different, however, in that it will be
referenced by its peer. It acts as a Referenceable, where all methods prefixed with observe_ will be callable
remotely. It is recommended that your object maintain a list (note: library support for this is forthcoming!) of
observers, and update them using callRemote when the Cacheable changes in a way that should be noticeable
to its clients.

Finally, when all references to a Cacheable from a given perspective are lost,
stoppedObserving(perspective, observer) will be called on the Cacheable , with the same per-
spective/observer pair that getStateToCacheAndObserveFor was originally called with. Any cleanup remote
calls can be made there, as well as removing the observer object from any lists which it was previously in. Any
further calls to this observer object will be invalid.

2.1.39 Using Perspective Broker

Basic Example

The first example to look at is a complete (although somewhat trivial) application. It uses PBServerFactory() on
the server side, and PBClientFactory() on the client side.

pbsimple.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class Echoer(pb.Root):
def remote_echo(self, st):

print("echoing:", st)
return st

if __name__ == "__main__":
reactor.listenTCP(8789, pb.PBServerFactory(Echoer()))
reactor.run()
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pbsimpleclient.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.python import util
from twisted.spread import pb

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8789, factory)
d = factory.getRootObject()
d.addCallback(lambda object: object.callRemote("echo", "hello network"))
d.addCallback(lambda echo: "server echoed: " + echo)
d.addErrback(lambda reason: "error: " + str(reason.value))
d.addCallback(util.println)
d.addCallback(lambda _: reactor.stop())
reactor.run()

First we look at the server. This defines an Echoer class (derived from pb.Root ), with a method called remote_echo()
. pb.Root objects (because of their inheritance of pb.Referenceable , described later) can define methods with
names of the form remote_* ; a client which obtains a remote reference to that pb.Root object will be able to invoke
those methods.

The pb.Root -ish object is given to a pb.PBServerFactory () . This is a Factory object like any other: the
Protocol objects it creates for new connections know how to speak the PB protocol. The object you give to pb.
PBServerFactory() becomes the “root object” , which simply makes it available for the client to retrieve. The client
may only request references to the objects you want to provide it: this helps you implement your security model.
Because it is so common to export just a single object (and because a remote_* method on that one can return a
reference to any other object you might want to give out), the simplest example is one where the PBServerFactory
is given the root object, and the client retrieves it.

The client side uses pb.PBClientFactory to make a connection to a given port. This is a two-step process involving
opening a TCP connection to a given host and port and requesting the root object using .getRootObject() .

Because .getRootObject() has to wait until a network connection has been made and exchange some data, it may take
a while, so it returns a Deferred, to which the gotObject() callback is attached. (See the documentation on Deferring
Execution for a complete explanation of Deferred s). If and when the connection succeeds and a reference to the
remote root object is obtained, this callback is run. The first argument passed to the callback is a remote reference to
the distant root object. (you can give other arguments to the callback too, see the other parameters for .addCallback()
and .addCallbacks() ).

The callback does:

object.callRemote("echo", "hello network")

which causes the server’s .remote_echo() method to be invoked. (running .callRemote("boom") would cause .
remote_boom() to be run, etc). Again because of the delay involved, callRemote() returns a Deferred . Assuming
the remote method was run without causing an exception (including an attempt to invoke an unknown method), the
callback attached to that Deferred will be invoked with any objects that were returned by the remote method call.

In this example, the server’s Echoer object has a method invoked, exactly as if some code on the server side had done:

echoer_object.remote_echo("hello network")

and from the definition of remote_echo() we see that this just returns the same string it was given: “hello network” .
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From the client’s point of view, the remote call gets another Deferred object instead of that string. callRemote()
always returns a Deferred . This is why PB is described as a system for “translucent” remote method calls instead
of “transparent” ones: you cannot pretend that the remote object is really local. Trying to do so (as some other RPC
mechanisms do, coughCORBAcough) breaks down when faced with the asynchronous nature of the network. Using
Deferreds turns out to be a very clean way to deal with the whole thing.

The remote reference object (the one given to getRootObject() ‘s success callback) is an instance the
RemoteReference class. This means you can use it to invoke methods on the remote object that it refers to. Only
instances of RemoteReference are eligible for .callRemote() . The RemoteReference object is the one that lives
on the remote side (the client, in this case), not the local side (where the actual object is defined).

In our example, the local object is that Echoer() instance, which inherits from pb.Root , which inherits from pb.
Referenceable . It is that Referenceable class that makes the object eligible to be available for remote method
calls1 . If you have an object that is Referenceable, then any client that manages to get a reference to it can invoke any
remote_* methods they please.

Note: The only thing they can do is invoke those methods. In particular, they cannot access attributes. From a security
point of view, you control what they can do by limiting what the remote_* methods can do.

Also note: the other classes like Referenceable allow access to other methods, in particular perspective_* and
view_* may be accessed. Don’t write local-only methods with these names, because then remote callers will be able
to do more than you intended.

Also also note: the other classes like pb.Copyable do allow access to attributes, but you control which ones they can
see.

You don’t have to be a pb.Root to be remotely callable, but you do have to be pb.Referenceable . (Objects that
inherit from pb.Referenceable but not from pb.Root can be remotely called, but only pb.Root -ish objects can be
given to the PBServerFactory .)

Complete Example

Here is an example client and server which uses pb.Referenceable as a root object and as the result of a remotely
exposed method. In each context, methods can be invoked on the exposed Referenceable instance. In this example,
the initial root object has a method that returns a reference to the second object.

pb1server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.spread import pb

class Two(pb.Referenceable):
def remote_three(self, arg):

print("Two.three was given", arg)

(continues on next page)

1 There are a few other classes that can bestow this ability, but pb.Referenceable is the easiest to understand; see ‘flavors’ below for details on the
others.
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(continued from previous page)

class One(pb.Root):
def remote_getTwo(self):

two = Two()
print("returning a Two called", two)
return two

from twisted.internet import reactor

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

pb1client.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.getRootObject()
def1.addCallbacks(got_obj1, err_obj1)
reactor.run()

def err_obj1(reason):
print("error getting first object", reason)
reactor.stop()

def got_obj1(obj1):
print("got first object:", obj1)
print("asking it to getTwo")
def2 = obj1.callRemote("getTwo")
def2.addCallbacks(got_obj2)

def got_obj2(obj2):
print("got second object:", obj2)
print("telling it to do three(12)")
obj2.callRemote("three", 12)

main()

pb.PBClientFactory.getRootObject will handle all the details of waiting for the creation of a connection. It
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returns a Deferred , which will have its callback called when the reactor connects to the remote server and pb.
PBClientFactory gets the root, and have its errback called when the object-connection fails for any reason, whether
it was host lookup failure, connection refusal, or some server-side error.

The root object has a method called remote_getTwo , which returns the Two() instance. On the client end, the callback
gets a RemoteReference to that instance. The client can then invoke two’s .remote_three() method.

RemoteReference objects have one method which is their purpose for being: callRemote . This method allows
you to call a remote method on the object being referred to by the Reference. RemoteReference.callRemote ,
like pb.PBClientFactory.getRootObject , returns a Deferred . When a response to the method-call being sent
arrives, the Deferred ‘s callback or errback will be made, depending on whether an error occurred in processing
the method call.

You can use this technique to provide access to arbitrary sets of objects. Just remember that any object that might
get passed “over the wire” must inherit from Referenceable (or one of the other flavors). If you try to pass a non-
Referenceable object (say, by returning one from a remote_* method), you’ll get an InsecureJelly exception2 .

References can come back to you

If your server gives a reference to a client, and then that client gives the reference back to the server, the server will
wind up with the same object it gave out originally. The serialization layer watches for returning reference identifiers
and turns them into actual objects. You need to stay aware of where the object lives: if it is on your side, you do actual
method calls. If it is on the other side, you do .callRemote()3 .

pb2server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class Two(pb.Referenceable):
def remote_print(self, arg):

print("two.print was given", arg)

class One(pb.Root):
def __init__(self, two):

# pb.Root.__init__(self) # pb.Root doesn't implement __init__
self.two = two

def remote_getTwo(self):
print("One.getTwo(), returning my two called", self.two)
return self.two

(continues on next page)

2 This can be overridden, by subclassing one of the Serializable flavors and defining custom serialization code for your class. See Passing Complex
Types for details.

3 The binary nature of this local vs. remote scheme works because you cannot give RemoteReferences to a third party. If you could, then your
object A could go to B, B could give it to C, C might give it back to you, and you would be hard pressed to tell if the object lived in C’s memory
space, in B’s, or if it was really your own object, tarnished and sullied after being handed down like a really ugly picture that your great aunt owned
and which nobody wants but which nobody can bear to throw out. Ok, not really like that, but you get the idea.
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def remote_checkTwo(self, newtwo):
print("One.checkTwo(): comparing my two", self.two)
print("One.checkTwo(): against your two", newtwo)
if self.two == newtwo:

print("One.checkTwo(): our twos are the same")

two = Two()
root_obj = One(two)
reactor.listenTCP(8800, pb.PBServerFactory(root_obj))
reactor.run()

pb2client.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

def main():
foo = Foo()
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
factory.getRootObject().addCallback(foo.step1)
reactor.run()

# keeping globals around is starting to get ugly, so we use a simple class
# instead. Instead of hooking one function to the next, we hook one method
# to the next.

class Foo:
def __init__(self):

self.oneRef = None

def step1(self, obj):
print("got one object:", obj)
self.oneRef = obj
print("asking it to getTwo")
self.oneRef.callRemote("getTwo").addCallback(self.step2)

def step2(self, two):
print("got two object:", two)
print("giving it back to one")
print("one is", self.oneRef)

(continues on next page)
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self.oneRef.callRemote("checkTwo", two)

main()

The server gives a Two() instance to the client, who then returns the reference back to the server. The server compares
the “two” given with the “two” received and shows that they are the same, and that both are real objects instead of
remote references.

A few other techniques are demonstrated in pb2client.py . One is that the callbacks are added with .addCallback
instead of .addCallbacks . As you can tell from the Deferred documentation, .addCallback is a simplified form
which only adds a success callback. The other is that to keep track of state from one callback to the next (the remote
reference to the main One() object), we create a simple class, store the reference in an instance thereof, and point the
callbacks at a sequence of bound methods. This is a convenient way to encapsulate a state machine. Each response
kicks off the next method, and any data that needs to be carried from one state to the next can simply be saved as an
attribute of the object.

Remember that the client can give you back any remote reference you’ve given them. Don’t base your zillion-dollar
stock-trading clearinghouse server on the idea that you trust the client to give you back the right reference. The security
model inherent in PB means that they can only give you back a reference that you’ve given them for the current con-
nection (not one you’ve given to someone else instead, nor one you gave them last time before the TCP session went
down, nor one you haven’t yet given to the client), but just like with URLs and HTTP cookies, the particular reference
they give you is entirely under their control.

References to client-side objects

Anything that’s Referenceable can get passed across the wire, in either direction . The “client” can give a reference to
the “server” , and then the server can use .callRemote() to invoke methods on the client end. This fuzzes the distinction
between “client” and “server” : the only real difference is who initiates the original TCP connection; after that it’s all
symmetric.

pb3server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class One(pb.Root):
def remote_takeTwo(self, two):

print("received a Two called", two)
print("telling it to print(12)")
two.callRemote("print", 12)

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

pb3client.py
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#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class Two(pb.Referenceable):
def remote_print(self, arg):

print("Two.print() called with", arg)

def main():
two = Two()
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.getRootObject()
def1.addCallback(got_obj, two) # hands our 'two' to the callback
reactor.run()

def got_obj(obj, two):
print("got One:", obj)
print("giving it our two")
obj.callRemote("takeTwo", two)

main()

In this example, the client gives a reference to its own object to the server. The server then invokes a remote method
on the client-side object.

Raising Remote Exceptions

Everything so far has covered what happens when things go right. What about when they go wrong? The Python Way
is to raise an exception of some sort. The Twisted Way is the same.

The only special thing you do is to define your Exception subclass by deriving it from pb.Error . When any remotely-
invokable method (like remote_* or perspective_* ) raises a pb.Error -derived exception, a serialized form of that
Exception object will be sent back over the wire4 . The other side (which did callRemote ) will have the “errback”
callback run with a Failure object that contains a copy of the exception object. This Failure object can be queried
to retrieve the error message and a stack traceback.

Failure is a special class, defined in twisted/python/failure.py , created to make it easier to handle asyn-
chronous exceptions. Just as exception handlers can be nested, errback functions can be chained. If one errback can’t
handle the particular type of failure, it can be “passed along” to a errback handler further down the chain.

For simple purposes, think of the Failure as just a container for remotely-thrown Exception objects. To extract the
string that was put into the exception, use its .getErrorMessage() method. To get the type of the exception (as a

4 To be precise, the Failure will be sent if any exception is raised, not just pb.Error-derived ones. But the server will print ugly error messages if
you raise ones that aren’t derived from pb.Error.
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string), look at its .type attribute. The stack traceback is available too. The intent is to let the errback function get just
as much information about the exception as Python’s normal try: clauses do, even though the exception occurred in
somebody else’s memory space at some unknown time in the past.

exc_server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class MyError(pb.Error):
"""This is an Expected Exception. Something bad happened."""

pass

class MyError2(Exception):
"""This is an Unexpected Exception. Something really bad happened."""

pass

class One(pb.Root):
def remote_broken(self):

msg = "fall down go boom"
print("raising a MyError exception with data '%s'" % msg)
raise MyError(msg)

def remote_broken2(self):
msg = "hadda owie"
print("raising a MyError2 exception with data '%s'" % msg)
raise MyError2(msg)

def main():
reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

if __name__ == "__main__":
main()

exc_client.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

(continues on next page)
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from twisted.internet import reactor
from twisted.spread import pb

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
d = factory.getRootObject()
d.addCallbacks(got_obj)
reactor.run()

def got_obj(obj):
# change "broken" into "broken2" to demonstrate an unhandled exception
d2 = obj.callRemote("broken")
d2.addCallback(working)
d2.addErrback(broken)

def working():
print("erm, it wasn't *supposed* to work..")

def broken(reason):
print("got remote Exception")
# reason should be a Failure (or subclass) holding the MyError exception
print(" .__class__ =", reason.__class__)
print(" .getErrorMessage() =", reason.getErrorMessage())
print(" .type =", reason.type)
reactor.stop()

main()

$ ./exc_client.py
got remote Exception
.__class__ = twisted.spread.pb.CopiedFailure
.getErrorMessage() = fall down go boom
.type = __main__.MyError
Main loop terminated.

Oh, and what happens if you raise some other kind of exception? Something that isn’t subclassed from pb.Error
? Well, those are called “unexpected exceptions” , which make Twisted think that something has really gone wrong.
These will raise an exception on the server side. This won’t break the connection (the exception is trapped, just like
most exceptions that occur in response to network traffic), but it will print out an unsightly stack trace on the server’s
stderr with a message that says “Peer Will Receive PB Traceback” , just as if the exception had happened outside a
remotely-invokable method. (This message will go the current log target, if log.startLogging was used to redirect
it). The client will get the same Failure object in either case, but subclassing your exception from pb.Error is the
way to tell Twisted that you expect this sort of exception, and that it is ok to just let the client handle it instead of also
asking the server to complain. Look at exc_client.py and change it to invoke broken2() instead of broken() to
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see the change in the server’s behavior.

If you don’t add an errback function to the Deferred , then a remote exception will still send a Failure object back
over, but it will get lodged in the Deferred with nowhere to go. When that Deferred finally goes out of scope, the
side that did callRemote will emit a message about an “Unhandled error in Deferred” , along with an ugly stack trace.
It can’t raise an exception at that point (after all, the callRemote that triggered the problem is long gone), but it will
emit a traceback. So be a good programmer and always add errback handlers, even if they are just calls to log.err .

Try/Except blocks and Failure.trap

To implement the equivalent of the Python try/except blocks (which can trap particular kinds of exceptions and pass oth-
ers “up” to higher-level try/except blocks), you can use the .trap() method in conjunction with multiple errback
handlers on the Deferred . Re-raising an exception in an errback handler serves to pass that new exception to the
next handler in the chain. The trap method is given a list of exceptions to look for, and will re-raise anything that isn’t
on the list. Instead of passing unhandled exceptions “up” to an enclosing try block, this has the effect of passing the
exception “off” to later errback handlers on the same Deferred . The trap calls are used in chained errbacks to test
for each kind of exception in sequence.

trap_server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.spread import pb

class MyException(pb.Error):
pass

class One(pb.Root):
def remote_fooMethod(self, arg):

if arg == "panic!":
raise MyException

return "response"

def remote_shutdown(self):
reactor.stop()

reactor.listenTCP(8800, pb.PBServerFactory(One()))
reactor.run()

trap_client.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

(continues on next page)
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from twisted.internet import reactor
from twisted.python import log
from twisted.spread import jelly, pb

class MyException(pb.Error):
pass

class MyOtherException(pb.Error):
pass

class ScaryObject:
# not safe for serialization
pass

def worksLike(obj):
# the callback/errback sequence in class One works just like an
# asynchronous version of the following:
try:

response = obj.callMethod(name, arg)
except pb.DeadReferenceError:

print(" stale reference: the client disconnected or crashed")
except jelly.InsecureJelly:

print(" InsecureJelly: you tried to send something unsafe to them")
except (MyException, MyOtherException):

print(" remote raised a MyException") # or MyOtherException
except BaseException:

print(" something else happened")
else:

print(" method successful, response:", response)

class One:
def worked(self, response):

print(" method successful, response:", response)

def check_InsecureJelly(self, failure):
failure.trap(jelly.InsecureJelly)
print(" InsecureJelly: you tried to send something unsafe to them")
return None

def check_MyException(self, failure):
which = failure.trap(MyException, MyOtherException)
if which == MyException:

print(" remote raised a MyException")
else:

print(" remote raised a MyOtherException")
return None

(continues on next page)
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def catch_everythingElse(self, failure):
print(" something else happened")
log.err(failure)
return None

def doCall(self, explanation, arg):
print(explanation)
try:

deferred = self.remote.callRemote("fooMethod", arg)
deferred.addCallback(self.worked)
deferred.addErrback(self.check_InsecureJelly)
deferred.addErrback(self.check_MyException)
deferred.addErrback(self.catch_everythingElse)

except pb.DeadReferenceError:
print(" stale reference: the client disconnected or crashed")

def callOne(self):
self.doCall("callOne: call with safe object", "safe string")

def callTwo(self):
self.doCall("callTwo: call with dangerous object", ScaryObject())

def callThree(self):
self.doCall("callThree: call that raises remote exception", "panic!")

def callShutdown(self):
print("telling them to shut down")
self.remote.callRemote("shutdown")

def callFour(self):
self.doCall("callFour: call on stale reference", "dummy")

def got_obj(self, obj):
self.remote = obj
reactor.callLater(1, self.callOne)
reactor.callLater(2, self.callTwo)
reactor.callLater(3, self.callThree)
reactor.callLater(4, self.callShutdown)
reactor.callLater(5, self.callFour)
reactor.callLater(6, reactor.stop)

factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(One().got_obj)
reactor.run()

$ ./trap_client.py
callOne: call with safe object
method successful, response: response
callTwo: call with dangerous object

(continues on next page)
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InsecureJelly: you tried to send something unsafe to them
callThree: call that raises remote exception
remote raised a MyException
telling them to shut down
callFour: call on stale reference
stale reference: the client disconnected or crashed

In this example, callTwo tries to send an instance of a locally-defined class through callRemote . The default security
model implemented by jelly on the remote end will not allow unknown classes to be unserialized (i.e. taken off the
wire as a stream of bytes and turned back into an object: a living, breathing instance of some class): one reason is that
it does not know which local class ought to be used to create an instance that corresponds to the remote object5 .

The receiving end of the connection gets to decide what to accept and what to reject. It indicates its disapproval by
raising a jelly.InsecureJelly exception. Because it occurs at the remote end, the exception is returned to the caller
asynchronously, so an errback handler for the associated Deferred is run. That errback receives a Failure which
wraps the InsecureJelly .

Remember that trap re-raises exceptions that it wasn’t asked to look for. You can only check for one set of exceptions
per errback handler: all others must be checked in a subsequent handler. check_MyException shows how multiple
kinds of exceptions can be checked in a single errback: give a list of exception types to trap , and it will return the
matching member. In this case, the kinds of exceptions we are checking for (MyException and MyOtherException
) may be raised by the remote end: they inherit from pb.Error .

The handler can return None to terminate processing of the errback chain (to be precise, it switches to the callback that
follows the errback; if there is no callback then processing terminates). It is a good idea to put an errback that will catch
everything (no trap tests, no possible chance of raising more exceptions, always returns None ) at the end of the chain.
Just as with regular try: except: handlers, you need to think carefully about ways in which your errback handlers
could themselves raise exceptions. The extra importance in an asynchronous environment is that an exception that falls
off the end of the Deferred will not be signalled until that Deferred goes out of scope, and at that point may only
cause a log message (which could even be thrown away if log.startLogging is not used to point it at stdout or a log
file). In contrast, a synchronous exception that is not handled by any other except: block will very visibly terminate
the program immediately with a noisy stack trace.

callFour shows another kind of exception that can occur while using callRemote : pb.DeadReferenceError .
This one occurs when the remote end has disconnected or crashed, leaving the local side with a stale reference. This
kind of exception happens to be reported right away (XXX: is this guaranteed? probably not), so must be caught in a
traditional synchronous try: except pb.DeadReferenceError block.

Yet another kind that can occur is a pb.PBConnectionLost exception. This occurs (asynchronously) if the connection
was lost while you were waiting for a callRemote call to complete. When the line goes dead, all pending requests
are terminated with this exception. Note that you have no way of knowing whether the request made it to the other end
or not, nor how far along in processing it they had managed before the connection was lost. XXX: explain transaction
semantics, find a decent reference.

5 The naive approach of simply doing import SomeClass to match a remote caller who claims to have an object of type “SomeClass” could have
nasty consequences for some modules that do significant operations in their __init__ methods (think telnetlib.Telnet(host='localhost',
port='chargen') , or even more powerful classes that you have available in your server program). Allowing a remote entity to create arbitrary
classes in your namespace is nearly equivalent to allowing them to run arbitrary code.

The InsecureJelly exception arises because the class being sent over the wire has not been registered with the serialization layer (known as
jelly ). The easiest way to make it possible to copy entire class instances over the wire is to have them inherit from pb.Copyable , and then to use
setUnjellyableForClass(remoteClass, localClass) on the receiving side. See Passing Complex Types for an example.
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2.1.40 Managing Clients of Perspectives

Author
Kevin Turner

Overview

In all the IPerspective uses we have shown so far, we ignored the mind argument and created a new Avatar for
every connection. This is usually an easy design choice, and it works well for simple cases.

In more complicated cases, for example an Avatar that represents a player object which is persistent in the game
universe, we will want connections from the same player to use the same Avatar .

Another thing which is necessary in more complicated scenarios is notifying a player asynchronously. While it is
possible, of course, to allow a player to call perspective_remoteListener(referencable) that would mean both
duplication of code and a higher latency in logging in, both bad.

In previous sections all realms looked to be identical. In this one we will show the usefulness of realms in accomplishing
those two objectives.

Managing Avatars

The simplest way to manage persistent avatars is to use a straight-forward caching mechanism:

from zope.interface import implementer

class SimpleAvatar(pb.Avatar):
greetings = 0
def __init__(self, name):

self.name = name
def perspective_greet(self):

self.greetings += 1
return "<%d>hello %s" % (self.greetings, self.name)

@implementer(portal.IRealm)
class CachingRealm:

def __init__(self):
self.avatars = {}

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.avatars:

p = self.avatars[avatarId]
else:

p = self.avatars[avatarId] = SimpleAvatar(avatarId)
return pb.IPerspective, p, lambda:None

This gives us a perspective which counts the number of greetings it sent its client. Implementing a caching strategy,
as opposed to generating a realm with the correct avatars already in it, is usually easier. This makes adding new
checkers to the portal, or adding new users to a checker database, transparent. Otherwise, careful synchronization is
needed between the checker and avatar is needed (much like the synchronization between UNIX’s /etc/shadow and
/etc/passwd ).
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Sometimes, however, an avatar will need enough per-connection state that it would be easier to generate a new avatar
and cache something else. Here is an example of that:

from zope.interface import implementer

class Greeter:
greetings = 0
def hello(self):

self.greetings += 1
return "<%d>hello" % (self.greetings, self.name)

class SimpleAvatar(pb.Avatar):
def __init__(self, name, greeter):

self.name = name
self.greeter = greeter

def perspective_greet(self):
return self.greeter.hello()+' '+self.name

@implementer(portal.IRealm)
class CachingRealm:

def __init__(self):
self.greeters = {}

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.greeters:

p = self.greeters[avatarId]
else:

p = self.greeters[avatarId] = Greeter()
return pb.IPerspective, SimpleAvatar(avatarId, p), lambda:None

It might seem tempting to use this pattern to have an avatar which is notified of new connections. However, the problems
here are twofold: it would lead to a thin class which needs to forward all of its methods, and it would be impossible to
know when disconnections occur. Luckily, there is a better pattern:

from zope.interface import implementer

class SimpleAvatar(pb.Avatar):
greetings = 0
connections = 0
def __init__(self, name):

self.name = name
def connect(self):

self.connections += 1
def disconnect(self):

self.connections -= 1
def perspective_greet(self):

self.greetings += 1
return "<%d>hello %s" % (self.greetings, self.name)

@implementer(portal.IRealm)
class CachingRealm:

def __init__(self):
self.avatars = {}

(continues on next page)
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def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.avatars:

p = self.avatars[avatarId]
else:

p = self.avatars[avatarId] = SimpleAvatar(avatarId)
p.connect()
return pb.IPerspective, p, p.disconnect

It is possible to use such a pattern to define an arbitrary limit for the number of concurrent connections:

from zope.interface import implementer

class SimpleAvatar(pb.Avatar):
greetings = 0
connections = 0
def __init__(self, name):

self.name = name
def connect(self):

self.connections += 1
def disconnect(self):

self.connections -= 1
def perspective_greet(self):

self.greetings += 1
return "<%d>hello %s" % (self.greetings, self.name)

@implementer(portal.IRealm)
class CachingRealm:

def __init__(self, max=1):
self.avatars = {}
self.max = max

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
if avatarId in self.avatars:

p = self.avatars[avatarId]
else:

p = self.avatars[avatarId] = SimpleAvatar(avatarId)
if p.connections >= self.max:

raise ValueError("too many connections")
p.connect()
return pb.IPerspective, p, p.disconnect
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Managing Clients

So far, all our realms have ignored the mind argument. In the case of PB, the mind is an object supplied by the remote
login method – usually, when it passes over the wire, it becomes a pb.RemoteReference . This object allows sending
messages to the client as soon as the connection is established and authenticated.

Here is a simple remote-clock application which shows the usefulness of the mind argument:

from zope.interface import implementer

class SimpleAvatar(pb.Avatar):
def __init__(self, client):

self.s = internet.TimerService(1, self.telltime)
self.s.startService()
self.client = client

def telltime(self):
self.client.callRemote("notifyTime", time.time())

def perspective_setperiod(self, period):
self.s.stopService()
self.s = internet.TimerService(period, self.telltime)
self.s.startService()

def logout(self):
self.s.stopService()

@implementer(portal.IRealm)
class Realm:

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces: raise NotImplementedError
p = SimpleAvatar(mind)
return pb.IPerspective, p, p.logout

In more complicated situations, you might want to cache the avatars and give each one a set of “current clients” or
something similar.

2.1.41 PB Copyable: Passing Complex Types

Overview

This chapter focuses on how to use PB to pass complex types (specifically class instances) to and from a remote process.
The first section is on simply copying the contents of an object to a remote process (pb.Copyable ). The second covers
how to copy those contents once, then update them later when they change (Cacheable ).

Motivation

From the previous chapter , you’ve seen how to pass basic types to a remote process, by using them in the arguments or
return values of a callRemote function. However, if you’ve experimented with it, you may have discovered problems
when trying to pass anything more complicated than a primitive int/list/dict/string type, or another pb.Referenceable
object. At some point you want to pass entire objects between processes, instead of having to reduce them down to
dictionaries on one end and then re-instantiating them on the other.
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Passing Objects

The most obvious and straightforward way to send an object to a remote process is with something like the following
code. It also happens that this code doesn’t work, as will be explained below.

class LilyPond:
def __init__(self, frogs):
self.frogs = frogs

pond = LilyPond(12)
ref.callRemote("sendPond", pond)

If you try to run this, you might hope that a suitable remote end which implements the remote_sendPond method
would see that method get invoked with an instance from the LilyPond class. But instead, you’ll encounter the dreaded
InsecureJelly exception. This is Twisted’s way of telling you that you’ve violated a security restriction, and that the
receiving end refuses to accept your object.

Security Options

What’s the big deal? What’s wrong with just copying a class into another process’ namespace?

Reversing the question might make it easier to see the issue: what is the problem with accepting a stranger’s request to
create an arbitrary object in your local namespace? The real question is how much power you are granting them: what
actions can they convince you to take on the basis of the bytes they are sending you over that remote connection.

Objects generally represent more power than basic types like strings and dictionaries because they also contain (or
reference) code, which can modify other data structures when executed. Once previously-trusted data is subverted, the
rest of the program is compromised.

The built-in Python “batteries included” classes are relatively tame, but you still wouldn’t want to let a foreign pro-
gram use them to create arbitrary objects in your namespace or on your computer. Imagine a protocol that involved
sending a file-like object with a read() method that was supposed to used later to retrieve a document. Then imagine
what if that object were created with os.fdopen("~/.gnupg/secring.gpg") . Or an instance of telnetlib.
Telnet("localhost", "chargen") .

Classes you’ve written for your own program are likely to have far more power. They may run code during __init__
, or even have special meaning simply because of their existence. A program might have User objects to represent
user accounts, and have a rule that says all User objects in the system are referenced when authorizing a login session.
(In this system, User.__init__ would probably add the object to a global list of known users). The simple act of
creating an object would give access to somebody. If you could be tricked into creating a bad object, an unauthorized
user would get access.

So object creation needs to be part of a system’s security design. The dotted line between “trusted inside” and “untrusted
outside” needs to describe what may be done in response to outside events. One of those events is the receipt of an object
through a PB remote procedure call, which is a request to create an object in your “inside” namespace. The question
is what to do in response to it. For this reason, you must explicitly specify what remote classes will be accepted, and
how their local representatives are to be created.

292 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

What class to use?

Another basic question to answer before we can do anything useful with an incoming serialized object is: what class
should we create? The simplistic answer is to create the “same kind” that was serialized on the sender’s end of the
wire, but this is not as easy or as straightforward as you might think. Remember that the request is coming from a
different program, using a potentially different set of class libraries. In fact, since PB has also been implemented in
Java, Emacs-Lisp, and other languages, there’s no guarantee that the sender is even running Python! All we know on
the receiving end is a list of two things which describe the instance they are trying to send us: the name of the class,
and a representation of the contents of the object.

PB lets you specify the mapping from remote class names to local classes with the setUnjellyableForClass func-
tion1 .

This function takes a remote/sender class reference (either the fully-qualified name as used by the sending end, or a
class object from which the name can be extracted), and a local/recipient class (used to create the local representation
for incoming serialized objects). Whenever the remote end sends an object, the class name that they transmit is looked
up in the table controlled by this function. If a matching class is found, it is used to create the local object. If not, you
get the InsecureJelly exception.

In general you expect both ends to share the same codebase: either you control the program that is running on both ends
of the wire, or both programs share some kind of common language that is implemented in code which exists on both
ends. You wouldn’t expect them to send you an object of the MyFooziWhatZit class unless you also had a definition
for that class. So it is reasonable for the Jelly layer to reject all incoming classes except the ones that you have explicitly
marked with setUnjellyableForClass . But keep in mind that the sender’s idea of a User object might differ
from the recipient’s, either through namespace collisions between unrelated packages, version skew between nodes
that haven’t been updated at the same rate, or a malicious intruder trying to cause your code to fail in some interesting
or potentially vulnerable way.

pb.Copyable

Ok, enough of this theory. How do you send a fully-fledged object from one side to the other?

copy_sender.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.internet import reactor
from twisted.python import log
from twisted.spread import jelly, pb

class LilyPond:
def setStuff(self, color, numFrogs):

self.color = color
(continues on next page)

1 Note that, in this context, “unjelly” is a verb with the opposite meaning of “jelly” . The verb “to jelly” means to serialize an object or data
structure into a sequence of bytes (or other primitive transmittable/storable representation), while “to unjelly” means to unserialize the bytestream
into a live object in the receiver’s memory space. “Unjellyable” is a noun, (not an adjective), referring to the class that serves as a destination or
recipient of the unjellying process. “A is unjellyable into B” means that a serialized representation A (of some remote object) can be unserialized
into a local object of type B. It is these objects “B” that are the “Unjellyable” second argument of the setUnjellyableForClass function. In
particular, “unjellyable” does not mean “cannot be jellied” . Unpersistable means “not persistable” , but “unjelly” , “unserialize” , and “unpickle”
mean to reverse the operations of “jellying” , “serializing” , and “pickling” .
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self.numFrogs = numFrogs

def countFrogs(self):
print("%d frogs" % self.numFrogs)

class CopyPond(LilyPond, pb.Copyable):
pass

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print("pond arrived", response)
reactor.stop()

def notOk(self, failure):
print("error during takePond:")
if failure.type == jelly.InsecureJelly:

print(" InsecureJelly")
else:

print(failure)
reactor.stop()
return None

def main():
from copy_sender import CopyPond # so it's not __main__.CopyPond

pond = CopyPond()
pond.setStuff("green", 7)
pond.countFrogs()
# class name:
print(".".join([pond.__class__.__module__, pond.__class__.__name__]))

sender = Sender(pond)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == "__main__":
main()
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copy_receiver.tac

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
PB copy receiver example.

This is a Twisted Application Configuration (tac) file. Run with e.g.
twistd -ny copy_receiver.tac

See the twistd(1) man page or
http://twistedmatrix.com/documents/current/howto/application for details.
"""

import sys

if __name__ == "__main__":
print(__doc__)
sys.exit(1)

from copy_sender import CopyPond, LilyPond

from twisted.application import internet, service
from twisted.internet import reactor
from twisted.python import log
from twisted.spread import pb

# log.startLogging(sys.stdout)

class ReceiverPond(pb.RemoteCopy, LilyPond):
pass

pb.setUnjellyableForClass(CopyPond, ReceiverPond)

class Receiver(pb.Root):
def remote_takePond(self, pond):

print(" got pond:", pond)
pond.countFrogs()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver())).setServiceParent(

service.IServiceCollection(application)
)

2.1. Developer Guides 295



Twisted Documentation, Release 23.8.0

The sending side has a class called LilyPond . To make this eligible for transport through callRemote (either as
an argument, a return value, or something referenced by either of those [like a dictionary value]), it must inherit
from one of the four Serializable classes. In this section, we focus on Copyable . The copyable subclass of
LilyPond is called CopyPond . We create an instance of it and send it through callRemote as an argument to the re-
ceiver’s remote_takePond method. The Jelly layer will serialize (“jelly” ) that object as an instance with a class name
of”copy_sender.CopyPond” and some chunk of data that represents the object’s state. pond.__class__.__module__
and pond.__class__.__name__ are used to derive the class name string. The object’s getStateToCopy method is
used to get the state: this is provided by pb.Copyable , and the default just retrieves self.__dict__ . This works
just like the optional __getstate__ method used by pickle . The pair of name and state are sent over the wire to the
receiver.

The receiving end defines a local class named ReceiverPond to represent incoming LilyPond instances. This class
derives from the sender’s LilyPond class (with a fully-qualified name of copy_sender.LilyPond ), which specifies
how we expect it to behave. We trust that this is the same LilyPond class as the sender used. (At the very least,
we hope ours will be able to accept a state created by theirs). It also inherits from pb.RemoteCopy , which is a
requirement for all classes that act in this local-representative role (those which are given to the second argument of
setUnjellyableForClass ). RemoteCopy provides the methods that tell the Jelly layer how to create the local object
from the incoming serialized state.

Then setUnjellyableForClass is used to register the two classes. This has two effects: instances of the remote class
(the first argument) will be allowed in through the security layer, and instances of the local class (the second argument)
will be used to contain the state that is transmitted when the sender serializes the remote object.

When the receiver unserializes (“unjellies” ) the object, it will create an instance of the local ReceiverPond class,
and hand the transmitted state (usually in the form of a dictionary) to that object’s setCopyableState method.
This acts just like the __setstate__ method that pickle uses when unserializing an object. getStateToCopy
/setCopyableState are distinct from __getstate__ /__setstate__ to allow objects to be persisted (across time)
differently than they are transmitted (across [memory]space).

When this is run, it produces the following output:

[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactory instance at
0x406159cc>
[Broker,0,127.0.0.1] got pond: <__builtin__.ReceiverPond instance at
0x406ec5ec>
[Broker,0,127.0.0.1] 7 frogs

$ ./copy_sender.py
7 frogs
copy_sender.CopyPond
pond arrived safe and sound
Main loop terminated.
$
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Controlling the Copied State

By overriding getStateToCopy and setCopyableState , you can control how the object is transmitted over the wire.
For example, you might want perform some data-reduction: pre-compute some results instead of sending all the raw
data over the wire. Or you could replace references to a local object on the sender’s side with markers before sending,
then upon receipt replace those markers with references to a receiver-side proxy that could perform the same operations
against a local cache of data.

Another good use for getStateToCopy is to implement “local-only” attributes: data that is only accessible by the
local process, not to any remote users. For example, a .password attribute could be removed from the object state
before sending to a remote system. Combined with the fact that Copyable objects return unchanged from a round
trip, this could be used to build a challenge-response system (in fact PB does this with pb.Referenceable objects to
implement authorization as described here ).

Whatever getStateToCopy returns from the sending object will be serialized and sent over the wire;
setCopyableState gets whatever comes over the wire and is responsible for setting up the state of the object it
lives in.

copy2_classes.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.spread import pb

class FrogPond:
def __init__(self, numFrogs, numToads):

self.numFrogs = numFrogs
self.numToads = numToads

def count(self):
return self.numFrogs + self.numToads

class SenderPond(FrogPond, pb.Copyable):
def getStateToCopy(self):

d = self.__dict__.copy()
d["frogsAndToads"] = d["numFrogs"] + d["numToads"]
del d["numFrogs"]
del d["numToads"]
return d

class ReceiverPond(pb.RemoteCopy):
def setCopyableState(self, state):

self.__dict__ = state

def count(self):
return self.frogsAndToads

pb.setUnjellyableForClass(SenderPond, ReceiverPond)

2.1. Developer Guides 297



Twisted Documentation, Release 23.8.0

copy2_sender.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from copy2_classes import SenderPond

from twisted.internet import reactor
from twisted.python import log
from twisted.spread import jelly, pb

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, obj):
d = obj.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print("pond arrived", response)
reactor.stop()

def notOk(self, failure):
print("error during takePond:")
if failure.type == jelly.InsecureJelly:

print(" InsecureJelly")
else:

print(failure)
reactor.stop()
return None

def main():
pond = SenderPond(3, 4)
print("count %d" % pond.count())

sender = Sender(pond)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == "__main__":
main()

copy2_receiver.py
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#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import copy2_classes # needed to get ReceiverPond registered with Jelly

from twisted.application import internet, service
from twisted.internet import reactor
from twisted.spread import pb

class Receiver(pb.Root):
def remote_takePond(self, pond):

print(" got pond:", pond)
print(" count %d" % pond.count())
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver())).setServiceParent(

service.IServiceCollection(application)
)

In this example, the classes are defined in a separate source file, which also sets up the binding between them. The
SenderPond and ReceiverPond are unrelated save for this binding: they happen to implement the same methods, but
use different internal instance variables to accomplish them.

The recipient of the object doesn’t even have to import the class definition into their namespace. It is sufficient that they
import the class definition (and thus execute the setUnjellyableForClass statement). The Jelly layer remembers
the class definition until a matching object is received. The sender of the object needs the definition, of course, to create
the object in the first place.

When run, the copy2 example emits the following:

$ twistd -n -y copy2_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactory instance at
0x40604b4c>
[Broker,0,127.0.0.1] got pond: <copy2_classes.ReceiverPond instance at
0x406eb2ac>
[Broker,0,127.0.0.1] count 7

$ ./copy2_sender.py
count 7
pond arrived safe and sound
Main loop terminated.
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Things To Watch Out For

• The first argument to setUnjellyableForClass must refer to the class as known by the sender . The sender
has no way of knowing about how your local import statements are set up, and Python’s flexible namespace
semantics allow you to access the same class through a variety of different names. You must match whatever the
sender does. Having both ends import the class from a separate file, using a canonical module name (no “sibling
imports” ), is a good way to get this right, especially when both the sending and the receiving classes are defined
together, with the setUnjellyableForClass immediately following them.

• The class that is sent must inherit from pb.Copyable . The class that is registered to receive it must inherit from
pb.RemoteCopy2 .

• The same class can be used to send and receive. Just have it inherit from both pb.Copyable and pb.RemoteCopy
. This will also make it possible to send the same class symmetrically back and forth over the wire. But
don’t get confused about when it is coming (and using setCopyableState ) versus when it is going (using
getStateToCopy ).

• InsecureJelly exceptions are raised by the receiving end. They will be delivered asynchronously to an
errback handler. If you do not add one to the Deferred returned by callRemote , then you will never re-
ceive notification of the problem.

• The class that is derived from pb.RemoteCopy will be created using a constructor __init__ method that
takes no arguments. All setup must be performed in the setCopyableState method. As the docstring on
RemoteCopy says, don’t implement a constructor that requires arguments in a subclass of RemoteCopy .

More Information

• pb.Copyable is mostly implemented in twisted.spread.flavors , and the docstrings there are the best
source of additional information.

• Copyable is also used in twisted.web.distrib to deliver HTTP requests to other programs for rendering,
allowing subtrees of URL space to be delegated to multiple programs (on multiple machines).

pb.Cacheable

Sometimes the object you want to send to the remote process is big and slow. “big” means it takes a lot of data (storage,
network bandwidth, processing) to represent its state. “slow” means that state doesn’t change very frequently. It may
be more efficient to send the full state only once, the first time it is needed, then afterwards only send the differences
or changes in state whenever it is modified. The pb.Cacheable class provides a framework to implement this.

pb.Cacheable is derived from pb.Copyable , so it is based upon the idea of an object’s state being captured on the
sending side, and then turned into a new object on the receiving side. This is extended to have an object “publishing”
on the sending side (derived from pb.Cacheable ), matched with one”observing” on the receiving side (derived from
pb.RemoteCache ).

To effectively use pb.Cacheable , you need to isolate changes to your object into accessor functions (specifically
“setter” functions). Your object needs to get control every single time some attribute is changed3 .

You derive your sender-side class from pb.Cacheable , and you add two methods:
getStateToCacheAndObserveFor and stoppedObserving . The first is called when a remote caching ref-
erence is first created, and retrieves the data with which the cache is first filled. It also provides an object called the

2 pb.RemoteCopy is actually defined in twisted.spread.flavors , but pb.RemoteCopy is the preferred way to access it
3 Of course you could be clever and add a hook to __setattr__ , along with magical change-announcing subclasses of the usual builtin types,

to detect changes that result from normal “=” set operations. The semi-magical “property attributes” that were introduced in Python 2.2 could be
useful too. The result might be hard to maintain or extend, though.
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“observer”4 that points at that receiver-side cache. Every time the state of the object is changed, you give a message to
the observer, informing them of the change. The other method, stoppedObserving , is called when the remote cache
goes away, so that you can stop sending updates.

On the receiver end, you make your cache class inherit from pb.RemoteCache , and implement the
setCopyableState as you would for a pb.RemoteCopy object. In addition, you must implement methods to receive
the updates sent to the observer by the pb.Cacheable : these methods should have names that start with observe_ ,
and match the callRemote invocations from the sender side just as the usual remote_* and perspective_*methods
match normal callRemote calls.

The first time a reference to the pb.Cacheable object is sent to any particular recipient, a sender-side Observer will
be created for it, and the getStateToCacheAndObserveFor method will be called to get the current state and reg-
ister the Observer. The state which that returns is sent to the remote end and turned into a local representation using
setCopyableState just like pb.RemoteCopy , described above (in fact it inherits from that class).

After that, your “setter” functions on the sender side should call callRemote on the Observer, which causes observe_*
methods to run on the receiver, which are then supposed to update the receiver-local (cached) state.

When the receiver stops following the cached object and the last reference goes away, the pb.RemoteCache object can
be freed. Just before it dies, it tells the sender side it no longer cares about the original object. When that reference
count goes to zero, the Observer goes away and the pb.Cacheable object can stop announcing every change that takes
place. The stoppedObserving method is used to tell the pb.Cacheable that the Observer has gone away.

With the pb.Cacheable and pb.RemoteCache classes in place, bound together by a call to pb.
setUnjellyableForClass , all that remains is to pass a reference to your pb.Cacheable over the wire to
the remote end. The corresponding pb.RemoteCache object will automatically be created, and the matching methods
will be used to keep the receiver-side slave object in sync with the sender-side master object.

Example

Here is a complete example, in which the MasterDuckPond is controlled by the sending side, and the SlaveDuckPond
is a cache that tracks changes to the master:

cache_classes.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.spread import pb

class MasterDuckPond(pb.Cacheable):
def __init__(self, ducks):

self.observers = []
self.ducks = ducks

def count(self):
print("I have [%d] ducks" % len(self.ducks))

(continues on next page)

4 This is actually a RemoteCacheObserver , but it isn’t very useful to subclass or modify, so simply treat it as a little demon that sits in your
pb.Cacheable class and helps you distribute change notifications. The only useful thing to do with it is to run its callRemote method, which acts
just like a normal pb.Referenceable ‘s method of the same name.
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(continued from previous page)

def addDuck(self, duck):
self.ducks.append(duck)
for o in self.observers:

o.callRemote("addDuck", duck)

def removeDuck(self, duck):
self.ducks.remove(duck)
for o in self.observers:

o.callRemote("removeDuck", duck)

def getStateToCacheAndObserveFor(self, perspective, observer):
self.observers.append(observer)
# you should ignore pb.Cacheable-specific state, like self.observers
return self.ducks # in this case, just a list of ducks

def stoppedObserving(self, perspective, observer):
self.observers.remove(observer)

class SlaveDuckPond(pb.RemoteCache):
# This is a cache of a remote MasterDuckPond
def count(self):

return len(self.cacheducks)

def getDucks(self):
return self.cacheducks

def setCopyableState(self, state):
print(" cache - sitting, er, setting ducks")
self.cacheducks = state

def observe_addDuck(self, newDuck):
print(" cache - addDuck")
self.cacheducks.append(newDuck)

def observe_removeDuck(self, deadDuck):
print(" cache - removeDuck")
self.cacheducks.remove(deadDuck)

pb.setUnjellyableForClass(MasterDuckPond, SlaveDuckPond)

cache_sender.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from cache_classes import MasterDuckPond

from twisted.internet import reactor
(continues on next page)
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(continued from previous page)

from twisted.python import log
from twisted.spread import jelly, pb

class Sender:
def __init__(self, pond):

self.pond = pond

def phase1(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.phase2).addErrback(log.err)

def phase2(self, response):
self.pond.addDuck("ugly duckling")
self.pond.count()
reactor.callLater(1, self.phase3)

def phase3(self):
d = self.remote.callRemote("checkDucks")
d.addCallback(self.phase4).addErrback(log.err)

def phase4(self, dummy):
self.pond.removeDuck("one duck")
self.pond.count()
self.remote.callRemote("checkDucks")
d = self.remote.callRemote("ignorePond")
d.addCallback(self.phase5)

def phase5(self, dummy):
d = self.remote.callRemote("shutdown")
d.addCallback(self.phase6)

def phase6(self, dummy):
reactor.stop()

def main():
master = MasterDuckPond(["one duck", "two duck"])
master.count()

sender = Sender(master)
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
deferred = factory.getRootObject()
deferred.addCallback(sender.phase1)
reactor.run()

if __name__ == "__main__":
main()

cache_receiver.py
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#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

import cache_classes

from twisted.application import internet, service
from twisted.internet import reactor
from twisted.spread import pb

class Receiver(pb.Root):
def remote_takePond(self, pond):

self.pond = pond
print("got pond:", pond) # a DuckPondCache
self.remote_checkDucks()

def remote_checkDucks(self):
print("[%d] ducks: " % self.pond.count(), self.pond.getDucks())

def remote_ignorePond(self):
# stop watching the pond
print("dropping pond")
# gc causes __del__ causes 'decache' msg causes stoppedObserving
self.pond = None

def remote_shutdown(self):
reactor.stop()

application = service.Application("copy_receiver")
internet.TCPServer(8800, pb.PBServerFactory(Receiver())).setServiceParent(

service.IServiceCollection(application)
)

When run, this example emits the following:

$ twistd -n -y cache_receiver.py
[-] twisted.spread.pb.PBServerFactory starting on 8800
[-] Starting factory <twisted.spread.pb.PBServerFactory instance at
0x40615acc>
[Broker,0,127.0.0.1] cache - sitting, er, setting ducks
[Broker,0,127.0.0.1] got pond: <cache_classes.SlaveDuckPond instance at
0x406eb5ec>
[Broker,0,127.0.0.1] [2] ducks: ['one duck', 'two duck']
[Broker,0,127.0.0.1] cache - addDuck
[Broker,0,127.0.0.1] [3] ducks: ['one duck', 'two duck', 'ugly duckling']
[Broker,0,127.0.0.1] cache - removeDuck
[Broker,0,127.0.0.1] [2] ducks: ['two duck', 'ugly duckling']
[Broker,0,127.0.0.1] dropping pond
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$ ./cache_sender.py
I have [2] ducks
I have [3] ducks
I have [2] ducks
Main loop terminated.

Points to notice:

• There is one Observer for each remote program that holds an active reference. Multiple references inside the
same program don’t matter: the serialization layer notices the duplicates and does the appropriate reference
counting5 .

• Multiple Observers need to be kept in a list, and all of them need to be updated when something changes. By
sending the initial state at the same time as you add the observer to the list, in a single atomic action that cannot
be interrupted by a state change, you insure that you can send the same status update to all the observers.

• The observer.callRemote calls can still fail. If the remote side has disconnected very recently and
stoppedObserving has not yet been called, you may get a DeadReferenceError . It is a good idea to add an
errback to those callRemote s to throw away such an error. This is a useful idiom:

observer.callRemote('foo', arg).addErrback(lambda f: None)

• getStateToCacheAndObserverFor must return some object that represents the current state of the object.
This may simply be the object’s __dict__ attribute. It is a good idea to remove the pb.Cacheable -specific
members of it before sending it to the remote end. The list of Observers, in particular, should be left out, to avoid
dizzying recursive Cacheable references. The mind boggles as to the potential consequences of leaving in such
an item.

• A perspective argument is available to getStateToCacheAndObserveFor , as well as stoppedObserving
. I think the purpose of this is to allow viewer-specific changes to the way the cache is updated. If all remote
viewers are supposed to see the same data, it can be ignored.

More Information

• The best source for information comes from the docstrings in twisted.spread.flavors , where pb.
Cacheable is implemented.

• The spread.publish module also uses Cacheable , and might be a source of further information.

2.1.42 Authentication with Perspective Broker

Overview

The examples shown in Using Perspective Broker demonstrate how to do basic remote method calls, but provided no
facilities for authentication. In this context, authentication is about who gets which remote references, and how to
restrict access to the “right” set of people or programs.

As soon as you have a program which offers services to multiple users, where those users should not be allowed to
interfere with each other, you need to think about authentication. Many services use the idea of an “account” , and rely
upon fact that each user has access to only one account. Twisted uses a system called cred to handle authentication
issues, and Perspective Broker has code to make it easy to implement the most common use cases.

5 This applies to multiple references through the same Broker . If you’ve managed to make multiple TCP connections to the same program, you
deserve whatever you get.
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Compartmentalizing Services

Imagine how you would write a chat server using PB. The first step might be a ChatServer object which had a bunch of
pb.RemoteReference s that point at user clients. Pretend that those clients offered a remote_print method which
lets the server print a message on the user’s console. In that case, the server might look something like this:

class ChatServer(pb.Referenceable):

def __init__(self):
self.groups = {} # indexed by name
self.users = {} # indexed by name

def remote_joinGroup(self, username, groupname):
if groupname not in self.groups:

self.groups[groupname] = []
self.groups[groupname].append(self.users[username])

def remote_sendMessage(self, from_username, groupname, message):
group = self.groups[groupname]
if group:

# send the message to all members of the group
for user in group:

user.callRemote("print",
"<%s> says: %s" % (from_username,

message))

For now, assume that all clients have somehow acquired a pb.RemoteReference to this ChatServer object, perhaps
using pb.Root and getRootObject as described in the previous chapter . In this scheme, when a user sends a message
to the group, their client runs something like the following:

remotegroup.callRemote("sendMessage", "alice", "Hi, my name is alice.")

Incorrect Arguments

You’ve probably seen the first problem: users can trivially spoof each other. We depend upon the user to pass a correct
value in their “username” argument, and have no way to tell if they’re lying or not. There is nothing to prevent Alice
from modifying her client to do:

remotegroup.callRemote("sendMessage", "bob", "i like pork")

much to the horror of Bob’s vegetarian friends.1

(In general, learn to get suspicious if you see any argument of a remotely-invokable method described as “must be X” )

The best way to fix this is to keep track of the user’s name locally, rather than asking them to send it to the server with
each message. The best place to keep state is in an object, so this suggests we need a per-user object. Rather than
choosing an obvious name2 , let’s call this the User class.

class User(pb.Referenceable):
def __init__(self, username, server, clientref):

self.name = username
(continues on next page)

1 Apparently Alice is one of those weirdos who has nothing better to do than to try and impersonate Bob. She will lie to her chat client, send
incorrect objects to remote methods, even rewrite her local client code entirely to accomplish this juvenile prank. Given this adversarial relationship,
one must wonder why she and Bob seem to spend so much time together: their adventures are clearly documented by the cryptographic literature.

2 The obvious name is clearly ServerSidePerUserObjectWhichNobodyElseHasAccessTo , but because Python makes everything else so
easy to read, it only seems fair to make your audience work for something .
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self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname):
self.server.joinGroup(groupname, self)

def remote_sendMessage(self, groupname, message):
self.server.sendMessage(self.name, groupname, message)

def send(self, message):
self.remote.callRemote("print", message)

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name
def joinGroup(self, groupname, user):

if groupname not in self.groups:
self.groups[groupname] = []

self.groups[groupname].append(user)
def sendMessage(self, from_username, groupname, message):

group = self.groups[groupname]
if group:

# send the message to all members of the group
for user in group:

user.send("<%s> says: %s" % (from_username, message))

Again, assume that each remote client gets access to a single User object, which is created with the proper username.

Note how the ChatServer object has no remote access: it isn’t even pb.Referenceable anymore. This means that
all access to it must be mediated through other objects, with code that is under your control.

As long as Alice only has access to her own User object, she can no longer spoof Bob. The only way for her to invoke
ChatServer.sendMessage is to call her User object’s remote_sendMessage method, and that method uses its own
state to provide the from_username argument. It doesn’t give her any way to change that state.

This restriction is important. The User object is able to maintain its own integrity because there is a wall between
the object and the client: the client cannot inspect or modify internal state, like the .name attribute. The only way
through this wall is via remote method invocations, and the only control Alice has over those invocations is when they
get invoked and what arguments they are given.

Note: No object can maintain its integrity against local threats: by design, Python offers no mechanism for class
instances to hide their attributes, and once an intruder has a copy of self.__dict__ , they can do everything the
original object was able to do.

Unforgeable References

Now suppose you wanted to implement group parameters, for example a mode in which nobody was allowed to talk
about mattresses because some users were sensitive and calming them down after someone said “mattress” is a hassle
that’s best avoided altogether. Again, per-group state implies a per-group object. We’ll go out on a limb and call this
the Group object:

class User(pb.Referenceable):
def __init__(self, username, server, clientref):

self.name = username
(continues on next page)
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self.server = server
self.remote = clientref

def remote_joinGroup(self, groupname, allowMattress=True):
return self.server.joinGroup(groupname, self, allowMattress)

def send(self, message):
self.remote.callRemote("print", message)

class Group(pb.Referenceable):
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def remote_send(self, from_user, message):
if not self.allowMattress and "mattress" in message:

raise ValueError("Don't say that word")
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):

self.users.append(user)

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name
def joinGroup(self, groupname, user, allowMattress):

if groupname not in self.groups:
self.groups[groupname] = Group(groupname, allowMattress)

self.groups[groupname].addUser(user)
return self.groups[groupname]

This example takes advantage of the fact that pb.Referenceable objects sent over a wire can be returned to you, and
they will be turned into references to the same object that you originally sent. The client cannot modify the object in
any way: all they can do is point at it and invoke its remote_* methods. Thus, you can be sure that the .name attribute
remains the same as you left it. In this case, the client code would look something like this:

class ClientThing(pb.Referenceable):
def remote_print(self, message):

print(message)
def join(self):

d = self.remoteUser.callRemote("joinGroup", "#twisted",
allowMattress=False)

d.addCallback(self.gotGroup)
def gotGroup(self, group):

group.callRemote("send", self.remoteUser, "hi everybody")

The User object is sent from the server side, and is turned into a pb.RemoteReference when it arrives at the client.
The client sends it back to Group.remote_send , and PB turns it back into a reference to the original User when it
gets there. Group.remote_send can then use its .name attribute as the sender of the message.

Note: Third party references (there aren’t any)

This technique also relies upon the fact that the pb.Referenceable reference can only come from someone who
holds a corresponding pb.RemoteReference . The design of the serialization mechanism (implemented in twisted.
spread.jelly : pb, jelly, spread.. get it? Look for “banana” , too. What other networking framework can claim API
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names based on sandwich ingredients?) makes it impossible for a client to obtain a reference that they weren’t explicitly
given. References passed over the wire are given id numbers and recorded in a per-connection dictionary. If you didn’t
give them the reference, the id number won’t be in the dict, and no amount of guessing by a malicious client will give
them anything else. The dict goes away when the connection is dropped, further limiting the scope of those references.

Furthermore, it is not possible for Bob to send his User reference to Alice (perhaps over some other PB channel just
between the two of them). Outside the context of Bob’s connection to the server, that reference is just a meaningless
number. To prevent confusion, PB will tell you if you try to give it away: when you try to hand a pb.RemoteReference
to a third party, you’ll get an exception (implemented with an assert in pb.py:364 RemoteReference.jellyFor).

This helps the security model somewhat: only the client you gave the reference to can cause any damage with it. Of
course, the client might be a brainless zombie, simply doing anything some third party wants. When it’s not proxying
callRemote invocations, it’s probably terrorizing the living and searching out human brains for sustenance. In short,
if you don’t trust them, don’t give them that reference.

And remember that everything you’ve ever given them over that connection can come back to you. If expect the client to
invoke your method with some object A that you sent to them earlier, and instead they send you object B (that you also
sent to them earlier), and you don’t check it somehow, then you’ve just opened up a security hole (we’ll see an example
of this shortly). It may be better to keep such objects in a dictionary on the server side, and have the client send you
an index string instead. Doing it that way makes it obvious that they can send you anything they want, and improves
the chances that you’ll remember to implement the right checks. (This is exactly what PB is doing underneath, with a
per-connection dictionary of Referenceable objects, indexed by a number).

And, of course, you have to make sure you don’t accidentally hand out a reference to the wrong object.

But again, note the vulnerability. If Alice holds a RemoteReference to any object on the server side that has a .name
attribute, she can use that name as a spoofed”from” parameter. As a simple example, what if her client code looked
like:

class ClientThing(pb.Referenceable):
def join(self):

d = self.remoteUser.callRemote("joinGroup", "#twisted")
d.addCallback(self.gotGroup)

def gotGroup(self, group):
group.callRemote("send", from_user=group, "hi everybody")

This would let her send a message that appeared to come from “#twisted” rather than “Alice” . If she joined a group
that happened to be named “bob” (perhaps it is the “How To Be Bob” channel, populated by Alice and countless others,
a place where they can share stories about their best impersonating-Bob moments), then she would be able to emit a
message that looked like “<bob> says: hi there” , and she has accomplished her lifelong goal.
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Argument Typechecking

There are two techniques to close this hole. The first is to have your remotely-invokable methods do type-checking on
their arguments: if Group.remote_send asserted isinstance(from_user, User) then Alice couldn’t use non-
User objects to do her spoofing, and hopefully the rest of the system is designed well enough to prevent her from
obtaining access to somebody else’s User object.

Objects as Capabilities

The second technique is to avoid having the client send you the objects altogether. If they don’t send you anything,
there is nothing to verify. In this case, you would have to have a per-user-per-group object, in which the remote_send
method would only take a single message argument. The UserGroup object is created with references to the only
User and Group objects that it will ever use, so no lookups are needed:

class UserGroup(pb.Referenceable):
def __init__(self, user, group):

self.user = user
self.group = group

def remote_send(self, message):
self.group.send(self.user.name, message)

class Group:
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def send(self, from_user, message):
if not self.allowMattress and "mattress" in message:

raise ValueError("Don't say that word")
for user in self.users:

user.send("<%s> says: %s" % (from_user.name, message))
def addUser(self, user):

self.users.append(user)

The only message-sending method Alice has left is UserGroup.remote_send , and it only accepts a message: there
are no remaining ways to influence the “from” name.

In this model, each remotely-accessible object represents a very small set of capabilities. Security is achieved by only
granting a minimal set of abilities to each remote user.

PB provides a shortcut which makes this technique easier to use. The Viewable class will be discussed below .

Avatars and Perspectives

In Twisted’s cred system, an “Avatar” is an object that lives on the “server” side (defined here as the side farthest from
the human who is trying to get something done) which lets the remote user get something done. The avatar isn’t really
a particular class, it’s more like a description of a role that some object plays, as in “the Foo object here is acting as the
user’s avatar for this particular service” . Generally, the remote user has some way of getting their avatar to run some
code. The avatar object may enforce some security checks, and provide additional data, then call other methods which
get things done.

The two pieces in the cred puzzle (for any protocol, not just PB) are: “what serves as the Avatar?” , and “how does the
user get access to it?” .
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For PB, the first question is easy. The Avatar is a remotely-accessible object which can run code: this is a perfect
description of pb.Referenceable and its subclasses. We shall defer the second question until the next section.

In the example above, you can think of the ChatServer and Group objects as a service. The User object is the user’s
server-side representative: everything the user is capable of doing is done by running one of its methods. Anything that
the server wants to do to the user (change their group membership, change their name, delete their pet cat, whatever)
is done by manipulating the User object.

There are multiple User objects living in peace and harmony around the ChatServer. Each has a different point of view
on the services provided by the ChatServer and the Groups: each may belong to different groups, some might have more
permissions than others (like the ability to create groups). These different points of view are called “Perspectives” .
This is the origin of the term “Perspective” in “Perspective Broker” : PB provides and controls (i.e. “brokers” ) access
to Perspectives.

Once upon a time, these local-representative objects were actually called pb.Perspective . But this has changed with
the advent of the rewritten cred system, and now the more generic term for a local representative object is an Avatar.
But you will still see reference to “Perspective” in the code, the docs, and the module names3 . Just remember that
perspectives and avatars are basically the same thing.

Despite all we’ve been telling you about how Avatars are more of a concept than an actual class, the base class from
which you can create your server-side avatar-ish objects is, in fact, named pb.Avatar4 . These objects behave very
much like pb.Referenceable . The only difference is that instead of offering “remote_FOO” methods, they offer
“perspective_FOO” methods.

The other way in which pb.Avatar differs from pb.Referenceable is that the avatar objects are designed to be the
first thing retrieved by a cred-using remote client. Just as PBClientFactory.getRootObject gives the client access
to a pb.Root object (which can then provide access to all kinds of other objects), PBClientFactory.login gives
client access to a pb.Avatar object (which can return other references).

So, the first half of using cred in your PB application is to create an Avatar object which implements perspective_
methods and is careful to do useful things for the remote user while remaining vigilant against being tricked with
unexpected argument values. It must also be careful to never give access to objects that the user should not have access
to, whether by returning them directly, returning objects which contain them, or returning objects which can be asked
(remotely) to provide them.

The second half is how the user gets a pb.RemoteReference to your Avatar. As explained elsewhere , Avatars are ob-
tained from a Realm. The Realm doesn’t deal with authentication at all (usernames, passwords, public keys, challenge-
response systems, retinal scanners, real-time DNA sequencers, etc). It simply takes an “avatarID” (which is effectively
a username) and returns an Avatar object. The Portal and its Checkers deal with authenticating the user: by the time
they are done, the remote user has proved their right to access the avatarID that is given to the Realm, so the Realm can
return a remotely-controllable object that has whatever powers you wish to grant to this particular user.

For PB, the realm is expected to return a pb.Avatar (or anything which implements pb.IPerspective , really, but
there’s no reason to not return a pb.Avatar subclass). This object will be given to the client just like a pb.Root would
be without cred, and the user can get access to other objects through it (if you let them).

The basic idea is that there is a separate IPerspective-implementing object (i.e. the Avatar subclass) (i.e. the “per-
spective” ) for each user, and only the authorized user gets a remote reference to that object. You can store whatever
permissions or capabilities the user possesses in that object, and then use them when the user invokes a remote method.
You give the user access to the perspective object instead of the objects that do the real work.

3 We could just go ahead and rename Perspective Broker to be Avatar Broker, but 1) that would cause massive compatibility problems, and 2)
“AB” doesn’t fit into the whole sandwich-themed naming scheme nearly as well as “PB” does. If we changed it to AB, we’d probably have to change
Banana to be CD (CoderDecoder), and Jelly to be EF (EncapsulatorFragmentor). twisted.spread would then have to be renamed twisted.alphabetsoup,
and then the whole food-pun thing would start all over again.

4 The avatar-ish class is named pb.Avatar because pb.Perspective was already taken, by the (now obsolete) oldcred perspective-ish class.
It is a pity, but it simply wasn’t possible both replace pb.Perspective in-place and maintain a reasonable level of backwards-compatibility.
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Perspective Examples

Here is a brief example of using a pb.Avatar. Most of the support code is magic for now: we’ll explain it later.

One Client

pb5server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from zope.interface import implementer

from twisted.cred import checkers, portal
from twisted.internet import reactor
from twisted.spread import pb

class MyPerspective(pb.Avatar):
def __init__(self, name):

self.name = name

def perspective_foo(self, arg):
print("I am", self.name, "perspective_foo(", arg, ") called on", self)

@implementer(portal.IRealm)
class MyRealm:

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces:

raise NotImplementedError
return pb.IPerspective, MyPerspective(avatarId), lambda: None

p = portal.Portal(MyRealm())
p.registerChecker(checkers.InMemoryUsernamePasswordDatabaseDontUse(user1="pass1"))
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

pb5client.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.cred import credentials
from twisted.internet import reactor
from twisted.spread import pb

(continues on next page)
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def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("user1", "pass1"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print("got perspective ref:", perspective)
print("asking it to foo(12)")
perspective.callRemote("foo", 12)

main()

Ok, so that wasn’t really very exciting. It doesn’t accomplish much more than the first PB example, and used a lot more
code to do it. Let’s try it again with two users this time.

Note: When the client runs login to request the Perspective, they can provide it with an optional client argument
(which must be a pb.Referenceable object). If they do, then a reference to that object will be handed to the realm’s
requestAvatar in the mind argument.

The server-side Perspective can use it to invoke remote methods on something in the client, so that the client doesn’t
always have to drive the interaction. In a chat server, the client object would be the one to which”display text” messages
were sent. In a board game server, this would provide a way to tell the clients that someone has made a move, so they
can update their game boards.

Two Clients

pb6server.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from zope.interface import implementer

from twisted.cred import checkers, portal
from twisted.internet import reactor
from twisted.spread import pb

class MyPerspective(pb.Avatar):
def __init__(self, name):

self.name = name
(continues on next page)
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def perspective_foo(self, arg):
print("I am", self.name, "perspective_foo(", arg, ") called on", self)

@implementer(portal.IRealm)
class MyRealm:

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective not in interfaces:

raise NotImplementedError
return pb.IPerspective, MyPerspective(avatarId), lambda: None

p = portal.Portal(MyRealm())
c = checkers.InMemoryUsernamePasswordDatabaseDontUse(user1="pass1", user2="pass2")
p.registerChecker(c)
reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

pb6client1.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.cred import credentials
from twisted.internet import reactor
from twisted.spread import pb

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("user1", "pass1"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print("got perspective1 ref:", perspective)
print("asking it to foo(13)")
perspective.callRemote("foo", 13)

main()

pb6client2.py

#!/usr/bin/env python

(continues on next page)
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# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.cred import credentials
from twisted.internet import reactor
from twisted.spread import pb

def main():
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("user2", "pass2"))
def1.addCallback(connected)
reactor.run()

def connected(perspective):
print("got perspective2 ref:", perspective)
print("asking it to foo(14)")
perspective.callRemote("foo", 14)

main()

While pb6server.py is running, try starting pb6client1, then pb6client2. Compare the argument passed by the .
callRemote() in each client. You can see how each client gets connected to a different Perspective.

How that example worked

Let’s walk through the previous example and see what was going on.

First, we created a subclass called MyPerspectivewhich is our server-side Avatar. It implements a perspective_foo
method that is exposed to the remote client.

Second, we created a realm (an object which implements IRealm , and therefore implements requestAvatar ). This
realm manufactures MyPerspective objects. It makes as many as we want, and names each one with the avatarID
(a username) that comes out of the checkers. This MyRealm object returns two other objects as well, which we will
describe later.

Third, we created a portal to hold this realm. The portal’s job is to dispatch incoming clients to the credential checkers,
and then to request Avatars for any which survive the authentication process.

Fourth, we made a simple checker (an object which implements IChecker ) to hold valid user/password pairs. The
checker gets registered with the portal, so it knows who to ask when new clients connect. We use a checker named
InMemoryUsernamePasswordDatabaseDontUse , which suggests that 1: all the username/password pairs are kept
in memory instead of being saved to a database or something, and 2: you shouldn’t use it. The admonition against
using it is because there are better schemes: keeping everything in memory will not work when you have thousands or
millions of users to keep track of, the passwords will be stored in the .tap file when the application shuts down (possibly
a security risk), and finally it is a nuisance to add or remove users after the checker is constructed.

Fifth, we create a pb.PBServerFactory to listen on a TCP port. This factory knows how to connect the remote client
to the Portal, so incoming connections will be handed to the authentication process. Other protocols (non-PB) would do
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something similar: the factory that creates Protocol objects will give those objects access to the Portal so authentication
can take place.

On the client side, a pb.PBClientFactory is created (as before ) and attached to a TCP connection. When the
connection completes, the factory will be asked to produce a Protocol, and it will create a PB object. Unlike the
previous chapter, where we used .getRootObject , here we use factory.login to initiate the cred authentication
process. We provide a credentials object, which is the client-side agent for doing our half of the authentication
process. This process may involve several messages: challenges, responses, encrypted passwords, secure hashes, etc.
We give our credentials object everything it will need to respond correctly (in this case, a username and password, but
you could write a credential that used public-key encryption or even fancier techniques).

login returns a Deferred which, when it fires, will return a pb.RemoteReference to the remote avatar. We can then
do callRemote to invoke a perspective_foo method on that Avatar.

Anonymous Clients

pbAnonServer.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Implement the realm for and run on port 8800 a PB service which allows both
anonymous and username/password based access.

Successful username/password-based login requests given an instance of
MyPerspective with a name which matches the username with which they
authenticated. Success anonymous login requests are given an instance of
MyPerspective with the name "Anonymous".
"""

from sys import stdout

from zope.interface import implementer

from twisted.cred.checkers import (
ANONYMOUS,
AllowAnonymousAccess,
InMemoryUsernamePasswordDatabaseDontUse,

)
from twisted.cred.portal import IRealm, Portal
from twisted.internet import reactor
from twisted.python.log import startLogging
from twisted.spread.pb import Avatar, IPerspective, PBServerFactory

class MyPerspective(Avatar):
"""
Trivial avatar exposing a single remote method for demonstrative
purposes. All successful login attempts in this example will result in

(continues on next page)
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an avatar which is an instance of this class.

@type name: C{str}
@ivar name: The username which was used during login or C{"Anonymous"}
if the login was anonymous (a real service might want to avoid the
collision this introduces between anonoymous users and authenticated
users named "Anonymous").
"""

def __init__(self, name):
self.name = name

def perspective_foo(self, arg):
"""
Print a simple message which gives the argument this method was
called with and this avatar's name.
"""
print(f"I am {self.name}. perspective_foo({arg}) called on {self}.")

@implementer(IRealm)
class MyRealm:

"""
Trivial realm which supports anonymous and named users by creating
avatars which are instances of MyPerspective for either.
"""

def requestAvatar(self, avatarId, mind, *interfaces):
if IPerspective not in interfaces:

raise NotImplementedError("MyRealm only handles IPerspective")
if avatarId is ANONYMOUS:

avatarId = "Anonymous"
return IPerspective, MyPerspective(avatarId), lambda: None

def main():
"""
Create a PB server using MyRealm and run it on port 8800.
"""
startLogging(stdout)

p = Portal(MyRealm())

# Here the username/password checker is registered.
c1 = InMemoryUsernamePasswordDatabaseDontUse(user1="pass1", user2="pass2")
p.registerChecker(c1)

# Here the anonymous checker is registered.
c2 = AllowAnonymousAccess()
p.registerChecker(c2)

reactor.listenTCP(8800, PBServerFactory(p))

(continues on next page)
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reactor.run()

if __name__ == "__main__":
main()

pbAnonClient.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Client which will talk to the server run by pbAnonServer.py, logging in
either anonymously or with username/password credentials.
"""

from sys import stdout

from twisted.cred.credentials import Anonymous, UsernamePassword
from twisted.internet import reactor
from twisted.internet.defer import gatherResults
from twisted.python.log import err, startLogging
from twisted.spread.pb import PBClientFactory

def error(why, msg):
"""
Catch-all errback which simply logs the failure. This isn't expected to
be invoked in the normal case for this example.
"""
err(why, msg)

def connected(perspective):
"""
Login callback which invokes the remote "foo" method on the perspective
which the server returned.
"""
print("got perspective1 ref:", perspective)
print("asking it to foo(13)")
return perspective.callRemote("foo", 13)

def finished(ignored):
"""
Callback invoked when both logins and method calls have finished to shut
down the reactor so the example exits.
"""
reactor.stop()

(continues on next page)
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def main():
"""
Connect to a PB server running on port 8800 on localhost and log in to
it, both anonymously and using a username/password it will recognize.
"""
startLogging(stdout)
factory = PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)

anonymousLogin = factory.login(Anonymous())
anonymousLogin.addCallback(connected)
anonymousLogin.addErrback(error, "Anonymous login failed")

usernameLogin = factory.login(UsernamePassword("user1", "pass1"))
usernameLogin.addCallback(connected)
usernameLogin.addErrback(error, "Username/password login failed")

bothDeferreds = gatherResults([anonymousLogin, usernameLogin])
bothDeferreds.addCallback(finished)

reactor.run()

if __name__ == "__main__":
main()

pbAnonServer.py implements a server based on pb6server.py, extending it to permit anonymous logins in addition to au-
thenticated logins. An AllowAnonymousAccess checker and an InMemoryUsernamePasswordDatabaseDontUse
checker are registered and the client’s choice of credentials object determines which is used to authenticate the login.
In either case, the realm will be called on to create an avatar for the login. AllowAnonymousAccess always produces
an avatarId of twisted.cred.checkers.ANONYMOUS .

On the client side, the only change is the use of an instance of Anonymous when calling PBClientFactory.login .

Using Avatars

Avatar Interfaces

The first element of the 3-tuple returned by requestAvatar indicates which Interface this Avatar implements. For PB
avatars, it will always be pb.IPerspective , because that’s the only interface these avatars implement.

This element is present because requestAvatar is actually presented with a list of possible Interfaces. The question
being posed to the Realm is: “do you have an avatar for (avatarID) that can implement one of the following set of
Interfaces?” . Some portals and checkers might give a list of Interfaces and the Realm could pick; the PB code only
knows how to do one, so we cannot take advantage of this feature.
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Logging Out

The third element of the 3-tuple is a zero-argument callable, which will be invoked by the protocol when the connection
has been lost. We can use this to notify the Avatar when the client has lost its connection. This will be described in
more detail below.

Making Avatars

In the example above, we create Avatars upon request, during requestAvatar . Depending upon the service, these
Avatars might already exist before the connection is received, and might outlive the connection. The Avatars might
also accept multiple connections.

Another possibility is that the Avatars might exist ahead of time, but in a different form (frozen in a pickle and/or saved
in a database). In this case, requestAvatar may need to perform a database lookup and then do something with the
result before it can provide an avatar. In this case, it would probably return a Deferred so it could provide the real Avatar
later, once the lookup had completed.

Here are some possible implementations of MyRealm.requestAvatar :

# pre-existing, static avatars
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
avatar = self.avatars[avatarID]
return pb.IPerspective, avatar, lambda:None

# database lookup and unpickling
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
d = self.database.fetchAvatar(avatarID)
d.addCallback(self.doUnpickle)
return pb.IPerspective, d, lambda:None

def doUnpickle(self, pickled):
avatar = pickle.loads(pickled)
return avatar

# everybody shares the same Avatar
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
return pb.IPerspective, self.theOneAvatar, lambda:None

# anonymous users share one Avatar, named users each get their own
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
if avatarID == checkers.ANONYMOUS:

return pb.IPerspective, self.anonAvatar, lambda:None
else:

return pb.IPerspective, self.avatars[avatarID], lambda:None

# anonymous users get independent (but temporary) Avatars
# named users get their own persistent one
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
if avatarID == checkers.ANONYMOUS:

(continues on next page)
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return pb.IPerspective, MyAvatar(), lambda:None
else:

return pb.IPerspective, self.avatars[avatarID], lambda:None

The last example, note that the new MyAvatar instance is not saved anywhere: it will vanish when the connection is
dropped. By contrast, the avatars that live in the self.avatars dictionary will probably get persisted into the .tap file
along with the Realm, the Portal, and anything else that is referenced by the top-level Application object. This is an
easy way to manage saved user profiles.

Connecting and Disconnecting

It may be useful for your Avatars to be told when remote clients gain (and lose) access to them. For example, and
Avatar might be updated by something in the server, and if there are clients attached, it should update them (through
the “mind” argument which lets the Avatar do callRemote on the client).

One common idiom which accomplishes this is to have the Realm tell the avatar that a remote client has just attached.
The Realm can also ask the protocol to let it know when the connection goes away, so it can then inform the Avatar
that the client has detached. The third member of the requestAvatar return tuple is a callable which will be invoked
when the connection is lost.

class MyPerspective(pb.Avatar):
def __init__(self):

self.clients = []
def attached(self, mind):

self.clients.append(mind)
print("attached to", mind)

def detached(self, mind):
self.clients.remove(mind)
print("detached from", mind)

def update(self, message):
for c in self.clients:

c.callRemote("update", message)

class MyRealm:
def requestAvatar(self, avatarID, mind, *interfaces):

assert pb.IPerspective in interfaces
avatar = self.avatars[avatarID]
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar:a.detached(mind)

Viewable

Once you have IPerspective objects (i.e. the Avatar) to represent users, the Viewable class can come into play.
This class behaves a lot like Referenceable : it turns into a RemoteReference when sent over the wire, and certain
methods can be invoked by the holder of that reference. However, the methods that can be called have names that
start with view_ instead of remote_ , and those methods are always called with an extra perspective argument that
points to the Avatar through which the reference was sent:
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class Foo(pb.Viewable):
def view_doFoo(self, perspective, arg1, arg2):

pass

This is useful if you want to let multiple clients share a reference to the same object. The view_ methods can use the
“perspective” argument to figure out which client is calling them. This gives them a way to do additional permission
checks, do per-user accounting, etc.

This is the shortcut which makes per-user-per-group capability objects much easier to use. Instead of creating such per-
(user,group) objects, you just have per-group objects which inherit from pb.Viewable , and give the user references
to them. The local pb.Avatar object will automatically show up as the “perspective” argument in the view_* method
calls, give you a chance to involve the Avatar in the process.

Chat Server with Avatars

Combining all the above techniques, here is an example chat server which uses a fixed set of identities (say, for the
three members of your bridge club, who hang out in “#NeedAFourth” hoping that someone will discover your server,
guess somebody’s password, break in, join the group, and also be available for a game next Saturday afternoon).

chatserver.py

#!/usr/bin/env python

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from zope.interface import implementer

from twisted.cred import checkers, portal
from twisted.internet import reactor
from twisted.spread import pb

class ChatServer:
def __init__(self):

self.groups = {} # indexed by name

def joinGroup(self, groupname, user, allowMattress):
if groupname not in self.groups:

self.groups[groupname] = Group(groupname, allowMattress)
self.groups[groupname].addUser(user)
return self.groups[groupname]

@implementer(portal.IRealm)
class ChatRealm:

def requestAvatar(self, avatarID, mind, *interfaces):
assert pb.IPerspective in interfaces
avatar = User(avatarID)
avatar.server = self.server
avatar.attached(mind)
return pb.IPerspective, avatar, lambda a=avatar: a.detached(mind)

(continues on next page)
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(continued from previous page)

class User(pb.Avatar):
def __init__(self, name):

self.name = name

def attached(self, mind):
self.remote = mind

def detached(self, mind):
self.remote = None

def perspective_joinGroup(self, groupname, allowMattress=True):
return self.server.joinGroup(groupname, self, allowMattress)

def send(self, message):
self.remote.callRemote("print", message)

class Group(pb.Viewable):
def __init__(self, groupname, allowMattress):

self.name = groupname
self.allowMattress = allowMattress
self.users = []

def addUser(self, user):
self.users.append(user)

def view_send(self, from_user, message):
if not self.allowMattress and "mattress" in message:

raise ValueError("Don't say that word")
for user in self.users:

user.send(f"<{from_user.name}> says: {message}")

realm = ChatRealm()
realm.server = ChatServer()
checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("alice", "1234")
checker.addUser("bob", "secret")
checker.addUser("carol", "fido")
p = portal.Portal(realm, [checker])

reactor.listenTCP(8800, pb.PBServerFactory(p))
reactor.run()

Notice that the client uses perspective_joinGroup to both join a group and retrieve a RemoteReference to the
Group object. However, the reference they get is actually to a special intermediate object called a pb.ViewPoint .
When they do group.callRemote("send", "message") , their avatar is inserted into the argument list that Group.
view_send actually sees. This lets the group get their username out of the Avatar without giving the client an oppor-
tunity to spoof someone else.

The client side code that joins a group and sends a message would look like this:

chatclient.py
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#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

from twisted.cred import credentials
from twisted.internet import reactor
from twisted.spread import pb

class Client(pb.Referenceable):
def remote_print(self, message):

print(message)

def connect(self):
factory = pb.PBClientFactory()
reactor.connectTCP("localhost", 8800, factory)
def1 = factory.login(credentials.UsernamePassword("alice", "1234"), client=self)
def1.addCallback(self.connected)
reactor.run()

def connected(self, perspective):
print("connected, joining group #NeedAFourth")
# this perspective is a reference to our User object. Save a reference
# to it here, otherwise it will get garbage collected after this call,
# and the server will think we logged out.
self.perspective = perspective
d = perspective.callRemote("joinGroup", "#NeedAFourth")
d.addCallback(self.gotGroup)

def gotGroup(self, group):
print("joined group, now sending a message to all members")
# 'group' is a reference to the Group object (through a ViewPoint)
d = group.callRemote("send", "You can call me Al.")
d.addCallback(self.shutdown)

def shutdown(self, result):
reactor.stop()

Client().connect()
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2.1.43 PB Limits

There are a number of limits you might encounter when using Perspective Broker. This document is an attempt to
prepare you for as many of them as possible so you can avoid them or at least recognize them when you do run into
them.

Banana Limits

Perspective Broker is implemented in terms of a simpler, less functional protocol called Banana. Twisted’s implemen-
tation of Banana imposes a limit on the length of any sequence-like data type. This applies directly to lists and strings
and indirectly to dictionaries, instances and other types. The purpose of this limit is to put an upper bound on the
amount of memory which will be allocated to handle a message received over the network. Without, a malicious peer
could easily perform a denial of service attack resulting in exhaustion of the receiver’s memory. The basic limit is 640
* 1024 bytes, defined by twisted.spread.banana.SIZE_LIMIT . It’s possible to raise this limit by changing this
value (but take care to change it on both sides of the connection).

Another limit imposed by Twisted’s Banana implementation is a limit on the size of long integers. The purpose of this
limit is the same as the SIZE_LIMIT . By default, only integers between -2 ** 448 and 2 ** 448 (exclusive) can be
transferred. This limit can be changed using twisted.spread.banana.setPrefixLimit() .

Perspective Broker Limits

Perspective Broker imposes an additional limit on top of these lower level limits. The number of local objects for
which remote references may exist at a single time over a single connection, by default, is limited to 1024, defined by
twisted.spread.pb.MAX_BROKER_REFS . This limit also exists to prevent memory exhaustion attacks.

2.1.44 Porting to Python 3

Introduction

Twisted currently supports only Python 3.6+. This document covers Twisted-specific issues in porting your code to
Python 3.

API Differences

twisted.python.failure

Failure.trap raises itself (i.e. a Failure ) in Python 2. In Python 3, the wrapped exception will be re-raised.

Byte Strings and Text Strings

Several APIs which on Python 2 accepted or produced byte strings (instances of str , sometimes just called bytes )
have changed to accept or produce text strings (instances of str , sometimes just called text or unicode ) on Python 3.

From twisted.internet.address , the IPv4Address and IPv6Address classes have had two attributes change
from byte strings to text strings: type and host .

twisted.python.log has shifted significantly towards text strings from byte strings. Logging events, particular those
produced by a call like msg("foo") , must now be text strings. Consequently, on Python 3, event dictionaries passed
to log observes will contain text strings where they previously contained byte strings.
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twisted.python.runtime.platformType and the return value from twisted.python.runtime.Platform.
getType are now both text strings.

twisted.python.filepath.FilePath has not changed. It supports only byte strings. This will probably require
applications to update their usage of FilePath , at least to pass explicit byte string literals rather than “native” string
literals (which are text on Python 3).

reactor.addSystemEventTrigger arguments that were previously byte strings are now native strings.

twisted.names.dns deals with strings with a wide range of meanings, often several for each DNS record type. Most
of these strings have remained as byte strings, which will probably require application updates (for the reason given
in the FilePath section above). Some strings have changed to text strings, though. Any string representing a human
readable address (for example, Record_A ‘s address parameter) is now a text string. Additionally, time-to-live (ttl)
values given as strings must now be given as text strings.

twisted.web.resource.IResource continues to deal with URLs and all URL-derived values as byte strings.

twisted.web.resource.ErrorPage has several string attributes (template , brief , and detail ) which were
previously byte strings. On Python 3 only, these must now be text strings.

2.1.45 Twisted Positioning

twisted.positioning: geolocation in Twisted

Introduction

twisted.positioning is a package for doing geospatial positioning (trying to find where you are on Earth) using
Twisted.

High-level overview

In twisted.positioning, you write an IPositioningReceiver implementation that will get called whenever some
information about your position is known (such as position, altitude, heading. . . ). The package provides a base class,
BasePositioningReceiver you might want to use that implements all of the receiver methods as stubs.

Secondly, you will want a positioning source, which will call your IPositioningReceiver. Currently, twisted.
positioning provides an NMEA implementation, which is a standard protocol spoken by many positioning devices,
usually over a serial port.

Examples

nmealogger.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""
Connects to an NMEA device, logs beacon information and position.
"""

import sys

from twisted.internet import reactor, serialport
(continues on next page)
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(continued from previous page)

from twisted.positioning import base, nmea
from twisted.python import log, usage

class PositioningReceiver(base.BasePositioningReceiver):
def positionReceived(self, latitude, longitude):

log.msg(f"I'm at {latitude} lat, {longitude} lon")

def beaconInformationReceived(self, beaconInformation):
template = "{0.seen} beacons seen, {0.used} beacons used"
log.msg(template.format(beaconInformation))

class Options(usage.Options):
optParameters = [

["baud-rate", "b", 4800, "Baud rate (default: 4800)"],
["serial-port", "p", "/dev/ttyS0", "Serial Port device"],

]

def run():
log.startLogging(sys.stdout)

opts = Options()
try:

opts.parseOptions()
except usage.UsageError as message:

print(f"{sys.argv[0]}: {message}")
return

positioningReceiver = PositioningReceiver()
nmeaReceiver = nmea.NMEAAdapter(positioningReceiver)
proto = nmea.NMEAProtocol(nmeaReceiver)

port, baudrate = opts["serial-port"], opts["baud-rate"]
serialport.SerialPort(proto, port, reactor, baudrate=baudrate)

reactor.run()

if __name__ == "__main__":
run()

• Connects to an NMEA device on a serial port, and reports whenever it receives a position.
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2.1.46 Twisted Glossary

adaptee

An object that has been adapted, also called “original” . See Adapter .

Adapter

An object whose sole purpose is to implement an Interface for another object. See Interfaces and Adapters
.

Application

A twisted.application.service.Application() . There are HOWTOs on creating and manipu-
lating them as a system-administrator, as well as using them in your code.

Avatar

(from Twisted Cred ) business logic for specific user. For example, in PB these are perspectives, in POP3
these are mailboxes, and so on.

Banana

The low-level data marshalling layer of Twisted Spread . See twisted.spread.banana .

Broker

A twisted.spread.pb.Broker , the object request broker for Twisted Spread .

cache

A way to store data in readily accessible place for later reuse. Caching data is often done because the data
is expensive to produce or access. Caching data risks being stale, or out of sync with the original data.

component

A special kind of (persistent) Adapter that works with a twisted.python.components.
Componentized . See also Interfaces and Adapters .

Componentized

A Componentized object is a collection of information, separated into domain-specific or role-specific
instances, that all stick together and refer to each other. Each object is an Adapter , which, in the context
of Componentized, we call “components” . See also Interfaces and Adapters .

conch

Twisted’s SSH implementation.

Connector

Object used to interface between client connections and protocols, usually used with a twisted.
internet.protocol.ClientFactory to give you control over how a client connection reconnects. See
twisted.internet.interfaces.IConnector and Writing Clients .

Consumer

An object that consumes data from a Producer . See twisted.internet.interfaces.IConsumer .

Cred

Twisted’s authentication API, twisted.cred . See Introduction to Twisted Cred and Twisted Cred usage
.

credentials

A username/password, public key, or some other information used for authentication.
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credential checker

Where authentication actually happens. See ICredentialsChecker .

CVSToys

A nifty set of tools for CVS, available at http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/
.

Daemon

A background process that does a job or handles client requests. Daemon is a Unix term; service is the
Windows equivalent.

Deferred

An instance of twisted.internet.defer.Deferred , an abstraction for handling chains of callbacks
and error handlers (“errbacks” ). See the Deferring Execution HOWTO.

Enterprise

Twisted’s RDBMS support. It contains twisted.enterprise.adbapi for asynchronous access to any
standard DB-API 2.0 module. See Introduction to Twisted Enterprise for more details.

errback

A callback attached to a Deferred with .addErrback to handle errors.

Factory

In general, an object that constructs other objects. In Twisted, a Factory usually refers to a twisted.
internet.protocol.Factory , which constructs Protocol instances for incoming or outgoing connec-
tions. See Writing Servers and Writing Clients .

Failure

Basically, an asynchronous exception that contains traceback information; these are used for passing errors
through asynchronous callbacks.

im

Abbreviation of “(Twisted) Instance Messenger” .

Instance Messenger

Instance Messenger is a multi-protocol chat program that comes with Twisted. It can communicate via
TOC with the AOL servers, via IRC, as well as via PB with Twisted Words . See twisted.words.im .

Interface

A class that defines and documents methods that a class conforming to that interface needs to have. A
collection of core twisted.internet interfaces can be found in twisted.internet.interfaces .
See also Interfaces and Adapters .

Jelly

The serialization layer for Twisted Spread , although it can be used separately from Twisted Spread as well.
It is similar in purpose to Python’s standard pickle module, but is more network-friendly, and depends
on a separate marshaller (Banana , in most cases). See twisted.spread.jelly .

Manhole

A debugging/administration interface to a Twisted application.

Microdom
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A partial DOM implementation using SUX . It is simple and pythonic, rather than strictly standards-
compliant. See twisted.web.microdom .

Names

Twisted’s DNS server, found in twisted.names .

Nevow

The successor to Woven ; available from Divmod .

PB

Abbreviation of “Perspective Broker” .

Perspective Broker

The high-level object layer of Twisted Spread , implementing semantics for method calling and object
copying, caching, and referencing. See twisted.spread.pb .

Portal

Glues credential checkers and realm s together.

Producer

An object that generates data a chunk at a time, usually to be processed by a Consumer . See twisted.
internet.interfaces.IProducer .

Protocol

In general each network connection has its own Protocol instance to manage connection-specific state.
There is a collection of standard protocol implementations in twisted.protocols . See also Writing
Servers and Writing Clients .

PSU

There is no PSU.

Reactor

The core event-loop of a Twisted application. See Reactor Basics .

Reality

See “Twisted Reality”

realm

(in Twisted Cred ) stores avatars and perhaps general business logic. See IRealm .

Resource

A twisted.web.resource.Resource , which are served by Twisted Web. Resources can be as simple
as a static file on disk, or they can have dynamically generated content.

Service

A twisted.application.service.Service . See Application howto for a description of how they
relate to Applications .

Spread

Twisted Spread is Twisted’s remote-object suite. It consists of three layers: Perspective Broker , Jelly and
Banana. See Writing Applications with Perspective Broker .

SUX
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S mall U ncomplicated X ML, Twisted’s simple XML parser written in pure Python. See twisted.web.
sux .

TAC

A T wisted A pplication C onfiguration is a Python source file, generally with the .tac extension, which
defines configuration to make an application runnable using twistd .

TAP

T wisted A pplication P ickle (no longer supported), or simply just a*T* wisted AP plication. A serialised
application that was created with mktap (no longer supported) and runnable by twistd . See:doc:Using
the Utilities <basics> .

Trial

twisted.trial , Twisted’s unit-testing framework, based on the unittest standard library module. See
also Writing tests for Twisted code .

Twisted Matrix Laboratories

The team behind Twisted. http://twistedmatrix.com/ .

Twisted Reality

In days of old, the Twisted Reality multiplayer text-based interactive-fiction system was the main focus of
Twisted Matrix Labs; Twisted, the general networking framework, grew out of Reality’s need for better
network functionality. Twisted Reality has been superseded by the Imaginary project.

usage

The twisted.python.usage module, a replacement for the standard getopt module for parsing
command-lines which is much easier to work with. See Parsing command-lines .

Words

Twisted Words is a multi-protocol chat server that uses the Perspective Broker protocol as its native com-
munication style. See twisted.words .

Woven

W eb O bject V isualization En vironment. A templating system previously, but no longer, included with
Twisted. Woven has largely been superseded by Divmod Nevow .

2.1.47 Debugging Python(Twisted) with Emacs

• Open up your project files. sometimes emacs can’t find them if you don’t have them open before-hand.

• Make sure you have a program called pdb somewhere in your PATH, with the following contents:

#!/bin/sh
exec python -m pdb $1 $2 $3 $4 $5 $6 $7 $8 $9

• Run M-x pdb in emacs. If you usually run your program as python foo.py , your command line should be
pdb foo.py , for twistd and trial just add -b to the command line, e.g.: twistd -b -y my.tac

• While pdb waits for your input, go to a place in your code and hit C-x SPC to insert a break-point. pdb should
say something happy. Do this in as many points as you wish.

• Go to your pdb buffer and hit c ; this runs as normal until a break-point is found.
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• Once you get to a breakpoint, use s to step, n to run the current line without stepping through the functions it
calls, w to print out the current stack, u and d to go up and down a level in the stack, p foo to print result of
expression foo .

• Recommendations for effective debugging:

– use p self a lot; just knowing the class where the current code is isn’t enough most of the time.

– use w to get your bearings, it’ll re-display the current-line/arrow

– after you use w , use u and d and lots more p self on the different stack-levels.

– If you’ve got a big code-path that you need to grok, keep another buffer open and list the code-path there
(e.g., I had a nasty-evil Deferred recursion, and this helped me tons)

• Introduction

– Executive summary

Connecting your software - and having fun too!

• Getting Started

– Writing a TCP server

Basic network servers with Twisted.

– Writing a TCP client

And basic clients.

– Test-driven development with Twisted

Code without tests is broken by definition; Twisted makes it easy to test your network code.

– Tutorial: Twisted From Scratch

1. The Evolution of Finger: building a simple finger service

2. The Evolution of Finger: adding features to the finger service

3. The Evolution of Finger: cleaning up the finger code

4. The Evolution of Finger: moving to a component based architecture

5. The Evolution of Finger: pluggable backends

6. The Evolution of Finger: a clean web frontend

7. The Evolution of Finger: Twisted client support using Perspective Broker

8. The Evolution of Finger: using a single factory for multiple protocols

9. The Evolution of Finger: a Twisted finger client

10. The Evolution of Finger: making a finger library

11. The Evolution of Finger: configuration and packaging of the finger service

– Setting up the TwistedQuotes application

– Designing a Twisted application

• Networking and Other Event Sources

– Twisted Internet

A brief overview of the twisted.internet package.
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– Reactor basics

The event loop at the core of your program.

– Using SSL in Twisted

Add some security to your network transport.

– UDP Networking

How to use Twisted’s UDP implementation, including multicast and broadcast functionality.

– Using processes

Launching sub-processes, the correct way.

– Introduction to Deferreds

Like callback functions, only a lot better.

– Deferred reference

In-depth information on Deferreds.

– Generating deferreds

More about Deferreds.

– Scheduling

Timeouts, repeated events, and more: when you want things to happen later.

– Using threads

Running code in threads, and interacting with Twisted in a thread-safe manner.

– Producers and Consumers: Efficient High-Volume Streaming

How to pause when buffers fill up.

– Choosing a reactor and GUI toolkit integration

GTK+, Windows, epoll() and more: use your GUI of choice, or a faster event loop.

• High-Level Infrastructure

– Getting Connected with Endpoints

Create configurable applications that support multiple transports (e.g. TCP and SSL).

– Interfaces and Adapters (Component Architecture)

When inheritance isn’t enough.

– Cred: Pluggable Authentication

Implementing authentication and authorization that is configurable, pluggable and re-usable.

– Twisted’s plugin architecture

A generic plugin system for extendable programs.

• Deploying Twisted Applications

– Helper programs and scripts (twistd, ..)

twistd lets you daemonize and run your application.

– Using the Twisted Application Framework

Writing code that twistd can run.
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– Writing Twisted Application Plugins for twistd

More powerful twistd deployment method.

– Deploying Twisted with systemd

Use systemd to launch and monitor Twisted applications.

• Utilities

– Emitting and Observing Logs

Keep a record of what your application is up to, and inspect that record to discover interesting information.
(You may also be interested in the legacy logging system if you are maintaining code written to work with
older versions of Twisted.)

– Symbolic constants

enum-like constants. (Deprecated, spun out into Constantly)

– Twisted RDBMS support with adbapi

Using SQL with your relational database via DB-API adapters.

– Parsing command-line arguments

The command-line argument parsing used by twistd .

– Using Dirdbm: Directory-based Storage

A simplistic way to store data on your filesystem.

– Tips for writing tests for Twisted code using Trial

More information on writing tests.

– Extremely Low-Level Socket Operations

Using wrappers for sendmsg(2) and recvmsg(2).

• Asynchronous Messaging Protocol (AMP)

– Asynchronous Messaging Protocol Overview

A two-way asynchronous message passing protocol, for when HTTP isn’t good enough.

• Perspective Broker

– Twisted Spread

A remote method invocation (RMI) protocol: call methods on remote objects.

– Introduction to Perspective Broker

– Using Perspective Broker

– Managing Clients of Perspectives

– Passing Complex Types

– Authentication with Perspective Broker

– PB Limits

• Positioning

– Twisted Positioning

• Appendix

– Porting to Python 3
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– Glossary

– Tips for debugging with emacs

2.2 Examples

2.2.1 Simple Echo server and client

• simpleclient.py - simple TCP client

• simpleserv.py - simple TCP echo server

2.2.2 Chat

• chatserver.py - shows how to communicate between clients

2.2.3 Echo server & client variants

• echoserv.py - variant on a simple TCP echo server

• echoclient.py - variant on a simple TCP client

• echoserv_udp.py - simplest possible UDP server

• echoclient_udp.py - simple UDP client

• echoserv_ssl.py - simple SSL server

• echoclient_ssl.py - simple SSL client

2.2.4 AMP server & client variants

• ampserver.py - do math using AMP

• ampclient.py - do math using AMP

2.2.5 Perspective Broker

• pbsimple.py - simplest possible PB server

• pbsimpleclient.py - simplest possible PB client

• pbbenchclient.py - benchmarking client

• pbbenchserver.py - benchmarking server

• pbecho.py - echo server that uses login

• pbechoclient.py - echo client using login

• pb_exceptions.py - example of exceptions over PB

• pbgtk2.py - example of using GTK2 with PB

• pbinterop.py - shows off various types supported by PB

• bananabench.py - benchmark for banana
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2.2.6 Cred

• cred.py - Authenticate a user with an in-memory username/password database

• dbcred.py - Using a database backend to authenticate a user

2.2.7 GUI

• wxdemo.py - demo of wxPython integration with Twisted

• pbgtk2.py - example of using GTK2 with PB

• pyuidemo.py - PyUI

2.2.8 FTP examples

• ftpclient.py - example of using the FTP client

• ftpserver.py - create an FTP server which serves files for anonymous users from the working directory and
serves files for authenticated users from /home.

2.2.9 Logging

• twistd-logging.tac - logging example using ILogObserver

• testlogging.py - use twisted.python.log to log errors to standard out

• rotatinglog.py - example of log file rotation

2.2.10 POSIX Specific Tricks

• sendfd.py, recvfd.py - send and receive file descriptors over UNIX domain sockets

2.2.11 Miscellaneous

• shaper.py - example of rate-limiting your web server

• stdiodemo.py - example using stdio, Deferreds, LineReceiver and twisted.web.client.

• ptyserv.py - serve shells in pseudo-terminals over TCP

• courier.py - example of interfacing to Courier’s mail filter interface

• longex.py - example of doing arbitrarily long calculations nicely in Twisted

• longex2.py - using generators to do long calculations

• stdin.py - reading a line at a time from standard input without blocking the reactor

• streaming.py - example of a push producer/consumer system

• filewatch.py - write the content of a file to standard out one line at a time

• shoutcast.py - example Shoutcast client

• wxacceptance.py - acceptance tests for wxreactor

• postfix.py - test application for PostfixTCPMapServer
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• udpbroadcast.py - broadcasting using UDP

• tls_alpn_npn_client.py - example of TLS next-protocol negotiation on the client side using NPN and
ALPN.

• tls_alpn_npn_server.py - example of TLS next-protocol negotiation on the server side using NPN and
ALPN.

2.3 Specifications

2.3.1 Banana Protocol Specifications

Introduction

Banana is an efficient, extendable protocol for sending and receiving s-expressions. A s-expression in this context is
a list composed of bytes, integers, large integers, floats and/or s-expressions. Unicode is not supported (but can be
encoded to and decoded from bytes on the way into and out of Banana). Unsupported types must be converted into a
supported type before sending them with Banana.

Banana Encodings

The banana protocol is a stream of data composed of elements. Each element has the following general structure - first,
the length of element encoded in base-128, least significant bit first. For example length 4674 will be sent as 0x42
0x24 . For certain element types the length will be omitted (e.g. float) or have a different meaning (it is the actual value
of integer elements).

Following the length is a delimiter byte, which tells us what kind of element this is. Depending on the element type,
there will then follow the number of bytes specified in the length. The byte’s high-bit will always be set, so that we can
differentiate between it and the length (since the length bytes use 128-base, their high bit will never be set).

Element Types

Given a series of bytes that gave us length N, these are the different delimiter bytes:

List – 0x80

The following bytes are a list of N elements. Lists may be nested, and a child list counts as only one element
to its parent (regardless of how many elements the child list contains).

Integer – 0x81

The value of this element is the positive integer N. Following bytes are not part of this element. Integers
can have values of 0 <= N <= 2147483647.

String – 0x82

The following N bytes are a string element.

Negative Integer – 0x83

The value of this element is the integer N * -1, i.e. -N. Following bytes are not part of this element.
Negative integers can have values of 0 >= -N >= -2147483648.

Float - 0x84

The next 8 bytes are the float encoded in IEEE 754 floating-point “double format” bit layout. No length
bytes should have been defined.
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Large Integer – 0x85

The value of this element is the positive large integer N. Following bytes are not part of this element. Large
integers have no size limitation.

Large Negative Integer – 0x86

The value of this element is the negative large integer -N. Following bytes are not part of this element.
Large integers have no size limitation.

Large integers are intended for arbitrary length integers. Regular integers types (positive and negative) are limited to
32-bit values.

Examples

Here are some examples of elements and their encodings - the type bytes are marked in bold:

1

0x01 **0x81**

-1

0x01 **0x83**

1.5

**0x84** 0x3f 0xf8 0x00 0x00 0x00 0x00 0x00 0x00

"hello"

0x05 **0x82** 0x68 0x65 0x6c 0x6c 0x6f

[]

0x00 **0x80**

[1, 23]

0x02 **0x80** 0x01 **0x81** 0x17 **0x81**

123456789123456789

0x15 0x3e 0x41 0x66 0x3a 0x69 0x26 0x5b 0x01 **0x85**

[1, ["hello"]]

0x02 **0x80** 0x01 **0x81** 0x01 **0x80** 0x05 **0x82** 0x68 0x65 0x6c 0x6c
0x6f

Profiles

The Banana protocol is extendable. Therefore, it supports the concept of profiles. Profiles allow developers to extend
the banana protocol, adding new element types, while still keeping backwards compatibility with implementations that
don’t support the extensions. The profile used in each session is determined at the handshake stage (see below.)

A profile is specified by a unique string. This specification defines two profiles - "none" and "pb" . The "none" profile
is the standard profile that should be supported by all Banana implementations. Additional profiles may be added in
the future.

Extensions defined by a profile may only be used if that profile has been selected by client and server.
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The "none" Profile

The "none" profile is identical to the delimiter types listed above. It is highly recommended that all Banana clients
and servers support the "none" profile.

The "pb" Profile

The "pb" profile is intended for use with the Perspective Broker protocol, that runs on top of Banana. Basically, it
converts commonly used PB strings into shorter versions, thus minimizing bandwidth usage. It starts with a single
byte, which tells us to which string element to convert it, and ends with the delimiter byte, 0x87 , which should not be
prefixed by a length.

0x01
‘None’

0x02
‘class’

0x03
‘dereference’

0x04
‘reference’

0x05
‘dictionary’

0x06
‘function’

0x07
‘instance’

0x08
‘list’

0x09
‘module’

0x0a
‘persistent’

0x0b
‘tuple’

0x0c
‘unpersistable’

0x0d
‘copy’

0x0e
‘cache’

0x0f
‘cached’

0x10
‘remote’

2.3. Specifications 339



Twisted Documentation, Release 23.8.0

0x11
‘local’

0x12
‘lcache’

0x13
‘version’

0x14
‘login’

0x15
‘password’

0x16
‘challenge’

0x17
‘logged_in’

0x18
‘not_logged_in’

0x19
‘cachemessage’

0x1a
‘message’

0x1b
‘answer’

0x1c
‘error’

0x1d
‘decref’

0x1e
‘decache’

0x1f
‘uncache’

Protocol Handshake and Behaviour

The initiating side of the connection will be referred to as “client” , and the other side as “server” .

Upon connection, the server will send the client a list of string elements, signifying the profiles it supports. It is
recommended that "none" be included in this list. The client then sends the server a string from this list, telling the
server which profile it wants to use. At this point the whole session will use this profile.

Once a profile has been established, the two sides may start exchanging elements. There is no limitation on order or
dependencies of messages. Any such limitation (e.g. “server can only send an element to client in response to a request
from client” ) is application specific.

Upon receiving illegal messages, failed handshakes, etc., a Banana client or server should close its connection.

• Banana Protocol Specifications

• Developer guides: documentation on using Twisted Core to develop your own applications

340 Chapter 2. Twisted Core



Twisted Documentation, Release 23.8.0

• Examples: short code examples using Twisted Core

• Specifications: specification documents for elements of Twisted Core

An API reference is available.
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CHAPTER

THREE

TWISTED CONCH (SSH AND TELNET)

3.1 Developer Guides

3.1.1 Writing a client with Twisted Conch

Introduction

In the original days of computing, rsh/rlogin were used to connect to remote computers and execute commands. These
commands had the problem that the passwords and commands were sent in the clear. To solve this problem, the SSH
protocol was created. Twisted Conch implements the second version of this protocol.

Using an SSH Command Endpoint

If your objective is to execute a command on a remote host over an SSH connection, then the easiest approach may be
to use twisted.conch.endpoints.SSHCommandClientEndpoint . If you haven’t used endpoints before, first take
a look at the endpoint howto to get an idea of how endpoints work in general.

Conch provides an endpoint implementation which establishes an SSH connection, performs necessary authentication,
opens a channel, and launches a command in that channel. It then associates the output of that command with the
input of a protocol you supply, and associates output from that protocol with the input of that command. Effectively,
this lets you ignore most of the complexity of SSH and just interact with a remote process as though it were any other
stream-oriented connection - such as TCP or SSL.

Conch also provides an endpoint that is initialized with an already established SSH connection. This endpoint just
opens a new channel on the existing connection and launches a command in that.

Using the SSHCommandClientEndpoint is about as simple as using any other stream-oriented client endpoint. Just
create the endpoint defining where the SSH server to connect to is and a factory defining what kind of protocol to use
to interact with the command and let them get to work using the endpoint’s connect method.

echoclient_ssh.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

if __name__ == "__main__":
import sys

import echoclient_ssh

(continues on next page)
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(continued from previous page)

from twisted.internet.task import react

react(echoclient_ssh.main, sys.argv[1:])

import getpass
import os

from twisted.conch.client.knownhosts import KnownHostsFile
from twisted.conch.endpoints import SSHCommandClientEndpoint
from twisted.conch.ssh.keys import EncryptedKeyError, Key
from twisted.internet.defer import Deferred
from twisted.internet.endpoints import UNIXClientEndpoint
from twisted.internet.protocol import Factory, Protocol
from twisted.python.filepath import FilePath
from twisted.python.usage import Options

class EchoOptions(Options):
optParameters = [

("host", "h", "localhost", "hostname of the SSH server to which to connect"),
("port", "p", 22, "port number of SSH server to which to connect", int),
(

"username",
"u",
getpass.getuser(),
"username with which to authenticate with the SSH server",

),
(

"identity",
"i",
None,
"file from which to read a private key to use for authentication",

),
("password", None, None, "password to use for authentication"),
(

"knownhosts",
"k",
"~/.ssh/known_hosts",
"file containing known ssh server public key data",

),
]

optFlags = [
["no-agent", None, "Disable use of key agent"],

]

class NoiseProtocol(Protocol):
def connectionMade(self):

self.finished = Deferred()
self.strings = ["bif", "pow", "zot"]
self.sendNoise()

(continues on next page)
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(continued from previous page)

def sendNoise(self):
if self.strings:

self.transport.write(self.strings.pop(0) + "\n")
else:

self.transport.loseConnection()

def dataReceived(self, data):
print("Server says:", data)
self.sendNoise()

def connectionLost(self, reason):
self.finished.callback(None)

def readKey(path):
try:

return Key.fromFile(path)
except EncryptedKeyError:

passphrase = getpass.getpass(f"{path!r} keyphrase: ")
return Key.fromFile(path, passphrase=passphrase)

class ConnectionParameters:
def __init__(

self, reactor, host, port, username, password, keys, knownHosts, agent
):

self.reactor = reactor
self.host = host
self.port = port
self.username = username
self.password = password
self.keys = keys
self.knownHosts = knownHosts
self.agent = agent

@classmethod
def fromCommandLine(cls, reactor, argv):

config = EchoOptions()
config.parseOptions(argv)

keys = []
if config["identity"]:

keyPath = os.path.expanduser(config["identity"])
if os.path.exists(keyPath):

keys.append(readKey(keyPath))

knownHostsPath = FilePath(os.path.expanduser(config["knownhosts"]))
if knownHostsPath.exists():

knownHosts = KnownHostsFile.fromPath(knownHostsPath)
else:

knownHosts = None
(continues on next page)
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if config["no-agent"] or "SSH_AUTH_SOCK" not in os.environ:
agentEndpoint = None

else:
agentEndpoint = UNIXClientEndpoint(reactor, os.environ["SSH_AUTH_SOCK"])

return cls(
reactor,
config["host"],
config["port"],
config["username"],
config["password"],
keys,
knownHosts,
agentEndpoint,

)

def endpointForCommand(self, command):
return SSHCommandClientEndpoint.newConnection(

self.reactor,
command,
self.username,
self.host,
port=self.port,
keys=self.keys,
password=self.password,
agentEndpoint=self.agent,
knownHosts=self.knownHosts,

)

def main(reactor, *argv):
parameters = ConnectionParameters.fromCommandLine(reactor, argv)
endpoint = parameters.endpointForCommand(b"/bin/cat")

factory = Factory()
factory.protocol = NoiseProtocol

d = endpoint.connect(factory)
d.addCallback(lambda proto: proto.finished)
return d

For completeness, this example includes a lot of code to support different styles of authentication, reading (and pos-
sibly updating) existing known_hosts files, and parsing command line options. Focus on the latter half of the main
function to see the code that is most directly responsible for actually doing the necessary SSH connection setup.
SSHCommandClientEndpoint accepts quite a few options, since there is a lot of flexibility in SSH and many pos-
sible different server configurations, but once the endpoint object itself is created, its use is no more complicated than
the use of any other endpoint: pass a factory to its connect method and attach a callback to the resulting Deferred to
do something with the protocol instance. If you use an endpoint that creates new connections, the connection attempt
can be cancelled by calling cancel() on this Deferred .

In this case, the connected protocol instance is only used to make the example wait until the client has finished talking
to the server, which happens after the small amount of example data has been sent to the server and bounced back by
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the /bin/cat process the protocol is interacting with.

Several of the options accepted by SSHCommandClientEndpoint.newConnection should be easy to understand. The
endpoint takes a reactor which it uses to do any and all I/O it needs to do. It also takes a command which it executes on
the remote server once the SSH connection is established and authenticated; this command is a single string, perhaps
including spaces or other special shell symbols, and is interpreted by a shell on the server. It takes a username with
which it identifies itself to the server for authentication purposes. It takes an optional password argument which will
also be used for authentication - if the server supports password authentication (prefer keys instead where possible, see
below). It takes a host (either a name or an IP address) and a port number, defining where to connect.

Some of the other options may bear further explanation.

The keys argument gives any SSH Key objects which may be useful for authentication. These keys are available to the
endpoint for authentication, but only keys that the server indicates are useful will actually be used. This argument is
optional. If key authentication against the server is either unnecessary or undesired, it may be omitted entirely.

The agentEndpoint argument gives the SSHCommandClientEndpoint an opportunity to connect to an SSH authen-
tication agent. The agent may already be loaded with keys, or may have some other way to authenticate a connection.
Using the agent can mean the process actually establishing the SSH connection doesn’t need to load any authentication
material (passwords or keys) itself (often convenient in case keys are encrypted and potentially more secure, since only
the agent process ever actually holds the secrets). The value for this argument is another IStreamClientEndpoint .
Often in a typical NIX desktop environment, the *SSH_AUTH_SOCK environment variable will give the location of an
AF_UNIX socket. This explains the value echoclient_ssh.py assigns this parameter when –no-agent is not given.

The knownHosts argument accepts a KnownHostsFile instance and controls how server keys are checked and stored.
This object has the opportunity to reject server keys if they differ from expectations. It can also save server keys when
they are first observed.

Finally, there is one option that is not demonstrated in the example - the ui argument. This argument is closely related
to the knownHosts argument described above. KnownHostsFile may require user-input under certain circumstances
- for example, to ask if it should accept a server key the first time it is observed. The ui object is how this user-input is
obtained. By default, a ConsoleUI instance associated with /dev/tty will be used. This gives about the same behavior as
is seen in a standard command-line ssh client. See SSHCommandClientEndpoint.newConnection for details about
how edge cases are handled for this default value. For use of SSHCommandClientEndpoint that is intended to be
completely autonomous, applications will probably want to specify a custom ui object which can make the necessary
decisions without user-input.

It is also possible to run commands (one or more) over an already-established connection. This is done using the
alternate constructor SSHCommandClientEndpoint.existingConnection . The connection argument to that
function can be obtained by accessing transport.conn on an already connected protocol.

echoclient_shared_ssh.py

#!/usr/bin/env python
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

if __name__ == "__main__":
import sys

import echoclient_shared_ssh

from twisted.internet.task import react

react(echoclient_shared_ssh.main, sys.argv[1:])

from echoclient_ssh import ConnectionParameters
(continues on next page)
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from twisted.conch.endpoints import SSHCommandClientEndpoint
from twisted.internet.defer import Deferred, gatherResults
from twisted.internet.protocol import Factory, Protocol
from twisted.internet.task import cooperate

class PrinterProtocol(Protocol):
def dataReceived(self, data):

print("Got some data:", data, end=" ")

def connectionLost(self, reason):
print("Lost my connection")
self.factory.done.callback(None)

def main(reactor, *argv):
parameters = ConnectionParameters.fromCommandLine(reactor, argv)
endpoint = parameters.endpointForCommand(b"/bin/cat")

done = []
factory = Factory()
factory.protocol = Protocol
d = endpoint.connect(factory)

def gotConnection(proto):
conn = proto.transport.conn

for i in range(50):
factory = Factory()
factory.protocol = PrinterProtocol
factory.done = Deferred()
done.append(factory.done)

e = SSHCommandClientEndpoint.existingConnection(
conn, b"/bin/echo %d" % (i,)

)
yield e.connect(factory)

d.addCallback(gotConnection)
d.addCallback(lambda work: cooperate(work).whenDone())
d.addCallback(lambda ignored: gatherResults(done))

return d
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Writing a client

In case the endpoint is missing some necessary functionality, or in case you want to interact with a different part of
an SSH server - such as one of its subsystems (for example, SFTP), you may need to use the lower-level Conch client
interface. This is described below.

Writing a client with Conch involves sub-classing 4 classes: twisted.conch.ssh.transport.
SSHClientTransport , twisted.conch.ssh.userauth.SSHUserAuthClient , twisted.conch.ssh.
connection.SSHConnection , and twisted.conch.ssh.channel.SSHChannel . We’ll start out with
SSHClientTransport because it’s the base of the client.

The Transport

from twisted.conch import error
from twisted.conch.ssh import transport
from twisted.internet import defer

class ClientTransport(transport.SSHClientTransport):

def verifyHostKey(self, pubKey, fingerprint):
if fingerprint != 'b1:94:6a:c9:24:92:d2:34:7c:62:35:b4:d2:61:11:84':

return defer.fail(error.ConchError('bad key'))
else:

return defer.succeed(1)

def connectionSecure(self):
self.requestService(ClientUserAuth('user', ClientConnection()))

See how easy it is? SSHClientTransport handles the negotiation of encryption and the verification of keys for you.
The one security element that you as a client writer need to implement is verifyHostKey() . This method is called
with two strings: the public key sent by the server and its fingerprint. You should verify the host key the server sends,
either by checking against a hard-coded value as in the example, or by asking the user. verifyHostKey returns a
twisted.internet.defer.Deferred which gets a callback if the host key is valid, or an errback if it is not. Note
that in the above, replace ‘user’ with the username you’re attempting to ssh with, for instance a call to os.getlogin()
for the current user.

The second method you need to implement is connectionSecure() . It is called when the encryption is set up and
other services can be run. The example requests that the ClientUserAuth service be started. This service will be
discussed next.

The Authorization Client

from twisted.conch.ssh import keys, userauth

# these are the public/private keys from test_conch

publicKey = 'ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEArzJx8OYOnJmzf4tfBEvLi8DVPrJ3\
/c9k2I/Az64fxjHf9imyRJbixtQhlH9lfNjUIx+4LmrJH5QNRsFporcHDKOTwTTYLh5KmRpslkYHR\
ivcJSkbh/C+BR3utDS555mV'

privateKey = """-----BEGIN RSA PRIVATE KEY-----
MIIByAIBAAJhAK8ycfDmDpyZs3+LXwRLy4vA1T6yd/3PZNiPwM+uH8Yx3/YpskSW

(continues on next page)
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4sbUIZR/ZXzY1CMfuC5qyR+UDUbBaaK3Bwyjk8E02C4eSpkabJZGB0Yr3CUpG4fw
vgUd7rQ0ueeZlQIBIwJgbh+1VZfr7WftK5lu7MHtqE1S1vPWZQYE3+VUn8yJADyb
Z4fsZaCrzW9lkIqXkE3GIY+ojdhZhkO1gbG0118sIgphwSWKRxK0mvh6ERxKqIt1
xJEJO74EykXZV4oNJ8sjAjEA3J9r2ZghVhGN6V8DnQrTk24Td0E8hU8AcP0FVP+8
PQm/g/aXf2QQkQT+omdHVEJrAjEAy0pL0EBH6EVS98evDCBtQw22OZT52qXlAwZ2
gyTriKFVoqjeEjt3SZKKqXHSApP/AjBLpF99zcJJZRq2abgYlf9lv1chkrWqDHUu
DZttmYJeEfiFBBavVYIF1dOlZT0G8jMCMBc7sOSZodFnAiryP+Qg9otSBjJ3bQML
pSTqy7c3a2AScC/YyOwkDaICHnnD3XyjMwIxALRzl0tQEKMXs6hH8ToUdlLROCrP
EhQ0wahUTCk1gKA4uPD6TMTChavbh4K63OvbKg==
-----END RSA PRIVATE KEY-----"""

class ClientUserAuth(userauth.SSHUserAuthClient):

def getPassword(self, prompt = None):
return
# this says we won't do password authentication

def getPublicKey(self):
return keys.Key.fromString(data = publicKey).blob()

def getPrivateKey(self):
return defer.succeed(keys.Key.fromString(data = privateKey).keyObject)

Again, fairly simple. The SSHUserAuthClient takes care of most of the work, but the actual authentication data needs
to be supplied. getPassword() asks for a password, getPublicKey() and getPrivateKey() get public and private
keys, respectively. getPassword() returns a Deferred that is called back with the password to use.

getPublicKey() returns the SSH key data for the public key to use. Key.fromString()will take a key in OpenSSH,
LSH or any supported format, as a string, and generate a new Key. Alternatively, keys.Key.fromFile() can be used
instead, which will take the filename of a key in the supported format, and and generate a new Key.

getPrivateKey() returns a Deferred which is called back with the private Key.

getPassword() and getPrivateKey() return Deferreds because they may need to ask the user for input.

Once the authentication is complete, SSHUserAuthClient takes care of starting the SSHConnection object given to
it. Next, we’ll look at how to use the SSHConnection.

The Connection

from twisted.conch.ssh import connection

class ClientConnection(connection.SSHConnection):

def serviceStarted(self):
self.openChannel(CatChannel(conn = self))

SSHConnection is the easiest, as it’s only responsible for starting the channels. It has other methods, those will be
examined when we look at SSHChannel .
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The Channel

from twisted.conch.ssh import channel, common

class CatChannel(channel.SSHChannel):

name = 'session'

def channelOpen(self, data):
d = self.conn.sendRequest(self, 'exec', common.NS('cat'),

wantReply = 1)
d.addCallback(self._cbSendRequest)
self.catData = ''

def _cbSendRequest(self, ignored):
self.write('This data will be echoed back to us by "cat."\r\n')
self.conn.sendEOF(self)
self.loseConnection()

def dataReceived(self, data):
self.catData += data

def closed(self):
print('We got this from "cat":', self.catData)

Now that we’ve spent all this time getting the server and client connected, here is where that work pays off. SSHChannel
is the interface between you and the other side. This particular channel opens a session and plays with the ‘cat’ program,
but your channel can implement anything, so long as the server supports it.

The channelOpen() method is where everything gets started. It gets passed a chunk of data; however, this chunk is
usually nothing and can be ignored. Our channelOpen() initializes our channel, and sends a request to the other side,
using the sendRequest() method of the SSHConnection object. Requests are used to send events to the other side.
We pass the method self so that it knows to send the request for this channel. The 2nd argument of ‘exec’ tells the
server that we want to execute a command. The third argument is the data that accompanies the request. common.NS
encodes the data as a length-prefixed string, which is how the server expects the data. We also say that we want a reply
saying that the process has a been started. sendRequest() then returns a Deferred which we add a callback for.

Once the callback fires, we send the data. SSHChannel supports the twisted.internet.interfaces.ITransport
interface, so it can be given to Protocols to run them over the secure connection. In our case, we just write the data
directly. sendEOF() does not follow the interface, but Conch uses it to tell the other side that we will write no more data.
loseConnection() shuts down our side of the connection, but we will still receive data through dataReceived()
. The closed() method is called when both sides of the connection are closed, and we use it to display the data we
received (which should be the same as the data we sent.)

Finally, let’s actually invoke the code we’ve set up.
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The main() function

from twisted.internet import protocol, reactor

def main():
factory = protocol.ClientFactory()
factory.protocol = ClientTransport
reactor.connectTCP('localhost', 22, factory)
reactor.run()

if __name__ == "__main__":
main()

We call connectTCP() to connect to localhost, port 22 (the standard port for ssh), and pass it an instance of
twisted.internet.protocol.ClientFactory . This instance has the attribute protocol set to our earlier
ClientTransport class. Note that the protocol attribute is set to the class ClientTransport , not an in-
stance of ClientTransport ! When the connectTCP call completes, the protocol will be called to create a
ClientTransport() object - this then invokes all our previous work.

It’s worth noting that in the example main() routine, the reactor.run() call never returns. If you want to make the
program exit, call reactor.stop() in the earlier closed() method.

If you wish to observe the interactions in more detail, adding a call to log.startLogging(sys.stdout,
setStdout=0) before the reactor.run() call will send all logging to stdout.

• Tutorial

– Writing an SSH client with Conch

3.2 Examples

3.2.1 Simple SSH server and client

• sshsimpleclient.py - simple SSH client

• sshsimpleserver.py - simple SSH server

3.2.2 Simple telnet server

• telnet_echo.tac - A telnet server which echoes data and events back to the client

3.2.3 twisted.conch.insults examples

• demo.tac - Nearly pointless demonstration of the manhole interactive interpreter

• demo_draw.tac - A trivial drawing application

• demo_insults.tac - Various simple terminal manipulations using the insults module

• demo_recvline.tac - Demonstrates line-at-a-time handling with basic line-editing support

• demo_scroll.tac - Simple echo-ish server that uses the scroll-region

• demo_manhole.tac - An interactive Python interpreter with syntax coloring
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• window.tac - An example of various widgets

• Developer guides: documentation on using Twisted Conch to develop your own applications

• Examples: short code examples using Twisted Conch
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CHAPTER

FOUR

TWISTED MAIL (SMTP, POP, AND IMAP)

4.1 Examples

4.1.1 SMTP servers

• emailserver.tac - a toy email server.

4.1.2 SMTP clients

• sendmail_smtp.py - sending email over plain SMTP with the high-level sendmail client.

• sendmail_gmail.py - sending email encrypted ESMTP to GMail with the high-level sendmail client.

• sendmail_message.py - sending a complex message with the high-level sendmail client.

• smtpclient_simple.py - sending email using SMTP.

• smtpclient_tls.py - send email using authentication and transport layer security.

4.1.3 IMAP clients

• imap4client.py - Simple IMAP4 client which displays the subjects of all messages in a particular mailbox.

4.2 Developer Guides

4.2.1 Sending Mail

Twisted contains many ways of sending email, but the simplest is sendmail. Intended as a near drop-in replacement
of smtplib.SMTP's sendmail method, it provides the ability to send email over SMTP/ESMTP with minimal fuss or
configuration.

Knowledge of Twisted’s Deferreds is required for making full use of this document.
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Sending an Email over SMTP

Although insecure, some email systems still use plain SMTP for sending email. Plain SMTP has no authentication, no
transport security (emails are transmitted in plain text), and should not be done over untrusted networks.

sendmail's positional arguments are, in order:

• The SMTP/ESMTP server you are sending the message to

• The email address you are sending from

• A list of email addresses you are sending to

• The message.

The following example shows these in action.

sendmail_smtp.py

from twisted.internet.task import react
from twisted.mail.smtp import sendmail

def main(reactor):
d = sendmail(

"myinsecuremailserver.example.com",
"alice@example.com",
["bob@gmail.com", "charlie@gmail.com"],
"This is my super awesome email, sent with Twisted!",

)

d.addBoth(print)
return d

react(main)

Assuming that the values in it were replaced with real emails and a real SMTP server, it would send an email to the
two addresses specified and print the return status.

Sending an Email over ESMTP

Extended SMTP (ESMTP) is an improved version of SMTP, and is used by most modern mail servers. Unlike SMTP,
ESMTP supports authentication and transport security (emails are encrypted in transit). If you wish to send mail
through services like GMail/Google Apps or Outlook.com/Office 365, you will have to use ESMTP.

Using ESMTP requires more options – usually the default port of 25 is not open, so you must find out your email
provider’s TLS-enabled ESMTP port. It also allows the use of authentication via a username and password.

The following example shows part of the ESMTP functionality of sendmail.

sendmail_gmail.py

from twisted.internet.task import react
from twisted.mail.smtp import sendmail

def main(reactor):
(continues on next page)
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(continued from previous page)

d = sendmail(
"smtp.gmail.com",
"alice@gmail.com",
["bob@gmail.com", "charlie@gmail.com"],
"This is my super awesome email, sent with Twisted!",
port=587,
username="alice@gmail.com",
password="*********",

)

d.addBoth(print)
return d

react(main)

Assuming you own the account alice@gmail.com, this would send an email to both bob@gmail.com and
charlie@gmail.com, and print out something like the following (formatted for clarity):

(2, [('bob@gmail.com', 250, '2.1.5 OK hz13sm11691456pac.6 - gsmtp'),
('charlie@gmail.com', 250, '2.1.5 OK hz13sm11691456pac.6 - gsmtp')])

sendmail returns a 2-tuple, containing the number of emails sent successfully (note that this is from you to the server
you specified, not to the recipient – emails may still be lost between that server and the recipient) and a list of statuses
of the sent mail. Each status is a 3-tuple containing the address it was sent to, the SMTP status code, and the server
response.

Sending Complex Emails

Sometimes you want to send more complicated emails – ones with headers, or with attachments. sendmail supports
using Python’s email.Message, which lets you make complex emails:

sendmail_message.py

from email.mime.text import MIMEText

from twisted.internet.task import react
from twisted.mail.smtp import sendmail

def main(reactor):
me = "alice@gmail.com"
to = ["bob@gmail.com", "charlie@gmail.com"]

message = MIMEText("This is my super awesome email, sent with Twisted!")
message["Subject"] = "Twisted is great!"
message["From"] = me
message["To"] = ", ".join(to)

d = sendmail(
"smtp.gmail.com",

(continues on next page)
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me,
to,
message,
port=587,
username=me,
password="*********",
requireAuthentication=True,
requireTransportSecurity=True,

)

d.addBoth(print)
return d

react(main)

For more information on how to use Message, please see the module’s Python docs.

Enforcing Transport Security

To prevent downgrade attacks, you can pass requireTransportSecurity=True to sendmail. This means that your
emails will not be transmitted in plain text.

For example:

sendmail("smtp.gmail.com", me, to, message,
port=587, username=me, password="*********",
requireTransportSecurity=True)

Conclusion

In this document, you have seen how to:

1. Send an email over SMTP using sendmail.

2. Send an email over encrypted & authenticated ESMTP with sendmail.

3. Send a “complex” email containing a subject line using the stdlib’s email.Message functionality.

4. Enforce transport security for emails sent using sendmail.

• Sending Mail: Sending mail with Twisted

4.3 Twisted Mail Tutorial: Building an SMTP Client from Scratch

4.3.1 Introduction

This tutorial will walk you through the creation of an extremely simple SMTP client application. By the time the
tutorial is complete, you will understand how to create and start a TCP client speaking the SMTP protocol, have it
connect to an appropriate mail exchange server, and transmit a message for delivery.
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For the majority of this tutorial, twistd will be used to launch the application. Near the end we will explore other
possibilities for starting a Twisted application. Until then, make sure that you have twistd installed and conveniently
accessible for use in running each of the example .tac files.

SMTP Client 1

The first step is to create smtpclient-1.tac possible for use by twistd .

from twisted.application import service

The first line of the .tac file imports twisted.application.service , a module which contains many of the basic
service classes and helper functions available in Twisted. In particular, we will be using the Application function to
create a new application service . An application service simply acts as a central object on which to store certain kinds
of deployment configuration.

application = service.Application("SMTP Client Tutorial")

The second line of the .tac file creates a new application service and binds it to the local name application . twistd
requires this local name in each .tac file it runs. It uses various pieces of configuration on the object to determine its
behavior. For example, "SMTP Client Tutorial" will be used as the name of the .tap file into which to serialize
application state, should it be necessary to do so.

That does it for the first example. We now have enough of a .tac file to pass to twistd . If we run smtpclient-1.tac
using the twistd command line:

twistd -ny smtpclient-1.tac

we are rewarded with the following output:

exarkun@boson:~/mail/tutorial/smtpclient$ twistd -ny smtpclient-1.tac
18:31 EST [-] Log opened.
18:31 EST [-] twistd 2.0.0 (/usr/bin/python2.4 2.4.1) starting up
18:31 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
18:31 EST [-] Loading smtpclient-1.tac...
18:31 EST [-] Loaded.

As we expected, not much is going on. We can shutdown this server by issuing ^C :

18:34 EST [-] Received SIGINT, shutting down.
18:34 EST [-] Main loop terminated.
18:34 EST [-] Server Shut Down.
exarkun@boson:~/mail/tutorial/smtpclient$

SMTP Client 2

The first version of our SMTP client wasn’t very interesting. It didn’t even establish any TCP connections! The
smtpclient-2.tac will come a little bit closer to that level of complexity. First, we need to import a few more
things:

from twisted.application import internet
from twisted.internet import protocol

twisted.application.internet is another application service module. It provides services for establishing out-
going connections (as well as creating network servers, though we are not interested in those parts for the moment).
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twisted.internet.protocol provides base implementations of many of the core Twisted concepts, such as facto-
ries and protocols .

The next line of smtpclient-2.tac instantiates a new client factory .

smtpClientFactory = protocol.ClientFactory()

Client factories are responsible for constructing protocol instances whenever connections are established. They may
be required to create just one instance, or many instances if many different connections are established, or they may
never be required to create one at all, if no connection ever manages to be established.

Now that we have a client factory, we’ll need to hook it up to the network somehow. The next line of smtpclient-2.
tac does just that:

smtpClientService = internet.TCPClient(None, None, smtpClientFactory)

We’ll ignore the first two arguments to internet.TCPClient for the moment and instead focus on the third.
TCPClient is one of those application service classes. It creates TCP connections to a specified address and then
uses its third argument, a client factory , to get a protocol instance . It then associates the TCP connection with the
protocol instance and gets out of the way.

We can try to run smtpclient-2.tac the same way we ran smtpclient-1.tac , but the results might be a little
disappointing:

exarkun@boson:~/mail/tutorial/smtpclient$ twistd -ny smtpclient-2.tac
18:55 EST [-] Log opened.
18:55 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
18:55 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
18:55 EST [-] Loading smtpclient-2.tac...
18:55 EST [-] Loaded.
18:55 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e46c>
18:55 EST [-] Traceback (most recent call last):

File "twisted/scripts/twistd.py", line 187, in runApp
app.runReactorWithLogging(config, oldstdout, oldstderr)

File "twisted/application/app.py", line 128, in runReactorWithLogging
reactor.run()

File "twisted/internet/posixbase.py", line 200, in run
self.mainLoop()

File "twisted/internet/posixbase.py", line 208, in mainLoop
self.runUntilCurrent()

--- <exception caught here> ---
File "twisted/internet/base.py", line 533, in runUntilCurrent
call.func(*call.args, **call.kw)

File "twisted/internet/tcp.py", line 489, in resolveAddress
if abstract.isIPAddress(self.addr[0]):

File "twisted/internet/abstract.py", line 315, in isIPAddress
parts = string.split(addr, '.')

File "/usr/lib/python2.4/string.py", line 292, in split
return s.split(sep, maxsplit)

exceptions.AttributeError: 'NoneType' object has no attribute 'split'

18:55 EST [-] Received SIGINT, shutting down.
18:55 EST [-] Main loop terminated.
18:55 EST [-] Server Shut Down.
exarkun@boson:~/mail/tutorial/smtpclient$
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What happened? Those first two arguments to TCPClient turned out to be important after all. We’ll get to them in the
next example.

SMTP Client 3

Version three of our SMTP client only changes one thing. The line from version two:

smtpClientService = internet.TCPClient(None, None, smtpClientFactory)

has its first two arguments changed from None to something with a bit more meaning:

smtpClientService = internet.TCPClient('localhost', 25, smtpClientFactory)

This directs the client to connect to localhost on port 25 . This isn’t the address we want ultimately, but it’s a good
place-holder for the time being. We can run smtpclient-3.tac and see what this change gets us:

exarkun@boson:~/mail/tutorial/smtpclient$ twistd -ny smtpclient-3.tac
19:10 EST [-] Log opened.
19:10 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:10 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:10 EST [-] Loading smtpclient-3.tac...
19:10 EST [-] Loaded.
19:10 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e48c>
19:10 EST [-] Enabling Multithreading.
19:10 EST [Uninitialized] Traceback (most recent call last):

File "twisted/python/log.py", line 56, in callWithLogger
return callWithContext({"system": lp}, func, *args, **kw)

File "twisted/python/log.py", line 41, in callWithContext
return context.call({ILogContext: newCtx}, func, *args, **kw)

File "twisted/python/context.py", line 52, in callWithContext
return self.currentContext().callWithContext(ctx, func, *args, **kw)

File "twisted/python/context.py", line 31, in callWithContext
return func(*args,**kw)

--- <exception caught here> ---
File "twisted/internet/selectreactor.py", line 139, in _doReadOrWrite
why = getattr(selectable, method)()

File "twisted/internet/tcp.py", line 543, in doConnect
self._connectDone()

File "twisted/internet/tcp.py", line 546, in _connectDone
self.protocol = self.connector.buildProtocol(self.getPeer())

File "twisted/internet/base.py", line 641, in buildProtocol
return self.factory.buildProtocol(addr)

File "twisted/internet/protocol.py", line 99, in buildProtocol
p = self.protocol()

exceptions.TypeError: 'NoneType' object is not callable

19:10 EST [Uninitialized] Stopping factory
<twisted.internet.protocol.ClientFactory instance at
0xb791e48c>

19:10 EST [-] Received SIGINT, shutting down.
19:10 EST [-] Main loop terminated.

(continues on next page)
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19:10 EST [-] Server Shut Down.
exarkun@boson:~/mail/tutorial/smtpclient$

A meager amount of progress, but the service still raises an exception. This time, it’s because we haven’t specified a
protocol class for the factory to use. We’ll do that in the next example.

SMTP Client 4

In the previous example, we ran into a problem because we hadn’t set up our client factory’s protocol attribute correctly
(or at all). ClientFactory.buildProtocol is the method responsible for creating a protocol instance . The default
implementation calls the factory’s protocol attribute, adds itself as an attribute named factory to the resulting
instance, and returns it. In smtpclient-4.tac , we’ll correct the oversight that caused the traceback in smtpclient-
3.tac:

smtpClientFactory.protocol = protocol.Protocol

Running this version of the client, we can see the output is once again traceback free:

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-4.tac
19:29 EST [-] Log opened.
19:29 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:29 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:29 EST [-] Loading smtpclient-4.tac...
19:29 EST [-] Loaded.
19:29 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e4ac>
19:29 EST [-] Enabling Multithreading.
19:29 EST [-] Received SIGINT, shutting down.
19:29 EST [Protocol,client] Stopping factory

<twisted.internet.protocol.ClientFactory instance at
0xb791e4ac>

19:29 EST [-] Main loop terminated.
19:29 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

But what does this mean? twisted.internet.protocol.Protocol is the base protocol implementation. For those
familiar with the classic UNIX network services, it is equivalent to the discard service. It never produces any output
and it discards all its input. Not terribly useful, and certainly nothing like an SMTP client. Let’s see how we can
improve this in the next example.

SMTP Client 5

In smtpclient-5.tac , we will begin to use Twisted’s SMTP protocol implementation for the first time. We’ll make
the obvious change, simply swapping out twisted.internet.protocol.Protocol in favor of twisted.mail.
smtp.ESMTPClient . Don’t worry about the E in ESMTP . It indicates we’re actually using a newer version of the
SMTP protocol. There is an SMTPClient in Twisted, but there’s essentially no reason to ever use it.

smtpclient-5.tac adds a new import:

from twisted.mail import smtp

All of the mail related code in Twisted exists beneath the twisted.mail package. More specifically, everything having
to do with the SMTP protocol implementation is defined in the twisted.mail.smtp module.
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Next we remove a line we added in smtpclient-4.tac:

smtpClientFactory.protocol = protocol.Protocol

And add a similar one in its place:

smtpClientFactory.protocol = smtp.ESMTPClient

Our client factory is now using a protocol implementation which behaves as an SMTP client. What happens when we
try to run this version?

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-5.tac
19:42 EST [-] Log opened.
19:42 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:42 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:42 EST [-] Loading smtpclient-5.tac...
19:42 EST [-] Loaded.
19:42 EST [-] Starting factory <twisted.internet.protocol.ClientFactory

instance at 0xb791e54c>
19:42 EST [-] Enabling Multithreading.
19:42 EST [Uninitialized] Traceback (most recent call last):

File "twisted/python/log.py", line 56, in callWithLogger
return callWithContext({"system": lp}, func, *args, **kw)

File "twisted/python/log.py", line 41, in callWithContext
return context.call({ILogContext: newCtx}, func, *args, **kw)

File "twisted/python/context.py", line 52, in callWithContext
return self.currentContext().callWithContext(ctx, func, *args, **kw)

File "twisted/python/context.py", line 31, in callWithContext
return func(*args,**kw)

--- <exception caught here> ---
File "twisted/internet/selectreactor.py", line 139, in _doReadOrWrite
why = getattr(selectable, method)()

File "twisted/internet/tcp.py", line 543, in doConnect
self._connectDone()

File "twisted/internet/tcp.py", line 546, in _connectDone
self.protocol = self.connector.buildProtocol(self.getPeer())

File "twisted/internet/base.py", line 641, in buildProtocol
return self.factory.buildProtocol(addr)

File "twisted/internet/protocol.py", line 99, in buildProtocol
p = self.protocol()

exceptions.TypeError: __init__() takes at least 2 arguments (1 given)

19:42 EST [Uninitialized] Stopping factory
<twisted.internet.protocol.ClientFactory instance at
0xb791e54c>

19:43 EST [-] Received SIGINT, shutting down.
19:43 EST [-] Main loop terminated.
19:43 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

Oops, back to getting a traceback. This time, the default implementation of buildProtocol seems no longer to be
sufficient. It instantiates the protocol with no arguments, but ESMTPClient wants at least one argument. In the next
version of the client, we’ll override buildProtocol to fix this problem.

4.3. Twisted Mail Tutorial: Building an SMTP Client from Scratch 363



Twisted Documentation, Release 23.8.0

SMTP Client 6

smtpclient-6.tac introduces a twisted.internet.protocol.ClientFactory subclass with an overridden
buildProtocol method to overcome the problem encountered in the previous example.

class SMTPClientFactory(protocol.ClientFactory):
protocol = smtp.ESMTPClient

def buildProtocol(self, addr):
return self.protocol(secret=None, identity='example.com')

The overridden method does almost the same thing as the base implementation: the only change is that it passes values
for two arguments to twisted.mail.smtp.ESMTPClient ‘s initializer. The secret argument is used for SMTP
authentication (which we will not attempt yet). The identity argument is used as a to identify ourselves Another
minor change to note is that the protocol attribute is now defined in the class definition, rather than tacked onto an
instance after one is created. This means it is a class attribute, rather than an instance attribute, now, which makes no
difference as far as this example is concerned. There are circumstances in which the difference is important: be sure
you understand the implications of each approach when creating your own factories.

One other change is required: instead of instantiating twisted.internet.protocol.ClientFactory , we will now
instantiate SMTPClientFactory :

smtpClientFactory = SMTPClientFactory()

Running this version of the code, we observe that the code still isn’t quite traceback-free.

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-6.tac
21:17 EST [-] Log opened.
21:17 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
21:17 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
21:17 EST [-] Loading smtpclient-6.tac...
21:17 EST [-] Loaded.
21:17 EST [-] Starting factory <__builtin__.SMTPClientFactory instance

at 0xb77fd68c>
21:17 EST [-] Enabling Multithreading.
21:17 EST [ESMTPClient,client] Traceback (most recent call last):

File "twisted/python/log.py", line 56, in callWithLogger
return callWithContext({"system": lp}, func, *args, **kw)

File "twisted/python/log.py", line 41, in callWithContext
return context.call({ILogContext: newCtx}, func, *args, **kw)

File "twisted/python/context.py", line 52, in callWithContext
return self.currentContext().callWithContext(ctx, func, *args, **kw)

File "twisted/python/context.py", line 31, in callWithContext
return func(*args,**kw)

--- <exception caught here> ---
File "twisted/internet/selectreactor.py", line 139, in _doReadOrWrite
why = getattr(selectable, method)()

File "twisted/internet/tcp.py", line 351, in doRead
return self.protocol.dataReceived(data)

File "twisted/protocols/basic.py", line 221, in dataReceived
why = self.lineReceived(line)

File "twisted/mail/smtp.py", line 1039, in lineReceived
why = self._okresponse(self.code,'\n'.join(self.resp))

File "twisted/mail/smtp.py", line 1281, in esmtpState_serverConfig
(continues on next page)
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self.tryTLS(code, resp, items)
File "twisted/mail/smtp.py", line 1294, in tryTLS
self.authenticate(code, resp, items)

File "twisted/mail/smtp.py", line 1343, in authenticate
self.smtpState_from(code, resp)

File "twisted/mail/smtp.py", line 1062, in smtpState_from
self._from = self.getMailFrom()

File "twisted/mail/smtp.py", line 1137, in getMailFrom
raise NotImplementedError

exceptions.NotImplementedError:

21:17 EST [ESMTPClient,client] Stopping factory
<__builtin__.SMTPClientFactory instance at 0xb77fd68c>

21:17 EST [-] Received SIGINT, shutting down.
21:17 EST [-] Main loop terminated.
21:17 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

What we have accomplished with this iteration of the example is to navigate far enough into an SMTP transaction that
Twisted is now interested in calling back to application-level code to determine what its next step should be. In the next
example, we’ll see how to provide that information to it.

SMTP Client 7

SMTP Client 7 is the first version of our SMTP client which actually includes message data to transmit. For simplicity’s
sake, the message is defined as part of a new class. In a useful program which sent email, message data might be pulled
in from the filesystem, a database, or be generated based on user-input. smtpclient-7.tac , however, defines a new
class, SMTPTutorialClient , with three class attributes (mailFrom , mailTo , and mailData ):

class SMTPTutorialClient(smtp.ESMTPClient):
mailFrom = "tutorial_sender@example.com"
mailTo = "tutorial_recipient@example.net"
mailData = '''\

Date: Fri, 6 Feb 2004 10:14:39 -0800
From: Tutorial Guy <tutorial_sender@example.com>
To: Tutorial Gal <tutorial_recipient@example.net>
Subject: Tutorate!

Hello, how are you, goodbye.
'''

This statically defined data is accessed later in the class definition by three of the methods which are part of the SMT-
PClient callback API . Twisted expects each of the three methods below to be defined and to return an object with a
particular meaning. First, getMailFrom :

def getMailFrom(self):
result = self.mailFrom
self.mailFrom = None
return result

This method is called to determine the reverse-path , otherwise known as the envelope from , of the message. This
value will be used when sending the MAIL FROM SMTP command. The method must return a string which conforms
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to the RFC 2821 definition of a reverse-path . In simpler terms, it should be a string like "alice@example.com" .
Only one envelope from is allowed by the SMTP protocol, so it cannot be a list of strings or a comma separated list of
addresses. Our implementation of getMailFrom does a little bit more than just return a string; we’ll get back to this
in a little bit.

The next method is getMailTo :

def getMailTo(self):
return [self.mailTo]

getMailTo is similar to getMailFrom . It returns one or more RFC 2821 addresses (this time a forward-path , or
envelope to ). Since SMTP allows multiple recipients, getMailTo returns a list of these addresses. The list must
contain at least one address, and even if there is exactly one recipient, it must still be in a list.

The final callback we will define to provide information to Twisted is getMailData :

def getMailData(self):
return StringIO.StringIO(self.mailData)

This one is quite simple as well: it returns a file or a file-like object which contains the message contents. In our case,
we return a StringIO since we already have a string containing our message. If the contents of the file returned by
getMailData span multiple lines (as email messages often do), the lines should be \n delimited (as they would be when
opening a text file in the "rt" mode): necessary newline translation will be performed by SMTPClient automatically.

There is one more new callback method defined in smtpclient-7.tac. This one isn’t for providing information about the
messages to Twisted, but for Twisted to provide information about the success or failure of the message transmission
to the application:

def sentMail(self, code, resp, numOk, addresses, log):
print('Sent', numOk, 'messages')

Each of the arguments to sentMail provides some information about the success or failure of the message transmission
transaction. code is the response code from the ultimate command. For successful transactions, it will be 250. For
transient failures (those which should be retried), it will be between 400 and 499, inclusive. For permanent failures
(this which will never work, no matter how many times you retry them), it will be between 500 and 599.

SMTP Client 8

Thus far we have succeeded in creating a Twisted client application which starts up, connects to a (possibly) remote
host, transmits some data, and disconnects. Notably missing, however, is application shutdown. Hitting ^C is fine
during development, but it’s not exactly a long-term solution. Fortunately, programmatic shutdown is extremely simple.
smtpclient-8.tac extends sentMail with these two lines:

from twisted.internet import reactor
reactor.stop()

The stop method of the reactor causes the main event loop to exit, allowing a Twisted server to shut down. With
this version of the example, we see that the program actually terminates after sending the message, without user-
intervention:

exarkun@boson:~/doc/mail/tutorial/smtpclient$ twistd -ny smtpclient-8.tac
19:52 EST [-] Log opened.
19:52 EST [-] twistd SVN-Trunk (/usr/bin/python2.4 2.4.1) starting up
19:52 EST [-] reactor class: twisted.internet.selectreactor.SelectReactor
19:52 EST [-] Loading smtpclient-8.tac...

(continues on next page)

366 Chapter 4. Twisted Mail (SMTP, POP, and IMAP)

http://www.faqs.org/rfcs/rfc2821.html


Twisted Documentation, Release 23.8.0

(continued from previous page)

19:52 EST [-] Loaded.
19:52 EST [-] Starting factory <__builtin__.SMTPClientFactory instance

at 0xb791beec>
19:52 EST [-] Enabling Multithreading.
19:52 EST [SMTPTutorialClient,client] Sent 1 messages
19:52 EST [SMTPTutorialClient,client] Stopping factory

<__builtin__.SMTPClientFactory instance at 0xb791beec>
19:52 EST [-] Main loop terminated.
19:52 EST [-] Server Shut Down.
exarkun@boson:~/doc/mail/tutorial/smtpclient$

SMTP Client 9

One task remains to be completed in this tutorial SMTP client: instead of always sending mail through a well-known
host, we will look up the mail exchange server for the recipient address and try to deliver the message to that host.

In smtpclient-9.tac , we’ll take the first step towards this feature by defining a function which returns the mail
exchange host for a particular domain:

def getMailExchange(host):
return 'localhost'

Obviously this doesn’t return the correct mail exchange host yet (in fact, it returns the exact same host we have been
using all along), but pulling out the logic for determining which host to connect to into a function like this is the first
step towards our ultimate goal. Now that we have getMailExchange , we’ll call it when constructing our TCPClient
service:

smtpClientService = internet.TCPClient(
getMailExchange('example.net'), 25, smtpClientFactory)

We’ll expand on the definition of getMailExchange in the next example.

SMTP Client 10

In the previous example we defined getMailExchange to return a string representing the mail exchange host for a
particular domain. While this was a step in the right direction, it turns out not to be a very big one. Determining
the mail exchange host for a particular domain is going to involve network traffic (specifically, some DNS requests).
These might take an arbitrarily large amount of time, so we need to introduce a Deferred to represent the result of
getMailExchange . smtpclient-10.tac redefines it thusly:

def getMailExchange(host):
return defer.succeed('localhost')

defer.succeed is a function which creates a new Deferred which already has a result, in this case 'localhost' .
Now we need to adjust our TCPClient -constructing code to expect and properly handle this Deferred :

def cbMailExchange(exchange):
smtpClientFactory = SMTPClientFactory()

smtpClientService = internet.TCPClient(exchange, 25, smtpClientFactory)
smtpClientService.setServiceParent(application)

(continues on next page)
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getMailExchange('example.net').addCallback(cbMailExchange)

An in-depth exploration of Deferred s is beyond the scope of this document. For such a look, see the Deferred
Reference TCPClient until the Deferred returned by getMailExchange fires. Once it does, we proceed normally
through the creation of our SMTPClientFactory and TCPClient , as well as set the TCPClient ‘s service parent,
just as we did in the previous examples.

SMTP Client 11

At last we’re ready to perform the mail exchange lookup. We do this by calling on an object provided specifically for
this task, twisted.mail.relaymanager.MXCalculator :

def getMailExchange(host):
def cbMX(mxRecord):

return str(mxRecord.name)
return relaymanager.MXCalculator().getMX(host).addCallback(cbMX)

Because getMX returns a Record_MX object rather than a string, we do a little bit of post-processing to get the results
we want. We have already converted the rest of the tutorial application to expect a Deferred from getMailExchange
, so no further changes are required. smtpclient-11.tac completes this tutorial by being able to both look up the
mail exchange host for the recipient domain, connect to it, complete an SMTP transaction, report its results, and finally
shut down the reactor.

• Examples: short code examples using Twisted Mail

• Developer Guides: documentation on using Twisted Mail

• Twisted Mail Tutorial: Building an SMTP Client from Scratch
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5.1 Developer Guides

5.1.1 A Guided Tour of twisted.names.client

Twisted Names provides a layered selection of client APIs.

In this section you will learn:

• about the high level client API,

• about how you can use the client API interactively from the Python shell (useful for DNS debugging and diag-
nostics),

• about the IResolverSimple and the IResolver interfaces,

• about various implementations of those interfaces and when to use them,

• how to customise how the reactor carries out hostname resolution,

• and finally, you will also be introduced to some of the low level APIs.

Using the Global Resolver

The easiest way to issue DNS queries from Twisted is to use the module level functions in names.client.

Here’s an example showing some DNS queries generated in an interactive twisted.conch shell.

Note: The twisted.conch shell starts a reactor so that asynchronous operations can be run interactively and it
prints the current result of deferreds which have fired.

You’ll notice that the deferreds returned in the following examples do not immediately have a result – they are waiting
for a response from the DNS server.

So we type _ (the default variable) a little later, to display the value of the deferred after an answer has been received
and the deferred has fired.

$ python -m twisted.conch.stdio

>>> from twisted.names import client
>>> client.getHostByName('www.example.com')
<Deferred at 0xf5c5a8 waiting on Deferred at 0xf5cb90>
>>> _

(continues on next page)
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<Deferred at 0xf5c5a8 current result: '2606:2800:220:6d:26bf:1447:1097:aa7'>

>>> client.lookupMailExchange('twistedmatrix.com')
<Deferred at 0xf5cd40 waiting on Deferred at 0xf5cea8>
>>> _
<Deferred at 0xf5cd40 current result: ([<RR name=twistedmatrix.com type=MX class=IN␣
→˓ttl=1s auth=False>], [], [])>

All the IResolverSimple and IResolver methods are asynchronous and therefore return deferreds.

getHostByName (part of IResolverSimple) returns an IP address whereas lookupMailExchange returns three lists
of DNS records. These three lists contain answer records, authority records, and additional records.

Note:

• getHostByName may return an IPv6 address; unlike its stdlib equivalent (socket.gethostbyname())

• IResolver contains separate functions for looking up each of the common DNS record types.

• IResolver includes a lower level query function for issuing arbitrary queries.

• The names.client module directlyProvides both the IResolverSimple and the IResolver interfaces.

• createResolver constructs a global resolver which performs queries against the same DNS sources and servers
used by the underlying operating system.

That is, it will use the DNS server IP addresses found in a local resolv.conf file (if the operating system
provides such a file) and it will use an OS specific hosts file path.

A simple example

In this section you will learn how the IResolver interface can be used to write a utility for performing a reverse DNS
lookup for an IPv4 address. dig can do this too, so lets start by examining its output:

$ dig -x 127.0.0.1
...
;; QUESTION SECTION:
;1.0.0.127.in-addr.arpa. IN PTR

;; ANSWER SECTION:
1.0.0.127.in-addr.arpa. 86400 IN PTR localhost.
...

As you can see, dig has performed a DNS query with the following attributes:

• Name: 1.0.0.127.in-addr.arpa.

• Class: IN

• Type: PTR

The name is a reverse domain name and is derived by reversing an IPv4 address and prepending it to the special
in-addr.arpa parent domain name. So, lets write a function to create a reverse domain name from an IP address.

def reverseNameFromIPAddress(address):
return ".".join(reversed(address.split("."))) + ".in-addr.arpa"
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We can test the output from a python shell:

>>> reverseNameFromIPAddress('192.0.2.100')
'100.2.0.192.in-addr.arpa'

We’re going to use twisted.names.client.lookupPointer() to perform the actual DNS lookup. So lets examine
the output of lookupPointer so that we can design a function to format and print its results in a style similar to dig.

Note: lookupPointer is an asynchronous function, so we’ll use an interactive twisted.conch shell here.

$ python -m twisted.conch.stdio

>>> from twisted.names import client
>>> from reverse_lookup import reverseNameFromIPAddress
>>> d = client.lookupPointer(name=reverseNameFromIPAddress('127.0.0.1'))
>>> d
<Deferred at 0x286b170 current result: ([<RR name=1.0.0.127.in-addr.arpa type=PTR␣
→˓class=IN ttl=86400s auth=False>], [], [])>
>>> d.result
([<RR name=1.0.0.127.in-addr.arpa type=PTR class=IN ttl=86400s auth=False>], [], [])

The deferred result of lookupPointer is a tuple containing three lists of records; answers, authority, and additional.
The actual record is a Record_PTR instance which can be reached via the RRHeader.payload attribute.

>>> recordHeader = d.result[0][0]
>>> recordHeader.payload
<PTR name=localhost ttl=86400>

So, now we’ve found the information we need, lets create a function that extracts the first answer and prints the domain
name and the record payload.

def printResult(result):
answers, authority, additional = result
if answers:

a = answers[0]
print(f"{a.name.name} IN {a.payload}")

And lets test the output:

>>> from twisted.names import dns
>>> printResult(([dns.RRHeader(name='1.0.0.127.in-addr.arpa', type=dns.PTR, payload=dns.
→˓Record_PTR('localhost'))], [], []))
1.0.0.127.in-addr.arpa IN <PTR name=localhost ttl=None>

Fine! Now we can assemble the pieces in a main function, which we’ll call using twisted.internet.task.
react(). Here’s the complete script.

listings/names/reverse_lookup.py

import sys

from twisted.internet import task
from twisted.names import client

(continues on next page)
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def reverseNameFromIPAddress(address):
return ".".join(reversed(address.split("."))) + ".in-addr.arpa"

def printResult(result):
answers, authority, additional = result
if answers:

a = answers[0]
print(f"{a.name.name} IN {a.payload}")

def main(reactor, address):
d = client.lookupPointer(name=reverseNameFromIPAddress(address=address))
d.addCallback(printResult)
return d

task.react(main, sys.argv[1:])

The output looks like this:

$ python reverse_lookup.py 127.0.0.1
1.0.0.127.in-addr.arpa IN <PTR name=localhost ttl=86400>

Note:

• You can read more about reverse domain names in RFC 1034#section-5.2.1.

• We’ve ignored IPv6 addresses in this example, but you can read more about reverse IPv6 domain names in RFC
3596#section-2.5 and the example could easily be extended to support these.

• You might also consider using netaddr, which can generate reverse domain names and which also includes so-
phisticated IP network and IP address handling.

• This script only prints the first answer, but sometimes you’ll get multiple answers due to CNAME indirection,
for example in the case of classless reverse zones.

• All lookups and responses are handled asynchronously, so the script could be extended to perform thousands of
reverse DNS lookups in parallel.

Next you should study ../examples/multi_reverse_lookup.py which extends this example to perform both IPv4
and IPv6 addresses and which can perform multiple reverse DNS lookups in parallel.
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Creating a New Resolver

Now suppose we want to create a DNS client which sends its queries to a specific server (or servers).

In this case, we use client.Resolver directly and pass it a list of preferred server IP addresses and ports.

For example, suppose we want to lookup names using the free Google DNS servers:

$ python -m twisted.conch.stdio

>>> from twisted.names import client
>>> resolver = client.createResolver(servers=[('8.8.8.8', 53), ('8.8.4.4', 53)])
>>> resolver.getHostByName('example.com')
<Deferred at 0x9dcfbac current result: '93.184.216.119'>

Here we are using the Google DNS server IP addresses and the standard DNS port (53).

Installing a Resolver in the Reactor

You can also install a custom resolver into the reactor using the IReactorPluggableNameResolver interface.

The reactor uses its installed resolver whenever it needs to resolve hostnames; for example, when you supply a hostname
to connectTCP.

Here’s a short example that shows how to install an alternative resolver for the global reactor:

from twisted.internet import reactor
from twisted.names import client
reactor.installResolver(client.createResolver(servers=[('8.8.8.8', 53), ('8.8.4.4',␣
→˓53)]))

After this, all hostname lookups requested by the reactor will be sent to the Google DNS servers; instead of to the local
operating system.

Note:

• By default the reactor uses the POSIX gethostbyname function provided by the operating system,

• but gethostbyname is a blocking function, so it has to be called in a thread pool.

• Check out ThreadedResolver if you’re interested in learning more about how the default threaded resolver
works.

Lower Level APIs

Here’s an example of how to use the DNSDatagramProtocol directly.

from twisted.internet import task
from twisted.names import dns

def main(reactor):
proto = dns.DNSDatagramProtocol(controller=None)
reactor.listenUDP(0, proto)

(continues on next page)
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d = proto.query(('8.8.8.8', 53), [dns.Query('www.example.com', dns.AAAA)])
d.addCallback(printResult)
return d

def printResult(res):
print('ANSWERS: ', [a.payload for a in res.answers])

task.react(main)

The disadvantage of working at this low level is that you will need to handle query failures yourself, by manually
re-issuing queries or by issuing followup TCP queries using the stream based dns.DNSProtocol.

These things are handled automatically by the higher level APIs in client.

Also notice that in this case, the deferred result of dns.DNSDatagramProtocol.query is a dns.Message object,
rather than a list of DNS records.

Further Reading

Check out the Twisted Names Examples which demonstrate how the client APIs can be used to create useful DNS
diagnostic tools.

5.1.2 Creating and working with a names (DNS) server

A Names server can be perform three basic operations:

• act as a recursive server, forwarding queries to other servers

• perform local caching of recursively discovered records

• act as the authoritative server for a domain

Creating a non-authoritative server

The first two of these are easy, and you can create a server that performs them with the command twistd -n dns
--recursive --cache . You may wish to run this as root since it will try to bind to UDP port 53. Try performing a
lookup with it, dig twistedmatrix.com @127.0.0.1 .

Creating an authoritative server

To act as the authority for a domain, two things are necessary: the address of the machine on which the domain name
server will run must be registered as a nameserver for the domain; and the domain name server must be configured to
act as the authority. The first requirement is beyond the scope of this howto and will not be covered.

To configure Names to act as the authority for example-domain.com , we first create a zone file for this domain.

example-domain.com

zone = [
SOA(

# For whom we are the authority
'example-domain.com',

(continues on next page)
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# This nameserver's name
mname = "ns1.example-domain.com",

# Mailbox of individual who handles this
rname = "root.example-domain.com",

# Unique serial identifying this SOA data
serial = 2003010601,

# Time interval before zone should be refreshed
refresh = "1H",

# Interval before failed refresh should be retried
retry = "1H",

# Upper limit on time interval before expiry
expire = "1H",

# Minimum TTL
minimum = "1H"

),

A('example-domain.com', '127.0.0.1'),
NS('example-domain.com', 'ns1.example-domain.com'),

CNAME('www.example-domain.com', 'example-domain.com'),
CNAME('ftp.example-domain.com', 'example-domain.com'),

MX('example-domain.com', 0, 'mail.example-domain.com'),
A('mail.example-domain.com', '123.0.16.43'),
PTR('43.16.0.123.in-addr.arpa', 'mail.example-domain.com'),

]

Next, run the command twistd -n dns --pyzone example-domain.com . Now try querying the domain locally
(again, with dig): dig -t any example-domain.com @127.0.0.1 .

Names can also read a traditional, BIND-syntax zone file. Specify these with the --bindzone parameter. The $GEN-
ERATE and $INCLUDE directives are not yet supported.

5.1.3 Creating a custom server

The builtin DNS server plugin is useful, but the beauty of Twisted Names is that you can build your own custom servers
and clients using the names components.

• In this section you will learn about the components required to build a simple DNS server.

• You will then learn how to create a custom DNS server which calculates responses dynamically.
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A simple forwarding DNS server

Lets start by creating a simple forwarding DNS server, which forwards all requests to an upstream server (or servers).

simple_server.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
An example of a simple non-authoritative DNS server.
"""

from twisted.internet import reactor
from twisted.names import client, dns, server

def main():
"""
Run the server.
"""
factory = server.DNSServerFactory(

clients=[client.Resolver(resolv="/etc/resolv.conf")]
)

protocol = dns.DNSDatagramProtocol(controller=factory)

reactor.listenUDP(10053, protocol)
reactor.listenTCP(10053, factory)

reactor.run()

if __name__ == "__main__":
raise SystemExit(main())

In this example we are passing a client.Resolver instance to the DNSServerFactory and we are configuring that
client to use the upstream DNS servers which are specified in a local resolv.conf file.

Also note that we start the server listening on both UDP and TCP ports. This is a standard requirement for DNS servers.

You can test the server using dig. For example:

$ dig -p 10053 @127.0.0.1 example.com SOA +short
sns.dns.icann.org. noc.dns.icann.org. 2013102791 7200 3600 1209600 3600
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A server which computes responses dynamically

Now suppose we want to create a bespoke DNS server which responds to certain hostname queries by dynamically
calculating the resulting IP address, while passing all other queries to another DNS server. Queries for hostnames
matching the pattern workstation{0-9}+ will result in an IP address where the last octet matches the workstation
number.

We’ll write a custom resolver which we insert before the standard client resolver. The custom resolver will be queried
first.

Here’s the code:

override_server.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
An example demonstrating how to create a custom DNS server.

The server will calculate the responses to A queries where the name begins with
the word "workstation".

Other queries will be handled by a fallback resolver.

eg
python doc/names/howto/listings/names/override_server.py

$ dig -p 10053 @localhost workstation1.example.com A +short
172.0.2.1

"""

from twisted.internet import defer, reactor
from twisted.names import client, dns, error, server

class DynamicResolver:
"""
A resolver which calculates the answers to certain queries based on the
query type and name.
"""

_pattern = "workstation"
_network = "172.0.2"

def _dynamicResponseRequired(self, query):
"""
Check the query to determine if a dynamic response is required.
"""
if query.type == dns.A:

labels = query.name.name.split(".")
if labels[0].startswith(self._pattern):

return True

return False
(continues on next page)
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def _doDynamicResponse(self, query):
"""
Calculate the response to a query.
"""
name = query.name.name
labels = name.split(".")
parts = labels[0].split(self._pattern)
lastOctet = int(parts[1])
answer = dns.RRHeader(

name=name,
payload=dns.Record_A(address=b"%s.%s" % (self._network, lastOctet)),

)
answers = [answer]
authority = []
additional = []
return answers, authority, additional

def query(self, query, timeout=None):
"""
Check if the query should be answered dynamically, otherwise dispatch to
the fallback resolver.
"""
if self._dynamicResponseRequired(query):

return defer.succeed(self._doDynamicResponse(query))
else:

return defer.fail(error.DomainError())

def main():
"""
Run the server.
"""
factory = server.DNSServerFactory(

clients=[DynamicResolver(), client.Resolver(resolv="/etc/resolv.conf")]
)

protocol = dns.DNSDatagramProtocol(controller=factory)

reactor.listenUDP(10053, protocol)
reactor.listenTCP(10053, factory)

reactor.run()

if __name__ == "__main__":
raise SystemExit(main())

Notice that DynamicResolver.query returns a Deferred. On success, it returns three lists of DNS records (answers,
authority, additional), which will be encoded by dns.Message and returned to the client. On failure, it returns a
DomainError, which is a signal that the query should be dispatched to the next client resolver in the list.
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Note: The fallback behaviour is actually handled by ResolverChain.

ResolverChain is a proxy for other resolvers. It takes a list of IResolver providers and queries each one in turn until
it receives an answer, or until the list is exhausted.

Each IResolver in the chain may return a deferred DomainError, which is a signal that ResolverChain should
query the next chained resolver.

The DNSServerFactory constructor takes a list of authoritative resolvers, caches and client resolvers and ensures that
they are added to the ResolverChain in the correct order.

Let’s use dig to see how this server responds to requests that match the pattern we specified:

$ dig -p 10053 @127.0.0.1 workstation1.example.com A +short
172.0.2.1

$ dig -p 10053 @127.0.0.1 workstation100.example.com A +short
172.0.2.100

And if we issue a request that doesn’t match the pattern:

$ dig -p 10053 @localhost www.example.com A +short
93.184.216.119

Further Reading

For simplicity, the examples above use the reactor.listenXXX APIs. But your application will be more flexible if
you use the Twisted Application APIs, along with the Twisted plugin system and twistd. Read the source code of
names.tap to see how the twistd names plugin works.

• A guided tour of twisted.names.client

• Using the twistd plugin

• Create a custom DNS server

5.2 Examples

5.2.1 DNS (Twisted Names)

• testdns.py - Prints the results of an Address record lookup, Mail-Exchanger record lookup, and Nameserver
record lookup for the given domain name.

• dns-service.py - Searches for SRV records in DNS.

• gethostbyname.py - Returns the IP address for a given hostname.

Twisted Names is a library of DNS components for building DNS servers and clients.

It includes a client resolver API, with which you can generate queries for all the standard record types. The client API
also includes a replacement for the blocking gethostbyname() function provided by the Python stdlib socket module.

Twisted Names provides a twistd DNS server plugin which can:

• Act as a master authoritative server which can read most BIND-syntax zone files as well as a simple Python-based
configuration format.
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• Act as a secondary authoritative DNS server, which retrieves its records from a master server by zone transfer.

• Act as a caching / forwarding nameserver which forwards requests to one or more upstream recursive nameservers
and caches the results.

• Or any combination of these.

The following developer guides, example scripts and API documentation will demonstrate how to use these components
and provide you with all the information you need to build your own custom DNS client or server using Twisted Names.

• Developer guides: documentation on using Twisted Names to develop your own applications

• Examples: short code examples using Twisted Names

• API documentation: Detailed API documentation for all the Twisted Names components
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6.1.1 Twisted Pair: Tunnels And Network Taps

On Linux, Twisted Pair supports the special tun and tap network interface types. This functionality allows you to
interact with raw sockets (for example, to send or receive ICMP or ARP traffic). It also allows the creation of simulated
networks. This document will not cover the details of these platform-provided features, but it will explain how to use
the Twisted Pair APIs which interact with them. Before reading this document, you may want to familiarize yourself
with Linux tuntap if you have not already done so (good online resources, are a little scarce, but you may find the linux
tuntap tutorial google results helpful).

Tuntap Ports

The twisted.pair.tuntap.TuntapPort class is the entry point into the tun/tap functionality. This class is initial-
ized with an application-supplied protocol object and associates that object with a tun or tap device on the system. If the
protocol provides twisted.pair.ethernet.IEthernetProtocol then it is associated with a tap device. Otherwise
the protocol must provide twisted.pair.raw.IRawPacketProtocol and it will be associated with a tun device.

from zope.interface import implementer
from twisted.pair.tuntap import TuntapPort
from twisted.pair.ethernet import EthernetProtocol
from twisted.pair.rawudp import RawUDPProtocol
from twisted.internet import reactor

# Note that you must run this example as a user with permission to open this
# device. That means run it as root or pre-configure tap0 and assign ownership
# of it to a non-root user. The same goes for tun0 below.

tap = TuntapPort(b"tap0", EthernetProtocol(), reactor=reactor)
tap.startListening()

tun = TuntapPort(b"tun0", RawUDPProtocol(), reactor=reactor)
tun.startListening()

In the above example two protocols are attached to the network: one to a tap device and the other to a tun device.
The EthernetProtocol used in this example is a very simple implementation of IEthernetProtocol which does
nothing more than dispatch to some other protocol based on the protocol found in the header of each ethernet frame it re-
ceives. RawUDPProtocol is similar - it dispatches to other protocols based on the UDP port of IP datagrams it received.
This example won’t do anything since no application protocols have been added to either the EthernetProtocol or
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RawUDPProtocol instances (not to mention the reactor isn’t being started). However, it should give you some idea of
how tun/tap functionality fits into a Twisted application.

By the behaviors of these two protocols you can see the primary difference between tap and tun devices. The lower
level of the two, tap devices, is hooked in to the network stack at the ethernet layer. When a TuntapPort is associated
with a tap device, it delivers whole ethernet frames to its protocol. The higher level version, tun devices, strips off the
ethernet layer before delivering data to the application. This means that a TuntapPort associated with a tun device
most commonly delivers IP datagrams to its protocol (though if your network is being used to convey non-IP datagrams
then it may deliver those instead).

Both IEthernetProtocol and IRawSocketProtocol are similar to twisted.internet.protocol.
DatagramProtocol . Datagrams, either ethernet or otherwise, are delivered to the protocol’s datagramReceived
method. Conversely the protocol is associated with a transport with a write method that accepts datagrams for
injection into the network.

You can see an example of some of this functionality in the ../examples/pairudp.py example.

6.1.2 Twisted Pair: Device Configuration

Twisted Pair’s Test Suite

Certain system configuration is required before the full Twisted Pair test suite can be run. Without this setup the test
suite will lack the permission necessary to access tap and tun devices. Some tests will still run but the integration tests
which verify Twisted Pair can successfully read from and write to real devices will be skipped.

The following shell script creates two tun devices and two tap devices and grants permission to use them to whatever
user the shell script is run as. Run it to configure your system so that you can perform a complete run of the Twisted
Pair test suite.

# Needs to be short enough so that with prefix and suffix, fits into 16 bytes
IDENTIFIER="twtest"

# A tap device without protocol information
sudo ip tuntap add dev tap-${IDENTIFIER} mode tap user $(id -u -n) group $(id -g -n)
sudo ip link set up dev tap-${IDENTIFIER}
sudo ip addr add 172.16.0.1/24 dev tap-${IDENTIFIER}
sudo ip neigh add 172.16.0.2 lladdr de:ad:be:ef:ca:fe dev tap-${IDENTIFIER}

# A tap device with protocol information
sudo ip tuntap add dev tap-${IDENTIFIER}-pi mode tap user $(id -u -n) group $(id -g -n)␣
→˓pi
sudo ip link set up dev tap-${IDENTIFIER}-pi
sudo ip addr add 172.16.1.1/24 dev tap-${IDENTIFIER}-pi
sudo ip neigh add 172.16.1.2 lladdr de:ad:ca:fe:be:ef dev tap-${IDENTIFIER}-pi

# A tun device without protocol information
sudo ip tuntap add dev tun-${IDENTIFIER} mode tun user $(id -u -n) group $(id -g -n)
sudo ip link set up dev tun-${IDENTIFIER}

# A tun device with protocol information
sudo ip tuntap add dev tun-${IDENTIFIER}-pi mode tun user $(id -u -n) group $(id -g -n)␣
→˓pi
sudo ip link set up dev tun-${IDENTIFIER}-pi
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There are two things to keep in mind about this configuration. First, it uses addresses from the 172.16.0.0/12 private
use range. If your network is configured to use these already then running the script may cause problems for your
network. These addresses are hard-coded into the Twisted Pair test suite so this problem is not easily avoided. Second,
the changes are not persistent across reboots. If you want this network configuration to be available even after a reboot
you will need to integrate the above into your system’s init scripts somehow (the details of this for different systems is
beyond the scope of this document).

Certain platforms may also require a modification to their firewall rules in order to allow the traffic the test suite wants
to transmit. Adding firewall rules which allowing traffic destined for the addresses used by the test suite should address
this problem. If you encounter timeouts when running the Twisted Pair test suite then this may apply to you. For
example, to configure an iptables firewall to allow this traffic:

iptables -I INPUT --dest 172.16.1.1 -j ACCEPT
iptables -I INPUT --dest 172.16.2.1 -j ACCEPT

• Twisted Pair Documentation

– Twisted Pair: Tunnels And Network Taps

– Twisted Pair: Device Configuration

6.2 Examples

6.2.1 Miscellaneous

• pairudp.py - UDP implemented with a TUN/TAP device

• Developer guides: documentation on using Twisted Pair to develop your own applications

• Code Examples: short code examples using Twisted Pair
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CHAPTER

SEVEN

TWISTED WEB

7.1 Developer Guides

7.1.1 Overview of Twisted Web

Introduction

Twisted Web is a web application server written in pure Python, with APIs at multiple levels of abstraction to facilitate
different kinds of web programming.

Twisted Web’s Structure

When the Web Server receives a request from a Client, it creates a Request object and passes it on to the Resource
system. The Resource system dispatches to the appropriate Resource object based on what path was requested by the
client. The Resource is asked to render itself, and the result is returned to the client.
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Resources

Resources are the lowest-level abstraction for applications in the Twisted web server. Each Resource is a 1:1 mapping
with a path that is requested: you can think of a Resource as a single “page” to be rendered. The interface for mak-
ing Resources is very simple; they must have a method named render which takes a single argument, which is the
Request object (an instance of twisted.web.server.Request ). This render method must return a string, which
will be returned to the web browser making the request. Alternatively, they can return a special constant, twisted.
web.server.NOT_DONE_YET , which tells the web server not to close the connection; you must then use request.
write(data) to render the page, and call request.finish() whenever you’re done.

Web programming with Twisted Web

Web programmers seeking a higher level abstraction than the Resource system should look at Nevow . Nevow is based
on ideas previously developed in Twisted, but is now maintained outside of Twisted to easy development and release
cycle pressures.

7.1.2 Configuring and Using the Twisted Web Server

Twisted Web Development

Twisted Web serves Python objects that implement the interface IResource.
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Main Concepts

• Site Objects are responsible for creating HTTPChannel instances to parse the HTTP request, and begin the object
lookup process. They contain the root Resource, the resource which represents the URL / on the site.

• Resource objects represent a single URL segment. The IResource interface describes the methods a Resource
object must implement in order to participate in the object publishing process.

• Resource trees are arrangements of Resource objects into a Resource tree. Starting at the root Resource object,
the tree of Resource objects defines the URLs which will be valid.

• .rpy scripts are python scripts which the twisted.web static file server will execute, much like a CGI. However,
unlike CGI they must create a Resource object which will be rendered when the URL is visited.

• Resource rendering occurs when Twisted Web locates a leaf Resource object. A Resource can either return an
html string or write to the request object.

• Session objects allow you to store information across multiple requests. Each individual browser using the system
has a unique Session instance.

The Twisted Web server is started through the Twisted Daemonizer, as in:

% twistd web

Site Objects

Site objects serve as the glue between a port to listen for HTTP requests on, and a root Resource object.

When using twistd -n web --path /foo/bar/baz , a Site object is created with a root Resource that serves files
out of the given path.

You can also create a Site instance by hand, passing it a Resource object which will serve as the root of the site:

from twisted.web import server, resource
from twisted.internet import reactor, endpoints

class Simple(resource.Resource):
isLeaf = True
def render_GET(self, request):

return b"<html>Hello, world!</html>"

site = server.Site(Simple())
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(site)
reactor.run()
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Resource objects

Resource objects represent a single URL segment of a site. During URL parsing, getChild is called on the current
Resource to produce the next Resource object.

When the leaf Resource is reached, either because there were no more URL segments or a Resource had isLeaf set to
True, the leaf Resource is rendered by calling render(request) . See “Resource Rendering” below for more about
this.

During the Resource location process, the URL segments which have already been processed and those which have not
yet been processed are available in request.prepath and request.postpath .

A Resource can know where it is in the URL tree by looking at request.prepath , a list of URL segment strings.

A Resource can know which path segments will be processed after it by looking at request.postpath .

If the URL ends in a slash, for example http://example.com/foo/bar/ , the final URL segment will be an empty
string. Resources can thus know if they were requested with or without a final slash.

Here is a simple Resource object:

from twisted.web.resource import Resource

class Hello(Resource):
isLeaf = True
def getChild(self, name, request):

if name == '':
return self

return Resource.getChild(self, name, request)

def render_GET(self, request):
output = "Hello, world! I am located at {}.".format(request.prepath)
return output.encode("utf8")

resource = Hello()

Resource Trees

Resources can be arranged in trees using putChild . putChild puts a Resource instance into another Resource
instance, making it available at the given path segment name:

root = Hello()
root.putChild(b'fred', Hello())
root.putChild(b'bob', Hello())

If this root resource is served as the root of a Site instance, the following URLs will all be valid:

• http://example.com/

• http://example.com/fred

• http://example.com/bob

• http://example.com/fred/

• http://example.com/bob/
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.rpy scripts

Files with the extension .rpy are python scripts which, when placed in a directory served by Twisted Web, will be
executed when visited through the web.

An .rpy script must define a variable, resource , which is the Resource object that will render the request.

.rpy files are very convenient for rapid development and prototyping. Since they are executed on every web request,
defining a Resource subclass in an .rpy will make viewing the results of changes to your class visible simply by
refreshing the page:

from twisted.web.resource import Resource

class MyResource(Resource):
def render_GET(self, request):

return b"<html>Hello, world!</html>"

resource = MyResource()

However, it is often a better idea to define Resource subclasses in Python modules. In order for changes in modules to
be visible, you must either restart the Python process, or reload the module:

import myresource

## Comment out this line when finished debugging
reload(myresource)

resource = myresource.MyResource()

Creating a Twisted Web server which serves a directory is easy:

% twistd -n web --path /Users/dsp/Sites

Resource rendering

Resource rendering occurs when Twisted Web locates a leaf Resource object to handle a web request. A Resource’s
render method may do various things to produce output which will be sent back to the browser:

• Return a string

• Call request.write(b"stuff") as many times as desired, then call request.finish() and return server.
NOT_DONE_YET (This is deceptive, since you are in fact done with the request, but is the correct way to do this)

• Request a Deferred , return server.NOT_DONE_YET , and call request.write("stuff") and request.
finish() later, in a callback on the Deferred .

The Resource class, which is usually what one’s Resource classes subclass, has a convenient default implementation of
render . It will call a method named self.render_METHOD where “METHOD” is whatever HTTP method was used
to request this resource. Examples: request_GET, request_POST, request_HEAD, and so on. It is recommended that
you have your resource classes subclass Resource and implement render_METHOD methods as opposed to render
itself. Note that for certain resources, request_POST = request_GET may be desirable in case one wants to process
arguments passed to the resource regardless of whether they used GET (?foo=bar&baz=quux , and so forth) or POST.
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Request encoders

When using a Resource , one can specify wrap it using a EncodingResourceWrapper and passing a list of encoder
factories. The encoder factories are called when a request is processed and potentially return an encoder. By default
twisted provides GzipEncoderFactory which manages standard gzip compression. You can use it this way:

from twisted.web.server import Site, GzipEncoderFactory
from twisted.web.resource import Resource, EncodingResourceWrapper
from twisted.internet import reactor, endpoints

class Simple(Resource):
isLeaf = True
def render_GET(self, request):

return b"<html>Hello, world!</html>"

resource = Simple()
wrapped = EncodingResourceWrapper(resource, [GzipEncoderFactory()])
site = Site(wrapped)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(site)
reactor.run()

Using compression on SSL served resources where the user can influence the content can lead to information leak, so
be careful which resources use request encoders.

Note that only encoder can be used per request: the first encoder factory returning an object will be used, so the order
in which they are specified matters.

Session

HTTP is a stateless protocol; every request-response is treated as an individual unit, distinguishable from any other
request only by the URL requested. With the advent of Cookies in the mid nineties, dynamic web servers gained the
ability to distinguish between requests coming from different browser sessions by sending a Cookie to a browser. The
browser then sends this cookie whenever it makes a request to a web server, allowing the server to track which requests
come from which browser session.

Twisted Web provides an abstraction of this browser-tracking behavior called the Session object . Calling request.
getSession() checks to see if a session cookie has been set; if not, it creates a unique session id, creates a Session
object, stores it in the Site, and returns it. If a session object already exists, the same session object is returned. In this
way, you can store data specific to the session in the session object.
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Proxies and reverse proxies

A proxy is a general term for a server that functions as an intermediary between clients and other servers.

Twisted supports two main proxy variants: a Proxy and a ReverseProxy .

Proxy

A proxy forwards requests made by a client to a destination server. Proxies typically sit on the internal network for a
client or out on the internet, and have many uses, including caching, packet filtering, auditing, and circumventing local
access restrictions to web content.

Here is an example of a simple but complete web proxy:

from twisted.web import proxy, http
from twisted.internet import reactor, endpoints

class ProxyFactory(http.HTTPFactory):
def buildProtocol(self, addr):

return proxy.Proxy()

endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(ProxyFactory())
reactor.run()

With this proxy running, you can configure your web browser to use localhost:8080 as a proxy. After doing so,
when browsing the web all requests will go through this proxy.

Proxy inherits from http.HTTPChannel . Each client request to the proxy generates a ProxyRequest from the
proxy to the destination server on behalf of the client. ProxyRequest uses a ProxyClientFactory to create an
instance of the ProxyClient protocol for the connection. ProxyClient inherits from http.HTTPClient . Subclass
ProxyRequest to customize the way requests are processed or logged.

ReverseProxyResource

A reverse proxy retrieves resources from other servers on behalf of a client. Reverse proxies typically sit inside the
server’s internal network and are used for caching, application firewalls, and load balancing.

Here is an example of a basic reverse proxy:

from twisted.internet import reactor, endpoints
from twisted.web import proxy, server

site = server.Site(proxy.ReverseProxyResource('www.yahoo.com', 80, ''))
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(site)
reactor.run()

With this reverse proxy running locally, you can visit http://localhost:8080 in your web browser, and the reverse
proxy will proxy your connection to www.yahoo.com.

In this example we use server.Site to serve a ReverseProxyResource directly. There is also a ReverseProxy
family of classes in twisted.web.proxy mirroring those of the Proxy family:
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Like Proxy , ReverseProxy inherits from http.HTTPChannel . Each client request to the reverse proxy gen-
erates a ReverseProxyRequest to the destination server. Like ProxyRequest , ReverseProxyRequest uses a
ProxyClientFactory to create an instance of the ProxyClient protocol for the connection.

Additional examples of proxies and reverse proxies can be found in the Twisted web examples

Advanced Configuration

Non-trivial configurations of Twisted Web are achieved with Python configuration files. This is a Python snippet which
builds up a variable called application. Usually, the twisted.application.strports.service function will be
used to build a service instance that will be used to make the application listen on a TCP port (80, in case direct web
serving is desired), with the listener being a twisted.web.server.Site . The resulting file can then be run with
twistd -y . Alternatively a reactor object can be used directly to make a runnable script.

The Site will wrap a Resource object – the root.

from twisted.application import internet, service, strports
from twisted.web import static, server

root = static.File("/var/www/htdocs")
application = service.Application('web')
site = server.Site(root)
sc = service.IServiceCollection(application)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

Most advanced configurations will be in the form of tweaking the root resource object.

Adding Children

Usually, the root’s children will be based on the filesystem’s contents. It is possible to override the filesystem by explicit
putChild methods.

Here are two examples. The first one adds a /doc child to serve the documentation of the installed packages, while the
second one adds a cgi-bin directory for CGI scripts.

from twisted.internet import reactor, endpoints
from twisted.web import static, server

root = static.File("/var/www/htdocs")
root.putChild(b"doc", static.File("/usr/share/doc"))
endpoint = endpoints.TCP4ServerEndpoint(reactor, 80)
endpoint.listen(server.Site(root))
reactor.run()

from twisted.internet import reactor, endpoints
from twisted.web import static, server, twcgi

root = static.File("/var/www/htdocs")
root.putChild(b"cgi-bin", twcgi.CGIDirectory("/var/www/cgi-bin"))
endpoint = endpoints.TCP4ServerEndpoint(reactor, 80)
endpoint.listen(server.Site(root))
reactor.run()

392 Chapter 7. Twisted Web

../examples/index.html


Twisted Documentation, Release 23.8.0

Modifying File Resources

File resources, be they root object or children thereof, have two important attributes that often need to be modified:
indexNames and processors . indexNames determines which files are treated as “index files” – served up when a
directory is rendered. processors determine how certain file extensions are treated.

Here is an example for both, creating a site where all .rpy extensions are Resource Scripts, and which renders direc-
tories by searching for a index.rpy file.

from twisted.application import internet, service, strports
from twisted.web import static, server, script

root = static.File("/var/www/htdocs")
root.indexNames=['index.rpy']
root.processors = {'.rpy': script.ResourceScript}
application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

File objects also have a method called ignoreExt . This method can be used to give extension-less URLs to users,
so that implementation is hidden. Here is an example:

from twisted.application import internet, service, strports
from twisted.web import static, server, script

root = static.File("/var/www/htdocs")
root.ignoreExt(".rpy")
root.processors = {'.rpy': script.ResourceScript}
application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

Now, a URL such as /foo might be served from a Resource Script called foo.rpy , if no file by the name of foo
exists.

File objects will try to automatically determine the Content-Type and Content-Encoding headers. There is a small set
of known mime types and encodings which augment the default mime types provided by the Python standard library
mimetypes. You can always modify the content type and encoding mappings by manipulating the instance variables.

For example to recognize WOFF File Format 2.0 and set the right Content-Type header you can modify the contentTypes
member of an instance:

from twisted.application import internet, service, strports
from twisted.web import static, server, script

root = static.File("/srv/fonts")

root.contentTypes[".woff2"] = "application/font-woff2"

application = service.Application('web')
sc = service.IServiceCollection(application)

(continues on next page)
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site = server.Site(root)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

Virtual Hosts

Virtual hosting is done via a special resource, that should be used as the root resource – NameVirtualHost .
NameVirtualHost has an attribute named default , which holds the default website. If a different root for some
other name is desired, the addHost method should be called.

from twisted.application import internet, service, strports
from twisted.web import static, server, vhost, script

root = vhost.NameVirtualHost()

# Add a default -- htdocs
root.default=static.File("/var/www/htdocs")

# Add a simple virtual host -- foo.com
root.addHost("foo.com", static.File("/var/www/foo"))

# Add a simple virtual host -- bar.com
root.addHost("bar.com", static.File("/var/www/bar"))

# The "baz" people want to use Resource Scripts in their web site
baz = static.File("/var/www/baz")
baz.processors = {'.rpy': script.ResourceScript}
baz.ignoreExt('.rpy')
root.addHost('baz', baz)

application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

Advanced Techniques

Since the configuration is a Python snippet, it is possible to use the full power of Python. Here are some simple
examples:

# No need for configuration of virtual hosts -- just make sure
# a directory /var/vhosts/<vhost name> exists:
from twisted.web import vhost, static, server
from twisted.application import internet, service, strports

root = vhost.NameVirtualHost()
root.default = static.File("/var/www/htdocs")
for dir in os.listdir("/var/vhosts"):

(continues on next page)
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root.addHost(dir, static.File(os.path.join("/var/vhosts", dir)))

application = service.Application('web')
sc = service.IServiceCollection(application)
site = server.Site(root)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

# Determine ports we listen on based on a file with numbers:
from twisted.web import vhost, static, server
from twisted.application import internet, service

root = static.File("/var/www/htdocs")

site = server.Site(root)
application = service.Application('web')
serviceCollection = service.IServiceCollection(application)

with open("/etc/web/ports") as f:
for num in map(int, f.read().split()):

serviceCollection.addCollection(
strports.service("tcp:{}".format(num), site)

)

Running a Twisted Web Server

In many cases, you’ll end up repeating common usage patterns of twisted.web. In those cases you’ll probably want to
use Twisted’s pre-configured web server setup.

The easiest way to run a Twisted Web server is with the Twisted Daemonizer. For example, this command will run a
web server which serves static files from a particular directory:

% twistd web --path /path/to/web/content

If you just want to serve content from your own home directory, the following will do:

% twistd web --path ~/public_html/

You can stop the server at any time by going back to the directory you started it in and running the command:

% kill `cat twistd.pid`

Some other configuration options are available as well:

• --listen : Specify the port for the web server to listen on. This defaults to tcp:8080.

• --logfile : Specify the path to the log file.

• --add-header: Specify additional headers to be served with every response. These are formatted like
--add-header "HeaderName: HeaderValue".

The full set of options that are available can be seen with:
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% twistd web --help

Serving Flat HTML

Twisted Web serves flat HTML files just as it does any other flat file.

Resource Scripts

A Resource script is a Python file ending with the extension .rpy , which is required to create an instance of a (subclass
of a) twisted.web.resource.Resource .

Resource scripts have 3 special variables:

• __file__ : The name of the .rpy file, including the full path. This variable is automatically defined and present
within the namespace.

• registry : An object of class static.Registry . It can be used to access and set persistent data keyed by a
class.

• resource : The variable which must be defined by the script and set to the resource instance that will be used
to render the page.

A very simple Resource Script might look like:

from twisted.web import resource
class MyGreatResource(resource.Resource):

def render_GET(self, request):
return b"<html>foo</html>"

resource = MyGreatResource()

A slightly more complicated resource script, which accesses some persistent data, might look like:

from twisted.web import resource
from SillyWeb import Counter

counter = registry.getComponent(Counter)
if not counter:

registry.setComponent(Counter, Counter())
counter = registry.getComponent(Counter)

class MyResource(resource.Resource):
def render_GET(self, request):

counter.increment()
output = "you are visitor {}".format(counter.getValue())
return output.encode("utf8")

resource = MyResource()

This is assuming you have the SillyWeb.Counter module, implemented something like the following:

class Counter:

(continues on next page)
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def __init__(self):
self.value = 0

def increment(self):
self.value += 1

def getValue(self):
return self.value

Web UIs

The Nevow framework, available as part of the Quotient project, is an advanced system for giving Web UIs to your
application. Nevow uses Twisted Web but is not itself part of Twisted.

Spreadable Web Servers

One of the most interesting applications of Twisted Web is the distributed webserver; multiple servers can all answer re-
quests on the same port, using the twisted.spread package for “spreadable” computing. In two different directories,
run the commands:

% twistd web --user
% twistd web --personal [other options, if you desire]

Once you’re running both of these instances, go to http://localhost:8080/your_username.twistd/ – you will
see the front page from the server you created with the --personal option. What’s happening here is that the request
you’ve sent is being relayed from the central (User) server to your own (Personal) server, over a PB connection. This
technique can be highly useful for small “community” sites; using the code that makes this demo work, you can con-
nect one HTTP port to multiple resources running with different permissions on the same machine, on different local
machines, or even over the internet to a remote site.

By default, a personal server listens on a UNIX socket in the owner’s home directory. The --listen option can be
used to make it listen on a different address, such as a TCP or SSL server or on a UNIX server in a different location.
If you use this option to make a personal server listen on a different address, the central (User) server won’t be able
to find it, but a custom server which uses the same APIs as the central server might. Another use of the --listen
option is to make the UNIX server robust against system crashes. If the server crashes and the UNIX socket is left on
the filesystem, the personal server will not be able to restart until it is removed. However, if --listen unix:/home/
username/.twistd-web-pb:wantPID=1 is supplied when creating the personal server, then a lockfile will be used
to keep track of whether the server socket is in use and automatically delete it when it is not.

Serving PHP/Perl/CGI

Everything related to CGI is located in the twisted.web.twcgi , and it’s here you’ll find the classes that you need
to subclass in order to support the language of your (or somebody elses) taste. You’ll also need to create your own
kind of resource if you are using a non-unix operating system (such as Windows), or if the default resources has wrong
pathnames to the parsers.

The following snippet is a .rpy that serves perl-files. Look at twisted.web.twcgi for more examples regarding
twisted.web and CGI.
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from twisted.web import static, twcgi

class PerlScript(twcgi.FilteredScript):
filter = '/usr/bin/perl' # Points to the perl parser

resource = static.File("/perlsite") # Points to the perl website
resource.processors = {".pl": PerlScript} # Files that end with .pl will be

# processed by PerlScript
resource.indexNames = ['index.pl']

Serving WSGI Applications

WSGI is the Web Server Gateway Interface. It is a specification for web servers and application servers to communicate
with Python web applications. All modern Python web frameworks support the WSGI interface.

The easiest way to get started with WSGI application is to use the twistd command:

% twistd -n web --wsgi=helloworld.application

This assumes that you have a WSGI application called application in your helloworld module/package, which might
look like this:

def application(environ, start_response):
"""Basic WSGI Application"""
start_response('200 OK', [('Content-type','text/plain')])
return [b'Hello World!']

The above setup will be suitable for many applications where all that is needed is to server the WSGI application
at the site’s root. However, for greater control, Twisted provides support for using WSGI applications as resources
twisted.web.wsgi.WSGIResource .

Here is an example of a WSGI application being served as the root resource for a site, in the following tac file:

from twisted.web import server
from twisted.web.wsgi import WSGIResource
from twisted.python.threadpool import ThreadPool
from twisted.internet import reactor
from twisted.application import service, strports

# Create and start a thread pool,
wsgiThreadPool = ThreadPool()
wsgiThreadPool.start()

# ensuring that it will be stopped when the reactor shuts down
reactor.addSystemEventTrigger('after', 'shutdown', wsgiThreadPool.stop)

def application(environ, start_response):
"""A basic WSGI application"""
start_response('200 OK', [('Content-type','text/plain')])
return [b'Hello World!']

# Create the WSGI resource
wsgiAppAsResource = WSGIResource(reactor, wsgiThreadPool, application)

(continues on next page)
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# Hooks for twistd
application = service.Application('Twisted.web.wsgi Hello World Example')
server = strports.service('tcp:8080', server.Site(wsgiAppAsResource))
server.setServiceParent(application)

This can then be run like any other .tac file:

% twistd -ny myapp.tac

Because of the synchronous nature of WSGI, each application call (for each request) is called within a thread, and the
result is written back to the web server. For this, a twisted.python.threadpool.ThreadPool instance is used.

Using VHostMonster

It is common to use one server (for example, Apache) on a site with multiple names which then uses reverse proxy (in
Apache, via mod_proxy ) to different internal web servers, possibly on different machines. However, naive configu-
ration causes miscommunication: the internal server firmly believes it is running on “internal-name:port” , and will
generate URLs to that effect, which will be completely wrong when received by the client.

While Apache has the ProxyPassReverse directive, it is really a hack and is nowhere near comprehensive enough.
Instead, the recommended practice in case the internal web server is Twisted Web is to use VHostMonster.

From the Twisted side, using VHostMonster is easy: just drop a file named (for example) vhost.rpy containing the
following:

from twisted.web import vhost
resource = vhost.VHostMonsterResource()

Make sure the web server is configured with the correct processors for the rpy extensions (the web server twistd web
--path generates by default is so configured).

From the Apache side, instead of using the following ProxyPass directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/
ServerName example.com
</VirtualHost>

Use the following directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/vhost.rpy/http/example.com:80/
ServerName example.com
</VirtualHost>

Here is an example for Twisted Web’s reverse proxy:

from twisted.application import internet, service, strports
from twisted.web import proxy, server, vhost
vhostName = b'example.com'
reverseProxy = proxy.ReverseProxyResource('internal', 8538,

b'/vhost.rpy/http/'+vhostName+b'/')
(continues on next page)

7.1. Developer Guides 399



Twisted Documentation, Release 23.8.0

(continued from previous page)

root = vhost.NameVirtualHost()
root.addHost(vhostName, reverseProxy)
site = server.Site(root)
application = service.Application('web-proxy')
sc = service.IServiceCollection(application)
i = strports.service("tcp:80", site)
i.setServiceParent(sc)

Rewriting URLs

Sometimes it is convenient to modify the content of the Request object before passing it on. Because this is most often
used to rewrite either the URL, the similarity to Apache’s mod_rewrite has inspired the twisted.web.rewrite
module. Using this module is done via wrapping a resource with a twisted.web.rewrite.RewriterResource
which then has rewrite rules. Rewrite rules are functions which accept a request object, and possible modify it. After
all rewrite rules run, the child resolution chain continues as if the wrapped resource, rather than the RewriterResource
, was the child.

Here is an example, using the only rule currently supplied by Twisted itself:

default_root = rewrite.RewriterResource(default, rewrite.tildeToUsers)

This causes the URL /~foo/bar.html to be treated like /users/foo/bar.html . If done after setting default’s
users child to a distrib.UserDirectory , it gives a configuration similar to the classical configuration of web
server, common since the first NCSA servers.

Knowing When We’re Not Wanted

Sometimes it is useful to know when the other side has broken the connection. Here is an example which does that:

from twisted.web.resource import Resource
from twisted.web import server
from twisted.internet import reactor
from twisted.python.util import println

class ExampleResource(Resource):

def render_GET(self, request):
request.write(b"hello world")
d = request.notifyFinish()
d.addCallback(lambda _: println("finished normally"))
d.addErrback(println, "error")
reactor.callLater(10, request.finish)
return server.NOT_DONE_YET

resource = ExampleResource()

This will allow us to run statistics on the log-file to see how many users are frustrated after merely 10 seconds.
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As-Is Serving

Sometimes, you want to be able to send headers and status directly. While you can do this with a ResourceScript
, an easier way is to use ASISProcessor . Use it by, for example, adding it as a processor for the .asis extension.
Here is a sample file:

HTTP/1.0 200 OK
Content-Type: text/html

Hello world

7.1.3 Web Application Development

Code layout

The development of a Twisted Web application should be orthogonal to its deployment. This means is that if you are
developing a web application, it should be a resource with children, and internal links. Some of the children might
use Nevow , some might be resources manually using .write , and so on. Regardless, the code should be in a Python
module, or package, outside the web tree.

You will probably want to test your application as you develop it. There are many ways to test, including dropping an
.rpy which looks like:

from mypackage import toplevel
resource = toplevel.Resource(file="foo/bar", color="blue")

into a directory, and then running:

% twistd web --path=/directory

You can also write a Python script like:

#!/usr/bin/env python

from twisted.web import server
from twisted.internet import reactor, endpoints
from mypackage import toplevel

endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(

server.Site(toplevel.Resource(file="foo/bar", color="blue")))
reactor.run()
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Web application deployment

Which one of these development strategies you use is not terribly important, since (and this is the important part)
deployment is orthogonal . Later, when you want users to actually use your code, you should worry about what to do
– or rather, don’t. Users may have widely different needs. Some may want to run your code in a different process, so
they’ll use distributed web (twisted.web.distrib ). Some may be using the twisted-web Debian package, and
will drop in:

% cat > /etc/local.d/99addmypackage.py
from mypackage import toplevel
default.putChild(b"mypackage", toplevel.Resource(file="foo/bar", color="blue"))
^D

If you want to be friendly to your users, you can supply many examples in your package, like the above .rpy and the
Debian-package drop-in. But the ultimate friendliness is to write a useful resource which does not have deployment
assumptions built in.

Understanding resource scripts (.rpy files)

Twisted Web is not PHP – it has better tools for organizing code Python modules and packages, so use them. In PHP, the
only tool for organizing code is a web page, which leads to silly things like PHP pages full of functions that other pages
import, and so on. If you were to write your code this way with Twisted Web, you would do web development using
many .rpy files, all importing some Python module. This is a bad idea – it mashes deployment with development, and
makes sure your users will be tied to the file-system.

We have .rpy s because they are useful and necessary. But using them incorrectly leads to horribly unmaintainable
applications. The best way to ensure you are using them correctly is to not use them at all, until you are on your final
deployment stages. You should then find your .rpy files will be less than 10 lines, because you will not have more
than 10 lines to write.

7.1.4 HTML Templating with twisted.web.template

A Very Quick Introduction To Templating In Python

HTML templating is the process of transforming a template document (one which describes style and structure, but does
not itself include any content) into some HTML output which includes information about objects in your application.
There are many, many libraries for doing this in Python: to name a few, Jinja2 and Django templates. You can easily use
any of these libraries in your Twisted Web application, either by running them as WSGI applications or by calling your
preferred templating system’s APIs to produce their output as strings, and then writing those strings to Request.write
.

Before we begin explaining how to use it, I’d like to stress that you don’t need to use Twisted’s templating system if you
prefer some other way to generate HTML. Use it if it suits your personal style or your application, but feel free to use
other things. Twisted includes templating for its own use, because the twisted.web server needs to produce HTML
in various places, and we didn’t want to add another large dependency for that. Twisted is not in any way incompatible
with other systems, so that has nothing to do with the fact that we use our own.
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twisted.web.template - Why And How you Might Want to Use It

Twisted includes a templating system, twisted.web.template . This can be convenient for Twisted applications that
want to produce some basic HTML for a web interface without an additional dependency.

twisted.web.template also includes support for Deferred s, so you can incrementally render the output of a page
based on the results of Deferred s that your application has returned. This feature is fairly unique among templating
libraries.

In twisted.web.template , templates are XHTML files which also contain a special namespace for indicating dy-
namic portions of the document. For example:

template-1.xml

<html xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<body>
<div t:render="header" />
<div id="content">
<p>Content goes here.</p>

</div>
<div t:render="footer" />

</body>
</html>

The basic unit of templating is twisted.web.template.Element . An Element is given a way of loading a bit of
markup like the above example, and knows how to correlate render attributes within that markup to Python methods
exposed with twisted.web.template.renderer() :

element_1.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, renderer

class ExampleElement(Element):
loader = XMLFile(FilePath("template-1.xml"))

@renderer
def header(self, request, tag):

return tag("Header.")

@renderer
def footer(self, request, tag):

return tag("Footer.")

In order to combine the two, we must render the element. For this simple example, we can use the flattenString
API, which will convert a single template object - such as an Element - into a Deferred which fires with a single
string, the HTML output of the rendering process.

render_1.py

from element_1 import ExampleElement

from twisted.web.template import flattenString

(continues on next page)
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def renderDone(output):
print(output)

flattenString(None, ExampleElement()).addCallback(renderDone)

This short program cheats a little bit; we know that there are no Deferred s in the template which require the reactor to
eventually fire; therefore, we can simply add a callback which outputs the result. Also, none of the renderer functions
require the request object, so it’s acceptable to pass None through here. (The ‘request’ object here is used only to
relay information about the rendering process to each renderer, so you may always use whatever object makes sense
for your application. Note, however, that renderers from library code may require an IRequest .)

If you run it yourself, you can see that it produces the following output:

output-1.html

<html>
<body>
<div>Header.</div>
<div id="content">
<p>Content goes here.</p>

</div>
<div>Footer.</div>

</body>
</html>

The third parameter to a renderer method is a Tag object which represents the XML element with the t:render
attribute in the template. Calling a Tag adds children to the element in the DOM, which may be strings, more Tag s,
or other renderables such as Element s. For example, to make the header and footer bold:

element_2.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, renderer, tags

class ExampleElement(Element):
loader = XMLFile(FilePath("template-1.xml"))

@renderer
def header(self, request, tag):

return tag(tags.b("Header."))

@renderer
def footer(self, request, tag):

return tag(tags.b("Footer."))

Rendering this in a similar way to the first example would produce:

output-2.html

<html>
<body>
<div><b>Header.</b></div>
<div id="content">

(continues on next page)
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<p>Content goes here.</p>
</div>
<div><b>Footer.</b></div>

</body>
</html>

In addition to adding children, call syntax can be used to set attributes on a tag. For example, to change the id on the
div while adding children:

element_3.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, renderer, tags

class ExampleElement(Element):
loader = XMLFile(FilePath("template-1.xml"))

@renderer
def header(self, request, tag):

return tag(tags.p("Header."), id="header")

@renderer
def footer(self, request, tag):

return tag(tags.p("Footer."), id="footer")

And this would produce the following page:

output-3.html

<html>
<body>
<div id="header"><p>Header.</p></div>
<div id="content">
<p>Content goes here.</p>

</div>
<div id="footer"><p>Footer.</p></div>

</body>
</html>

Calling a tag mutates it, it and returns the tag itself, so you can pass it forward and call it multiple times if you have
multiple children or attributes to add to it. twisted.web.template also exposes some convenient objects for building
more complex markup structures from within renderer methods in the tags object. In the examples above, we’ve only
used tags.p and tags.b , but there should be a tags.x for each x which is a valid HTML tag. There may be some
omissions, but if you find one, please feel free to file a bug.
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Template Attributes

t:attr tags allow you to set HTML attributes (like href in an <a href="... ) on an enclosing element.

Slots

t:slot tags allow you to specify “slots” which you can conveniently fill with multiple pieces of data straight from
your Python program.

The following example demonstrates both t:attr and t:slot in action. Here we have a layout which displays a
person’s profile on your snazzy new Twisted-powered social networking site. We use the t:attr tag to drop in the
“src” attribute on the profile picture, where the actual value of src attribute gets specified by a t:slot tag within the
t:attr tag. Confused? It should make more sense when you see the code:

slots-attributes-1.xml

<div xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1"
t:render="person_profile"
class="profile">

<img><t:attr name="src"><t:slot name="profile_image_url" /></t:attr></img>
<p><t:slot name="person_name" /></p>
</div>

slots_attributes_1.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, renderer

class ExampleElement(Element):
loader = XMLFile(FilePath("slots-attributes-1.xml"))

@renderer
def person_profile(self, request, tag):

# Note how convenient it is to pass these attributes in!
tag.fillSlots(

person_name="Luke", profile_image_url="http://example.com/user.png"
)
return tag

slots-attributes-output.html

<div class="profile">
<img src="http://example.com/user.png" />
<p>Luke</p>
</div>
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Iteration

Often, you will have a sequence of things, and want to render each of them, repeating a part of the template for each
one. This can be done by cloning tag in your renderer:

iteration-1.xml

<ul xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<li t:render="widgets"><t:slot name="widgetName"/></li>

</ul>

iteration-1.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, flattenString, renderer

class WidgetsElement(Element):
loader = XMLFile(FilePath("iteration-1.xml"))

widgetData = ["gadget", "contraption", "gizmo", "doohickey"]

@renderer
def widgets(self, request, tag):

for widget in self.widgetData:
yield tag.clone().fillSlots(widgetName=widget)

def printResult(result):
print(result)

flattenString(None, WidgetsElement()).addCallback(printResult)

iteration-output-1.xml

<ul>
<li>gadget</li><li>contraption</li><li>gizmo</li><li>doohickey</li>

</ul>

This renderer works because a renderer can return anything that can be rendered, not just tag . In this case, we define a
generator, which returns a thing that is iterable. We also could have returned a list . Anything that is iterable will be
rendered by twisted.web.template rendering each item in it. In this case, each item is a copy of the tag the renderer
received, each filled with the name of a widget.
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Sub-views

Another common pattern is to delegate the rendering logic for a small part of the page to a separate Element . For ex-
ample, the widgets from the iteration example above might be more complicated to render. You can define an Element
subclass which can render a single widget. The renderer method on the container can then yield instances of this new
Element subclass.

subviews-1.xml

<ul xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<li t:render="widgets"><span t:render="name" /></li>

</ul>

subviews-1.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, TagLoader, XMLFile, flattenString, renderer

class WidgetsElement(Element):
loader = XMLFile(FilePath("subviews-1.xml"))

widgetData = ["gadget", "contraption", "gizmo", "doohickey"]

@renderer
def widgets(self, request, tag):

for widget in self.widgetData:
yield WidgetElement(TagLoader(tag), widget)

class WidgetElement(Element):
def __init__(self, loader, name):

Element.__init__(self, loader)
self._name = name

@renderer
def name(self, request, tag):

return tag(self._name)

def printResult(result):
print(result)

flattenString(None, WidgetsElement()).addCallback(printResult)

subviews-output-1.xml

<ul>
<li><span>gadget</span></li><li><span>contraption</span></li><li><span>gizmo</span>

→˓</li><li><span>doohickey</span></li>
</ul>

TagLoader lets the portion of the overall template related to widgets be re-used for WidgetElement , which is oth-
erwise a normal Element subclass not much different from WidgetsElement . Notice that the name renderer on the
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span tag in this template is satisfied from WidgetElement , not WidgetsElement .

Transparent

Note how renderers, slots and attributes require you to specify a renderer on some outer HTML element. What if you
don’t want to be forced to add an element to your DOM just to drop some content into it? Maybe it messes with your
layout, and you can’t get it to work in IE with that extra div tag? Perhaps you need t:transparent , which allows
you to drop some content in without any surrounding “container” tag. For example:

transparent-1.xml

<div xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
<!-- layout decision - these things need to be *siblings* -->
<t:transparent t:render="renderer1" />
<t:transparent t:render="renderer2" />
</div>

transparent_element.py

from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, renderer

class ExampleElement(Element):
loader = XMLFile(FilePath("transparent-1.xml"))

@renderer
def renderer1(self, request, tag):

return tag("hello")

@renderer
def renderer2(self, request, tag):

return tag("world")

transparent-output.html

<div>
<!-- layout decision - these things need to be *siblings* -->
hello
world
</div>

Quoting

twisted.web.template will quote any strings that place into the DOM. This provides protection against XSS attacks
, in addition to just generally making it easy to put arbitrary strings onto a web page, without worrying about what they
might have in them. This can easily be demonstrated with an element using the same template from our earlier examples.
Here’s an element that returns some “special” characters in HTML (‘<’, ‘>’, and ‘”’, which is special in attribute values):

quoting_element.py
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from twisted.python.filepath import FilePath
from twisted.web.template import Element, XMLFile, renderer

class ExampleElement(Element):
loader = XMLFile(FilePath("template-1.xml"))

@renderer
def header(self, request, tag):

return tag("<<<Header>>>!")

@renderer
def footer(self, request, tag):

return tag('>>>"Footer!"<<<', id='<"fun">')

Note that they are all safely quoted in the output, and will appear in a web browser just as you returned them from your
Python method:

quoting-output.html

<html>
<body>
<div>&lt;&lt;&lt;Header&gt;&gt;&gt;!</div>
<div id="content">
<p>Content goes here.</p>

</div>
<div id="&lt;&quot;fun&quot;&gt;">&gt;&gt;&gt;"Footer!"&lt;&lt;&lt;</div>

</body>
</html>

Deferreds

Finally, a simple demonstration of Deferred support, the unique feature of twisted.web.template . Simply put,
any renderer may return a Deferred which fires with some template content instead of the template content itself. As
shown above, flattenString will return a Deferred that fires with the full content of the string. But if there’s a lot of
content, you might not want to wait before starting to send some of it to your HTTP client: for that case, you can use
flatten . It’s difficult to demonstrate this directly in a browser-based application; unless you insert very long delays
before firing your Deferreds, it just looks like your browser is instantly displaying everything. Here’s an example that
just prints out some HTML template, with markers inserted for where certain events happen:

wait_for_it.py

import sys

from twisted.internet.defer import Deferred
from twisted.web.template import Element, XMLString, flatten, renderer

sample = XMLString(
"""
<div xmlns:t="http://twistedmatrix.com/ns/twisted.web.template/0.1">
Before waiting ...
<span t:render="wait"></span>
... after waiting.

(continues on next page)
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</div>
"""

)

class WaitForIt(Element):
def __init__(self):

Element.__init__(self, loader=sample)
self.deferred = Deferred()

@renderer
def wait(self, request, tag):

return self.deferred.addCallback(lambda aValue: tag("A value: " + repr(aValue)))

def done(ignore):
print("[[[Deferred fired.]]]")

print("[[[Rendering the template.]]]")
it = WaitForIt()
flatten(None, it, sys.stdout.write).addCallback(done)
print("[[[In progress... now firing the Deferred.]]]")
it.deferred.callback("<value>")
print("[[[All done.]]]")

If you run this example, you should get the following output:

waited-for-it.html

[[[Rendering the template.]]]
<div>

Before waiting ...
[[[In progress... now firing the Deferred.]]]

<span>A value: '&lt;value&gt;'</span>
... after waiting.
</div>[[[Deferred fired.]]]

[[[All done.]]]

This demonstrates that part of the output (everything up to “[[[In progress... “) is written out immediately as it’s
rendered. But once it hits the Deferred, WaitForIt ‘s rendering needs to pause until .callback(...) is called on
that Deferred. You can see that no further output is produced until the message indicating that the Deferred is being
fired is complete. By returning Deferreds and using flatten , you can avoid buffering large amounts of data.
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A Brief Note on Formats and DOCTYPEs

The goal of twisted.web.template is to emit both valid HTML or XHTML . However, in order to get the maximally
standards-compliant output format you desire, you have to know which one you want, and take a few simple steps to
emit it correctly. Many browsers will probably work with most output if you ignore this section entirely, but the HTML
specification recommends that you specify an appropriate DOCTYPE .

As a DOCTYPE declaration in your template would describe the template itself, rather than its output, it won’t be included
in your output. If you wish to annotate your template output with a DOCTYPE, you will have to write it to the browser
out of band. One way to do this would be to simply do request.write('<!DOCTYPE html>\n') when you are
ready to begin emitting your response. The same goes for an XML DOCTYPE declaration.

twisted.web.template will remove the xmlns attributes used to declare the http://twistedmatrix.com/ns/
twisted.web.template/0.1 namespace, but it will not modify other namespace declaration attributes. Therefore if
you wish to serialize in HTML format, you should not use other namespaces; if you wish to serialize to XML, feel free
to insert any namespace declarations that are appropriate, and they will appear in your output.

Note: This relaxed approach is correct in many cases. However, in certain contexts - especially <script> and <style>
tags - quoting rules differ in significant ways between HTML and XML, and between different browsers’ parsers in
HTML. If you want to generate dynamic content inside a script or stylesheet, the best option is to load the resource
externally so you don’t have to worry about quoting rules. The second best option is to strictly configure your content-
types and DOCTYPE declarations for XML, whose quoting rules are simple and compatible with the approach that
twisted.web.template takes. And, please remember: regardless of how you put it there, any user input placed
inside a <script> or <style> tag is a potential security issue.

A Bit of History

Those of you who used Divmod Nevow may notice some similarities. twisted.web.template is in fact derived from
the latest version of Nevow, but includes only the latest components from Nevow’s rendering pipeline, and does not have
any of the legacy compatibility layers that Nevow grew over time. This should make using twisted.web.template
a similar experience for many long-time users of Twisted who have previously used Nevow for its twisted-friendly
templating, but more straightforward for new users.

7.1.5 Creating XML-RPC Servers and Clients with Twisted

Introduction

XML-RPC is a simple request/reply protocol that runs over HTTP. It is simple, easy to implement and supported by
most programming languages. Twisted’s XML-RPC support is implemented using the`xmlrpclib <http://docs.python.
org/library/xmlrpclib.html>`_ library that is included with Python 2.2 and later.

Creating a XML-RPC server

Making a server is very easy - all you need to do is inherit from twisted.web.xmlrpc.XMLRPC . You then create
methods beginning with xmlrpc_ . The methods’ arguments determine what arguments it will accept from XML-RPC
clients. The result is what will be returned to the clients.

Methods published via XML-RPC can return all the basic XML-RPC types, such as strings, lists and so on (just return a
regular python integer, etc). They can also raise exceptions or return Failure instances to indicate an error has occurred,
or Binary , Boolean or DateTime instances (all of these are the same as the respective classes in xmlrpclib. In
addition, XML-RPC published methods can return Deferred instances whose results are one of the above. This allows
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you to return results that can’t be calculated immediately, such as database queries. See the Deferred documentation
for more details.

XMLRPC instances are Resource objects, and they can thus be published using a Site. The following example has two
methods published via XML-RPC, add(a, b) and echo(x) .

from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""
An example object to be published.
"""

def xmlrpc_echo(self, x):
"""
Return all passed args.
"""
return x

def xmlrpc_add(self, a, b):
"""
Return sum of arguments.
"""
return a + b

def xmlrpc_fault(self):
"""
Raise a Fault indicating that the procedure should not be used.
"""
raise xmlrpc.Fault(123, "The fault procedure is faulty.")

if __name__ == '__main__':
from twisted.internet import reactor, endpoints
r = Example()
endpoint = endpoints.TCP4ServerEndpoint(reactor, 7080)
endpoint.listen(server.Site(r))
reactor.run()

After we run this command, we can connect with a client and send commands to the server:

>>> import xmlrpclib
>>> s = xmlrpclib.Server('http://localhost:7080/')
>>> s.echo("lala")
'lala'
>>> s.add(1, 2)
3
>>> s.fault()
Traceback (most recent call last):
...
xmlrpclib.Fault: <Fault 123: 'The fault procedure is faulty.'>
>>>

If the Request object is needed by an xmlrpc_* method, it can be made available using the twisted.web.xmlrpc.
withRequest() decorator. When using this decorator, the method will be passed the request object as the first argu-
ment, before any XML-RPC parameters. For example:
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from twisted.web.xmlrpc import XMLRPC, withRequest
from twisted.web.server import Site

class Example(XMLRPC):
@withRequest
def xmlrpc_headerValue(self, request, headerName):

return request.requestHeaders.getRawHeaders(headerName)

if __name__ == '__main__':
from twisted.internet import reactor, endpoints
endpoint = endpoints.TCP4ServerEndpoint(reactor, 7080)
endpoint.listen(Site(Example()))
reactor.run()

XML-RPC resources can also be part of a normal Twisted web server, using resource scripts. The following is an
example of such a resource script:

xmlquote.rpy

from twisted.web import xmlrpc
import os

def getQuote():
return "What are you talking about, William?"

class Quoter(xmlrpc.XMLRPC):

def xmlrpc_quote(self):
return getQuote()

resource = Quoter()

Using XML-RPC sub-handlers

XML-RPC resource can be nested so that one handler calls another if a method with a given prefix is called. For
example, to add support for an XML-RPC method date.time() to the Example class, you could do the following:

import time
from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""
An example object to be published.
"""

def xmlrpc_echo(self, x):
"""
Return all passed args.
"""
return x

def xmlrpc_add(self, a, b):
(continues on next page)
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(continued from previous page)

"""
Return sum of arguments.
"""
return a + b

class Date(xmlrpc.XMLRPC):
"""
Serve the XML-RPC 'time' method.
"""

def xmlrpc_time(self):
"""
Return UNIX time.
"""
return time.time()

if __name__ == '__main__':
from twisted.internet import reactor, endpoints
r = Example()
date = Date()
r.putSubHandler('date', date)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 7080)
endpoint.listen(server.Site(r))
reactor.run()

By default, a period (‘.’) separates the prefix from the method name, but you can use a different character by overriding
the XMLRPC.separator data member in your base XML-RPC server. XML-RPC servers may be nested to arbitrary
depths using this method.

Using your own procedure getter

Sometimes, you want to implement your own policy of getting the end implementation. E.g. just like sub-handlers
you want to divide the implementations into separate classes but may not want to introduce XMLRPC.separator in the
procedure name. In such cases just override the lookupProcedure(self, procedurePath) method and return the
correct callable. Raise twisted.web.xmlrpc.NoSuchFunction otherwise.

xmlrpc-customized.py

from twisted.internet import endpoints
from twisted.web import server, xmlrpc

class EchoHandler:
def echo(self, x):

"""
Return all passed args
"""
return x

class AddHandler:
def add(self, a, b):

(continues on next page)
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"""
Return sum of arguments.
"""
return a + b

class Example(xmlrpc.XMLRPC):
"""
An example of using you own policy to fetch the handler
"""

def __init__(self):
xmlrpc.XMLRPC.__init__(self)
self._addHandler = AddHandler()
self._echoHandler = EchoHandler()

# We keep a dict of all relevant
# procedure names and callable.
self._procedureToCallable = {

"add": self._addHandler.add,
"echo": self._echoHandler.echo,

}

def lookupProcedure(self, procedurePath):
try:

return self._procedureToCallable[procedurePath]
except KeyError as e:

raise xmlrpc.NoSuchFunction(
self.NOT_FOUND, "procedure %s not found" % procedurePath

)

def listProcedures(self):
"""
Since we override lookupProcedure, its suggested to override
listProcedures too.
"""
return ["add", "echo"]

if __name__ == "__main__":
from twisted.internet import reactor

r = Example()
endpoint = endpoints.TCP4ServerEndpoint(reactor, 7080)
endpoint.listen(server.Site(r))
reactor.run()
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Adding XML-RPC Introspection support

XML-RPC has an informal IntrospectionAPI that specifies three methods in a system sub-handler which allow a
client to query a server about the server’s API. Adding Introspection support to the Example class is easy using the
XMLRPCIntrospection class:

from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""An example object to be published."""

def xmlrpc_echo(self, x):
"""Return all passed args."""
return x

xmlrpc_echo.signature = [['string', 'string'],
['int', 'int'],
['double', 'double'],
['array', 'array'],
['struct', 'struct']]

def xmlrpc_add(self, a, b):
"""Return sum of arguments."""
return a + b

xmlrpc_add.signature = [['int', 'int', 'int'],
['double', 'double', 'double']]

xmlrpc_add.help = "Add the arguments and return the sum."

if __name__ == '__main__':
from twisted.internet import reactor, endpoints
r = Example()
xmlrpc.addIntrospection(r)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 7080)
endpoint.listen(server.Site(r))
reactor.run()

Note the method attributes help and signature which are used by the Introspection API methods system.
methodHelp and system.methodSignature respectively. If no help attribute is specified, the method’s documen-
tation string is used instead.

SOAP Support

From the point of view of a Twisted developer, there is little difference between XML-RPC support and SOAP support.
Here is an example of SOAP usage:

soap.rpy

from twisted.web import soap
import os

def getQuote():
return "That beverage, sir, is off the hizzy."

(continues on next page)
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class Quoter(soap.SOAPPublisher):
"""Publish one method, 'quote'."""

def soap_quote(self):
return getQuote()

resource = Quoter()

Creating an XML-RPC Client

XML-RPC clients in Twisted are meant to look as something which will be familiar either to xmlrpclib or to Per-
spective Broker users, taking features from both, as appropriate. There are two major deviations from the xmlrpclib
way which should be noted:

1. No implicit /RPC2 . If the services uses this path for the XML-RPC calls, then it will have to be given explicitly.

2. No magic __getattr__ : calls must be made by an explicit callRemote .

The interface Twisted presents to XML-RPC client is that of a proxy object: twisted.web.xmlrpc.Proxy . The con-
structor for the object receives a URL: it must be an HTTP or HTTPS URL. When an XML-RPC service is described,
the URL to that service will be given there.

Having a proxy object, one can just call the callRemotemethod, which accepts a method name and a variable argument
list (but no named arguments, as these are not supported by XML-RPC). It returns a deferred, which will be called back
with the result. If there is any error, at any level, the errback will be called. The exception will be the relevant Twisted
error in the case of a problem with the underlying connection (for example, a timeout), IOError containing the status
and message in the case of a non-200 status or a xmlrpclib.Fault in the case of an XML-RPC level problem.

from twisted.web.xmlrpc import Proxy
from twisted.internet import reactor

def printValue(value):
print(repr(value))
reactor.stop()

def printError(error):
print('error', error)
reactor.stop()

proxy = Proxy('http://advogato.org/XMLRPC')
proxy.callRemote('test.sumprod', 3, 5).addCallbacks(printValue, printError)
reactor.run()

prints:

[8, 15]
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Debugging with an XML-RPC client

Sometimes an XML-RPC server may send non-standard XML-RPC responses to your client. In those cases, you can
access the raw XML-RPC responses from the server with twisted.web.xmlrpc’s QueryFactory.

You can simply log the response content strings for debugging, or implement your own custom XML-RPC marshaller
to handle the non-standard XML-RPC responses.

An example Twisted application that does this can be found in docs/web/examples/xmlrpc-debug.py .

Serving SOAP and XML-RPC simultaneously

twisted.web.xmlrpc.XMLRPC and twisted.web.soap.SOAPPublisher are both Resource s. So, to serve both
XML-RPC and SOAP in the one web server, you can use the putChild method of Resource.

The following example uses an empty resource.Resource as the root resource for a Site , and then adds /RPC2 and
/SOAP paths to it.

xmlAndSoapQuote.py

import os

from twisted.internet import endpoints
from twisted.web import resource, server, soap, xmlrpc

def getQuote():
return "Victory to the burgeois, you capitalist swine!"

class XMLRPCQuoter(xmlrpc.XMLRPC):
def xmlrpc_quote(self):

return getQuote()

class SOAPQuoter(soap.SOAPPublisher):
def soap_quote(self):

return getQuote()

def main():
from twisted.internet import reactor

root = resource.Resource()
root.putChild("RPC2", XMLRPCQuoter())
root.putChild("SOAP", SOAPQuoter())
endpoint = endpoints.TCP4ServerEndpoint(reactor, 7080)
endpoint.listen(server.Site(root))
reactor.run()

if __name__ == "__main__":
main()

Refer to Twisted Web Development for more details about Resources.
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7.1.6 Twisted Web In 60 Seconds

Serving Static Content From a Directory

The goal of this example is to show you how to serve static content from a filesystem. First, we need to import some
objects:

• Site, an IProtocolFactory which glues a listening server port (IListeningPort) to the HTTPChannel
implementation:

from twisted.web.server import Site

• File, an IResource which glues the HTTP protocol implementation to the filesystem:

from twisted.web.static import File

• The reactor, which drives the whole process, actually accepting TCP connections and moving bytes into and
out of them:

from twisted.internet import reactor

• And the endpoints module, which gives us tools for, amongst other things, creating listening sockets:

from twisted.internet import endpoints

Next, we create an instance of the File resource pointed at the directory to serve:

resource = File("/tmp")

Then we create an instance of the Site factory with that resource:

factory = Site(resource)

Now we glue that factory to a TCP port:

endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(factory)

Finally, we start the reactor so it can make the program work:

reactor.run()

And that’s it. Here’s the complete program:

from twisted.web.server import Site
from twisted.web.static import File
from twisted.internet import reactor, endpoints

resource = File('/tmp')
factory = Site(resource)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(factory)
reactor.run()

Bonus example! For those times when you don’t actually want to write a new program, the above implemented func-
tionality is one of the things the command line twistd tool can do. In this case, the command
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twistd -n web --path /tmp

will accomplish the same thing as the above server. See helper programs in the Twisted Core documentation for more
information on using twistd.

Generating a Page Dynamically

The goal of this example is to show you how to dynamically generate the contents of a page.

Taking care of some of the necessary imports first, we’ll import Site, the reactor, and endpoints :

from twisted.internet import reactor, endpoints
from twisted.web.server import Site

The Site is a factory which associates a listening port with the HTTP protocol implementation. The reactor is the main
loop that drives any Twisted application. Endpoints are used to create listening ports.

Next, we’ll import one more thing from Twisted Web: Resource . An instance of Resource (or a subclass) represents
a page (technically, the entity addressed by a URI).

from twisted.web.resource import Resource

Since we’re going to make the demo resource a clock, we’ll also import the time module:

import time

With imports taken care of, the next step is to define a Resource subclass which has the dynamic rendering behavior
we want. Here’s a resource which generates a page giving the time:

class ClockPage(Resource):
isLeaf = True
def render_GET(self, request):

return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"
b"<title></title></head><body>" + time.ctime().encode('utf-8'))

Setting isLeaf to True indicates that ClockPage resources will never have any children.

The render_GET method here will be called whenever the URI we hook this resource up to is requested with the GET
method. The byte string it returns is what will be sent to the browser. In this case, that byte string is an HTML 5 web
page encoded as UTF-8.

With the resource defined, we can create a Site from it:

resource = ClockPage()
factory = Site(resource)

Just as with the previous static content example, this configuration puts our resource at the very top of the URI hierarchy,
ie at / . With that Site instance, we can tell the reactor to create a TCP server and start servicing requests:

endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

Here’s the code with no interruptions:
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from twisted.internet import reactor, endpoints
from twisted.web.server import Site
from twisted.web.resource import Resource
import time

class ClockPage(Resource):
isLeaf = True
def render_GET(self, request):

return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"
b"<title></title></head><body>" + time.ctime().encode('utf-8'))

resource = ClockPage()
factory = Site(resource)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

Static URL Dispatch

The goal of this example is to show you how to serve different content at different URLs.

The key to understanding how different URLs are handled with the resource APIs in Twisted Web is understanding that
any URL can be used to address a node in a tree. Resources in Twisted Web exist in such a tree, and a request for a
URL will be responded to by the resource which that URL addresses. The addressing scheme considers only the path
segments of the URL. Starting with the root resource (the one used to construct the Site ) and the first path segment,
a child resource is looked up. As long as there are more path segments, this process is repeated using the result of the
previous lookup and the next path segment. For example, to handle a request for "/foo/bar" , first the root’s "foo"
child is retrieved, then that resource’s "bar" child is retrieved, then that resource is used to create the response.

With that out of the way, let’s consider an example that can serve a few different resources at a few different URLs.

First things first: we need to import Site , the factory for HTTP servers, Resource , a convenient base class for
custom pages, reactor , the object which implements the Twisted main loop, and endpoints, which contains classes
for creating listening sockets. We’ll also import File to use as the resource at one of the example URLs.

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints
from twisted.web.static import File

Now we create a resource which will correspond to the root of the URL hierarchy: all URLs are children of this resource.

root = Resource()

Here comes the interesting part of this example. We’re now going to create three more resources and attach them to
the three URLs /foo , /bar , and /baz :

root.putChild(b"foo", File("/tmp"))
root.putChild(b"bar", File("/lost+found"))
root.putChild(b"baz", File("/opt"))

Last, all that’s required is to create a Site with the root resource, associate it with a listening server port, and start the
reactor:
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factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

With this server running, http://localhost:8880/foo will serve a listing of files from /tmp , http://
localhost:8880/bar will serve a listing of files from /lost+found , and http://localhost:8880/baz will
serve a listing of files from /opt .

Here’s the whole example uninterrupted:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints
from twisted.web.static import File

root = Resource()
root.putChild(b"foo", File("/tmp"))
root.putChild(b"bar", File("/lost+found"))
root.putChild(b"baz", File("/opt"))

factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

Dynamic URL Dispatch

In the previous example we covered how to statically configure Twisted Web to serve different content at different
URLs. The goal of this example is to show you how to do this dynamically instead. Reading the previous installment
if you haven’t already is suggested in order to get an overview of how URLs are treated when using Twisted Web’s
resource APIs.

Site (the object which associates a listening server port with the HTTP implementation), Resource (a convenient
base class to use when defining custom pages), reactor (the object which implements the Twisted main loop), and
endpoints return once again:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

With that out of the way, here’s the interesting part of this example. We’re going to define a resource which renders a
whole-year calendar. The year it will render the calendar for will be the year in the request URL. So, for example, /2009
will render a calendar for 2009. First, here’s a resource that renders a calendar for the year passed to its initializer:

from calendar import calendar

class YearPage(Resource):
def __init__(self, year):

Resource.__init__(self)
self.year = year

def render_GET(self, request):
(continues on next page)
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cal = calendar(self.year)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body><pre>" + cal.encode('utf-8') + b"</pre>")

Pretty simple - not all that different from the first dynamic resource demonstrated in Generating a Page Dynamically .
Now here’s the resource that handles URLs with a year in them by creating a suitable instance of this YearPage class:

class Calendar(Resource):
def getChild(self, name, request):

return YearPage(int(name))

By implementing getChild here, we’ve just defined how Twisted Web should find children of Calendar instances
when it’s resolving an URL into a resource. This implementation defines all integers as the children of Calendar (and
punts on error handling, more on that later).

All that’s left is to create a Site using this resource as its root and then start the reactor:

root = Calendar()
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

And that’s all. Any resource-based dynamic URL handling is going to look basically like Calendar.getChild .
Here’s the full example code:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

from calendar import calendar

class YearPage(Resource):
def __init__(self, year):

Resource.__init__(self)
self.year = year

def render_GET(self, request):
cal = calendar(self.year)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body><pre>" + cal.encode('utf-8') + b"</pre>")

class Calendar(Resource):
def getChild(self, name, request):

return YearPage(int(name))

root = Calendar()
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()
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Error Handling

In this example we’ll extend dynamic dispatch to return a 404 (not found) response when a client requests a non-existent
URL.

As in the previous examples, we’ll start with Site , Resource , reactor, and endpoints imports:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

Next, we’ll add one more import. notFound is one of the pre-defined error resources provided by Twisted Web. It
generates the necessary 404 response code and renders a simple HTML page telling the client there is no such resource.

from twisted.web.pages import notFound

Next, we’ll define a custom resource which does some dynamic URL dispatch. This example is going to be just like
the previous one , where the path segment is interpreted as a year; the difference is that this time we’ll handle requests
which don’t conform to that pattern by returning the not found response:

class Calendar(Resource):
def getChild(self, name, request):

try:
year = int(name)

except ValueError:
return notFound()

else:
return YearPage(year)

Aside from including the definition of YearPage from the previous example, the only other thing left to do is the
normal Site and reactor setup. Here’s the complete code for this example:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints
from twisted.web.pages import notFound

from calendar import calendar

class YearPage(Resource):
def __init__(self, year):

Resource.__init__(self)
self.year = year

def render_GET(self, request):
cal = calendar(self.year)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body><pre>" + cal.encode('utf-8') + b"</pre>")

class Calendar(Resource):
def getChild(self, name, request):

try:
year = int(name)

except ValueError:
(continues on next page)
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return notFound()
else:

return YearPage(year)

root = Calendar()
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

This server hands out the same calendar views as the one from the previous installment, but it will also hand out a nice
error page with a 404 response when a request is made for a URL which cannot be interpreted as a year.

Custom Response Codes

The previous example introduced NoResource, a Twisted Web error resource which responds with a 404 (not found)
code. This example will cover the APIs that NoResource uses to do this so that you can generate your own custom
response codes as desired.

First, the now-standard import preamble:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

Now we’ll define a new resource class that always returns a 402 (payment required) response. This is really not very
different from the resources that was defined in previous examples. The fact that it has a response code other than
200 doesn’t change anything else about its role. This will require using the request object, though, which none of the
previous examples have done.

The Request object has shown up in a couple of places, but so far we’ve ignored it. It is a parameter to the getChild
API as well as to render methods such as render_GET . As you might have suspected, it represents the request for
which a response is to be generated. Additionally, it also represents the response being generated. In this example
we’re going to use its setResponseCode method to - you guessed it - set the response’s status code.

class PaymentRequired(Resource):
def render_GET(self, request):

request.setResponseCode(402)
return b"<html><body>Please swipe your credit card.</body></html>"

Just like the other resources I’ve demonstrated, this one returns a string from its render_GET method to define the
body of the response. All that’s different is the call to setResponseCode to override the default response code, 200,
with a different one.

Finally, the code to set up the site and reactor. We’ll put an instance of the above defined resource at /buy :

root = Resource()
root.putChild(b"buy", PaymentRequired())
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

Here’s the complete example:
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from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

class PaymentRequired(Resource):
def render_GET(self, request):

request.setResponseCode(402)
return b"<html><body>Please swipe your credit card.</body></html>"

root = Resource()
root.putChild(b"buy", PaymentRequired())
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

Run the server and visit http://localhost:8880/buy in your browser. It’ll look pretty boring, but if you use
Firefox’s View Page Info right-click menu item (or your browser’s equivalent), you’ll be able to see that the server
indeed sent back a 402 response code.

Handling POSTs

All of the previous examples have focused on GET requests. Unlike GET requests, POST requests can have a request
body - extra data after the request headers; for example, data representing the contents of an HTML form. Twisted Web
makes this data available to applications via the Request object.

Here’s an example web server which renders a static HTML form and then generates a dynamic page when that form is
posted back to it. Disclaimer: While it’s convenient for this example, it’s often not a good idea to make a resource that
POST s to itself; this isn’t about Twisted Web, but the nature of HTTP in general; if you do this in a real application,
make sure you understand the possible negative consequences.

As usual, we start with some imports. In addition to the Twisted imports, this example uses the cgi module to escape
user-enteredcontent for inclusion in the output.

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

import cgi

Next, we’ll define a resource which is going to do two things. First, it will respond to GET requests with a static HTML
form:

class FormPage(Resource):
def render_GET(self, request):

return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"
b"<title></title></head><body>"
b"<form><input name='the-field' type='text'></form>")

This is similar to the resource used in a previous installment . However, we’ll now add one more method to give it a
second behavior; this render_POST method will allow it to accept POST requests:

...
def render_POST(self, request):

(continues on next page)
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args = request.args[b"the-field"][0].decode("utf-8")
escapedArgs = cgi.escape(args)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body>"
b"You submitted: " + escapedArgs.encode('utf-8'))

The main thing to note here is the use of request.args . This is a dictionary-like object that provides access to the
contents of the form. The keys in this dictionary are the names of inputs in the form. Each value is a list containing
bytes objects (since there can be multiple inputs with the same name), which is why we had to extract the first element
to pass to cgi.escape . request.args will be populated from form contents whenever a POST request is made with
a content type of application/x-www-form-urlencoded or multipart/form-data (it’s also populated by query
arguments for any type of request).

Finally, the example just needs the usual site creation and port setup:

root = Resource()
root.putChild(b"form", FormPage())
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()

Run the server and visit http://localhost:8880/form , submit the form, and watch it generate a page including the value
you entered into the single field.

Here’s the complete source for the example:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

import cgi

class FormPage(Resource):
def render_GET(self, request):

return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"
b"<title></title></head><body>"
b"<form method='POST'><input name='the-field'></form>")

def render_POST(self, request):
args = request.args[b"the-field"][0].decode("utf-8")
escapedArgs = cgi.escape(args)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body>"
b"You submitted: " + escapedArgs.encode('utf-8'))

root = Resource()
root.putChild(b"form", FormPage())
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()
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Other Request Bodies

The previous example demonstrated how to accept the payload of a POST carrying HTML form data. What about POST
requests with data in some other format? Or even PUT requests? Here is an example which demonstrates how to get
any request body, regardless of its format - using the request’s content attribute.

The only significant difference between this example and the previous is that instead of accessing request.args in
render_POST , it uses request.content to get the request’s body directly:

...
def render_POST(self, request):

content = request.content.read().decode("utf-8")
escapedContent = cgi.escape(content)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body>"
b"You submitted: " +
escapedContent.encode("utf-8"))

request.content is a file-like object, so the body is read from it. The exact type may vary, so avoid relying on
non-file methods you may find (such as getvalue when request.content happens to be a BytesIO instance).

Here’s the complete source for this example - again, almost identical to the previous POST example, with only
render_POST changed:

from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

import cgi

class FormPage(Resource):
def render_GET(self, request):

return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"
b"<title></title></head><body>"
b"<form method='POST'><input name='the-field'></form>")

def render_POST(self, request):
content = request.content.read().decode("utf-8")
escapedContent = cgi.escape(content)
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body>"
b"You submitted: " +
escapedContent.encode("utf-8"))

root = Resource()
root.putChild(b"form", FormPage())
factory = Site(root)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8880)
endpoint.listen(factory)
reactor.run()
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rpy scripts (or, how to save yourself some typing)

The goal of this installment is to show you another way to run a Twisted Web server with a custom resource which
doesn’t require as much code as the previous examples.

The feature in question is called an rpy script . An rpy script is a Python source file which defines a resource and
can be loaded into a Twisted Web server. The advantages of this approach are that you don’t have to write code to create
the site or set up a listening port with the reactor. That means fewer lines of code that aren’t dedicated to the task you’re
trying to accomplish.

There are some disadvantages, though. An rpy script must have the extension .rpy . This means you can’t import it
using the usual Python import statement. This means it’s hard to re-use code in an rpy script. This also means you can’t
easily unit test it. The code in an rpy script is evaluated in an unusual context. So, while rpy scripts may be useful for
testing out ideas, they’re not recommend for much more than that.

Okay, with that warning out of the way, let’s dive in. First, as mentioned, rpy scripts are Python source files with the
.rpy extension. So, open up an appropriately named file (for example, example.rpy ) and put this code in it:

import time

from twisted.web.resource import Resource

class ClockPage(Resource):
isLeaf = True
def render_GET(self, request):

return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"
b"<title></title></head><body>" + time.ctime().encode('utf-8'))

resource = ClockPage()

You may recognize this as the resource from the first dynamic rendering example . What’s different is what you don’t
see: we didn’t import reactor or Site . There are no calls to endpoints.TCP4ServerEndpoint or run . Instead,
and this is the core idea for rpy scripts, we just bound the name resource to the resource we want the script to serve.
Every rpy script must bind this name, and this name is the only thing Twisted Web will pay attention to in an rpy script.

All that’s left is to drop this rpy script into a Twisted Web server. There are a few ways to do this. The simplest way is
with twistd :

$ twistd -n web --path .

Hit http://localhost:8080/example.rpy to see it run. You can pass other arguments here too. twistd web has options
for specifying which port number to bind, whether to set up an HTTPS server, and plenty more. Other options you can
pass to twistd allow you to configure logging to work differently, to select a different reactor, etc. For a full list of
options, see twistd --help and twistd web --help .
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Asynchronous Responses

In all of the previous examples, the resource examples presented generated responses immediately. One of the features
of prime interest of Twisted Web, though, is the ability to generate a response over a longer period of time while leaving
the server free to respond to other requests. In other words, asynchronously. In this installment, we’ll write a resource
like this.

A resource that generates a response asynchronously looks like one that generates a response synchronously in many
ways. The same base class, Resource , is used either way; the same render methods are used. There are three basic
differences, though.

First, instead of returning the string which will be used as the body of the response, the resource uses Request.write
. This method can be called repeatedly. Each call appends another string to the response body. Second, when the
entire response body has been passed to Request.write , the application must call Request.finish . As you might
expect from the name, this ends the response. Finally, in order to make Twisted Web not end the response as soon as
the render method returns, the render method must return NOT_DONE_YET . Consider this example:

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
reactor.callLater(5, self._delayedRender, request)
return NOT_DONE_YET

If you’re not familiar with the reactor callLater method, all you really need to know about it to understand this
example is that the above usage of it arranges to have self._delayedRender(request) run about 5 seconds after
callLater is invoked from this render method and that it returns immediately.

All three of the elements mentioned earlier can be seen in this example. The resource uses Request.write to set the
response body. It uses Request.finish after the entire body has been specified (all with just one call to write in this
case). Lastly, it returns NOT_DONE_YET from its render method. So there you have it, asynchronous rendering with
Twisted Web.

Here’s a complete rpy script based on this resource class (see the previous example if you need a reminder about rpy
scripts):

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
reactor.callLater(5, self._delayedRender, request)
return NOT_DONE_YET

resource = DelayedResource()
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Drop this source into a .rpy file and fire up a server using twistd -n web --path /directory/containing/
script/. You’ll see that loading the page takes 5 seconds. If you try to load a second before the first completes, it
will also take 5 seconds from the time you request it (but it won’t be delayed by any other outstanding requests).

Something else to consider when generating responses asynchronously is that the client may not wait around to get the
response to its request. A subsequent example demonstrates how to detect that the client has abandoned the request
and that the server shouldn’t bother to finish generating its response.

Asynchronous Responses (via Deferred)

The previous example had a Resource that generates its response asynchronously rather than immediately upon the
call to its render method. Though it was a useful demonstration of the NOT_DONE_YET feature of Twisted Web, the
example didn’t reflect what a realistic application might want to do. This example introduces Deferred , the Twisted
class which is used to provide a uniform interface to many asynchronous events, and shows you an example of using a
Deferred -returning API to generate an asynchronous response to a request in Twisted Web.

Deferred is the result of two consequences of the asynchronous programming approach. First, asynchronous code is
frequently (if not always) concerned with some data (in Python, an object) which is not yet available but which probably
will be soon. Asynchronous code needs a way to define what will be done to the object once it does exist. It also needs
a way to define how to handle errors in the creation or acquisition of that object. These two needs are satisfied by the
callbacks and errbacks of a Deferred . Callbacks are added to a Deferred with Deferred.addCallback ; errbacks
are added with Deferred.addErrback . When the object finally does exist, it is passed to Deferred.callback
which passes it on to the callback added with addCallback . Similarly, if an error occurs, Deferred.errback is
called and the error is passed along to the errback added with addErrback . Second, the events that make asynchronous
code actually work often take many different, incompatible forms. Deferred acts as the uniform interface which lets
different parts of an asynchronous application interact and isolates them from implementation details they shouldn’t be
concerned with.

That’s almost all there is to Deferred . To solidify your new understanding, now consider this rewritten version of
DelayedResource which uses a Deferred -based delay API. It does exactly the same thing as the previous example
. Only the implementation is different.

First, the example must import that new API that was just mentioned, deferLater :

from twisted.internet.task import deferLater

Next, all the other imports (these are the same as last time):

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

With the imports done, here’s the first part of the DelayedResource implementation. Again, this part of the code is
identical to the previous version:

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

Next we need to define the render method. Here’s where things change a bit. Instead of using callLater , We’re going
to use deferLater this time. deferLater accepts a reactor, delay (in seconds, as with callLater ), and a function
to call after the delay to produce that elusive object discussed in the description of Deferred s. We’re also going to
use _delayedRender as the callback to add to the Deferred returned by deferLater . Since it expects the request
object as an argument, we’re going to set up the deferLater call to return a Deferred which has the request object
as its result.
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...
def render_GET(self, request):

d = deferLater(reactor, 5, lambda: request)

The Deferred referenced by d now needs to have the _delayedRender callback added to it. Once this is done,
_delayedRender will be called with the result of d (which will be request , of course — the result of (lambda:
request)() ).

...
d.addCallback(self._delayedRender)

Finally, the render method still needs to return NOT_DONE_YET , for exactly the same reasons as it did in the previous
version of the example.

...
return NOT_DONE_YET

And with that, DelayedResource is now implemented based on a Deferred . The example still isn’t very realistic,
but remember that since Deferred s offer a uniform interface to many different asynchronous event sources, this code
now resembles a real application even more closely; you could easily replace deferLater with another Deferred
-returning API and suddenly you might have a resource that does something useful.

Finally, here’s the complete, uninterrupted example source, as an rpy script:

from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def render_GET(self, request):
d = deferLater(reactor, 5, lambda: request)
d.addCallback(self._delayedRender)
return NOT_DONE_YET

resource = DelayedResource()

Interrupted Responses

The previous example had a Resource that generates its response asynchronously rather than immediately upon the call
to its render method. When generating responses asynchronously, the possibility is introduced that the connection to
the client may be lost before the response is generated. In such a case, it is often desirable to abandon the response
generation entirely, since there is nothing to do with the data once it is produced. This example shows how to be notified
that the connection has been lost.

This example will build upon the asynchronous responses example which simply (if not very realistically) generated
its response after a fixed delay. We will expand that resource so that as soon as the client connection is lost, the delayed
event is cancelled and the response is never generated.

The feature this example relies on is provided by another Request method: notifyFinish . This method returns
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a new Deferred which will fire with None if the request is successfully responded to or with an error otherwise - for
example if the connection is lost before the response is sent.

The example starts in a familiar way, with the requisite Twisted imports and a resource class with the same
_delayedRender used previously:

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

Before defining the render method, we’re going to define an errback (an errback being a callback that gets called when
there’s an error), though. This will be the errback attached to the Deferred returned by Request.notifyFinish . It
will cancel the delayed call to _delayedRender .

...
def _responseFailed(self, err, call):

call.cancel()

Finally, the render method will set up the delayed call just as it did before, and return NOT_DONE_YET likewise. However,
it will also use Request.notifyFinish to make sure _responseFailed is called if appropriate.

...
def render_GET(self, request):

call = reactor.callLater(5, self._delayedRender, request)
request.notifyFinish().addErrback(self._responseFailed, call)
return NOT_DONE_YET

Notice that since _responseFailed needs a reference to the delayed call object in order to cancel it, we passed that
object to addErrback . Any additional arguments passed to addErrback (or addCallback ) will be passed along to
the errback after the Failure instance which is always passed as the first argument. Passing call here means it will
be passed to _responseFailed , where it is expected and required.

That covers almost all the code for this example. Here’s the entire example without interruptions, as an rpy script :

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def _responseFailed(self, err, call):
call.cancel()

def render_GET(self, request):
call = reactor.callLater(5, self._delayedRender, request)
request.notifyFinish().addErrback(self._responseFailed, call)
return NOT_DONE_YET

(continues on next page)
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resource = DelayedResource()

Toss this into example.rpy , fire it up with twistd -n web --path . , and hit http://localhost:8080/example.rpy
. If you wait five seconds, you’ll get the page content. If you interrupt the request before then, say by hitting escape
(in Firefox, at least), then you’ll see perhaps the most boring demonstration ever - no page content, and nothing in the
server logs. Success!

Logging Errors

The previous example created a server that dealt with response errors by aborting response generation, potentially
avoiding pointless work. However, it did this silently for any error. In this example, we’ll modify the previous example
so that it logs each failed response.

This example will use the Twisted API for logging errors. As was mentioned in the first example covering Deferreds ,
errbacks are passed an error. In the previous example, the _responseFailed errback accepted this error as a parameter
but ignored it. The only way this example will differ is that this _responseFailed will use that error parameter to log
a message.

This example will require all of the imports required by the previous example plus one new import:

from twisted.python.log import err

The only other part of the previous example which changes is the _responseFailed callback, which will now log the
error passed to it:

...
def _responseFailed(self, failure, call):

call.cancel()
err(failure, b"Async response demo interrupted response")

We’re passing two arguments to err here. The first is the error which is being passed in to the callback. This is always
an object of type Failure , a class which represents an exception and (sometimes, but not always) a traceback. err
will format this nicely for the log. The second argument is a descriptive string that tells someone reading the log what
the source of the error was.

Here’s the full example with the two above modifications:

from twisted.web.resource import Resource
from twisted.web.server import NOT_DONE_YET
from twisted.internet import reactor
from twisted.python.log import err

class DelayedResource(Resource):
def _delayedRender(self, request):

request.write(b"<html><body>Sorry to keep you waiting.</body></html>")
request.finish()

def _responseFailed(self, failure, call):
call.cancel()
err(failure, b"Async response demo interrupted response")

def render_GET(self, request):
(continues on next page)
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call = reactor.callLater(5, self._delayedRender, request)
request.notifyFinish().addErrback(self._responseFailed, call)
return NOT_DONE_YET

resource = DelayedResource()

Run this server as in the previous example and interrupt a request. Unlike the previous example, where the server gave
no indication that this had happened, you’ll see a message in the log output with this version.

Access Logging

As long as we’re on the topic of logging, this is probably a good time to mention Twisted Web’s access log support. In
this example, we’ll see what Twisted Web logs for each request it processes and how this can be customized.

If you’ve run any of the previous examples and watched the output of twistd or read twistd.log then you’ve already
seen some log lines like this:

2014-01-29 17:50:50-0500 [HTTPChannel,0,127.0.0.1] “127.0.0.1” - - [29/Jan/2014:22:50:50 +0000]
“GET / HTTP/1.1” 200 2753 “-” “Mozilla/5.0 . . . ”

If you focus on the latter portion of this log message you’ll see something that looks like a standard “combined log
format” message. However, it’s prefixed with the normal Twisted logging prefix giving a timestamp and some protocol
and peer addressing information. Much of this information is redundant since it is part of the combined log format.
Site lets you produce a more compact log which omits the normal Twisted logging prefix. To take advantage of this
feature all that is necessary is to tell Sitewhere to write this compact log. Do this by passing logPath to the initializer:

...
factory = Site(root, logPath=b"/tmp/access-logging-demo.log")

Or if you want to change the logging behavior of a server you’re launching with twistd web then just pass the
--logfile option:

$ twistd -n web --logfile /tmp/access-logging-demo.log

Apart from this, the rest of the server setup is the same. Once you pass logPath or use --logfile on the command
line the server will produce a log file containing lines like:

“127.0.0.1” - - [30/Jan/2014:00:13:35 +0000] “GET / HTTP/1.1” 200 2753 “-” “Mozilla/5.0 . . . ”

Any tools expecting combined log format messages should be able to work with these log files.

Site also allows the log format used to be customized using its logFormatter argument. Twisted Web comes with
one alternate formatter, proxiedLogFormatter, which is for use behind a proxy that sets the X-Forwarded-For
header. It logs the client address taken from this header rather than the network address of the client directly connected
to the server. Here’s the complete code for an example that uses both these features:

from twisted.web.http import proxiedLogFormatter
from twisted.web.server import Site
from twisted.web.static import File
from twisted.internet import reactor, endpoints

resource = File('/tmp')
factory = Site(resource, logPath=b"/tmp/access-logging-demo.log",␣
→˓logFormatter=proxiedLogFormatter)
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8888)

(continues on next page)
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endpoint.listen(factory)
reactor.run()

WSGI

The goal of this example is to show you how to use WSGIResource , another existing Resource subclass, to serve
WSGI applications in a Twisted Web server.

Note that WSGIResource is a multithreaded WSGI container. Like any other WSGI container, you can’t do anything
asynchronous in your WSGI applications, even though this is a Twisted WSGI container.

The first new thing in this example is the import of WSGIResource :

from twisted.web.wsgi import WSGIResource

Nothing too surprising there. We still need one of the other usual suspects, too:

from twisted.internet import reactor

You’ll see why in a minute. Next, we need a WSGI application. Here’s a really simple one just to get things going:

def application(environ, start_response):
start_response('200 OK', [('Content-type', 'text/plain')])
return [b'Hello, world!']

If this doesn’t make sense to you, take a look at one of these fine tutorials . Otherwise, or once you’re done with that,
the next step is to create a WSGIResource instance, as this is going to be another rpy script example:

resource = WSGIResource(reactor, reactor.getThreadPool(), application)

Let’s dwell on this line for a minute. The first parameter passed to WSGIResource is the reactor. Despite the fact that
the reactor is global and any code that wants it can always just import it (as, in fact, this rpy script simply does itself),
passing it around as a parameter leaves the door open for certain future possibilities - for example, having more than
one reactor. There are also testing implications. Consider how much easier it is to unit test a function that accepts a
reactor - perhaps a mock reactor specially constructed to make your tests easy to write - rather than importing the real
global reactor. That’s why WSGIResource requires you to pass the reactor to it.

The second parameter passed to WSGIResource is a ThreadPool . WSGIResource uses this to actually call the
application object passed in to it. To keep this example short, we’re passing in the reactor’s internal threadpool here,
letting us skip its creation and shutdown-time destruction. For finer control over how many WSGI requests are served
in parallel, you may want to create your own thread pool to use with your WSGIResource , but for simple testing, using
the reactor’s is fine.

The final argument is the application object. This is pretty typical of how WSGI containers work.

The example, sans interruption:

from twisted.web.wsgi import WSGIResource
from twisted.internet import reactor

def application(environ, start_response):
start_response('200 OK', [('Content-type', 'text/plain')])
return [b'Hello, world!']

resource = WSGIResource(reactor, reactor.getThreadPool(), application)
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Up to the point where the WSGIResource instance defined here exists in the resource hierarchy, the normal resource
traversal rules apply: getChild will be called to handle each segment. Once the WSGIResource is encountered,
though, that process stops and all further URL handling is the responsibility of the WSGI application. This application
does nothing with the URL, though, so you won’t be able to tell that.

Oh, and as was the case with the first static file example, there’s also a command line option you can use to avoid a lot
of this. If you just put the above application function, without all of the WSGIResource stuff, into a file, say, foo.py ,
then you can launch a roughly equivalent server like this:

$ twistd -n web --wsgi foo.application

HTTP Authentication

Many of the previous examples have looked at how to serve content by using existing resource classes or implementing
new ones. In this example we’ll use Twisted Web’s basic or digest HTTP authentication to control access to these
resources.

guard , the Twisted Web module which provides most of the APIs that will be used in this example, helps you to
add authentication and authorization to a resource hierarchy. It does this by providing a resource which implements
getChild to return a dynamically selected resource . The selection is based on the authentication headers in the
request. If those headers indicate that the request is made on behalf of Alice, then Alice’s resource will be returned.
If they indicate that it was made on behalf of Bob, his will be returned. If the headers contain invalid credentials, an
error resource is returned. Whatever happens, once this resource is returned, URL traversal continues as normal from
that resource.

The resource that implements this is HTTPAuthSessionWrapper , though it is directly responsible for very little of
the process. It will extract headers from the request and hand them off to a credentials factory to parse them according
to the appropriate standards (eg HTTPAuthentication: Basic and Digest Access Authentication ) and then hand the
resulting credentials object off to a Portal , the core of Twisted Cred , a system for uniform handling of authentication
and authorization. We won’t discuss Twisted Cred in much depth here. To make use of it with Twisted Web, the only
thing you really need to know is how to implement an IRealm .

You need to implement a realm because the realm is the object that actually decides which resources are used for which
users. This can be as complex or as simple as it suitable for your application. For this example we’ll keep it very simple:
each user will have a resource which is a static file listing of the public_html directory in their UNIX home directory.
First, we need to import implements from zope.interface and IRealm from twisted.cred.portal . Together
these will let me mark this class as a realm (this is mostly - but not entirely - a documentation thing). We’ll also need
File for the actual implementation later.

from zope.interface import implementer

from twisted.cred.portal import IRealm
from twisted.web.static import File

@implementer(IRealm)
class PublicHTMLRealm(object):

A realm only needs to implement one method: requestAvatar . This method is called after any successful authen-
tication attempt (ie, Alice supplied the right password). Its job is to return the avatar for the user who succeeded in
authenticating. An avatar is just an object that represents a user. In this case, it will be a File . In general, with Guard
, the avatar must be a resource of some sort.

...
def requestAvatar(self, avatarId, mind, *interfaces):

if IResource in interfaces:
(continues on next page)
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return (IResource, File("/home/%s/public_html" % (avatarId,)), lambda: None)
raise NotImplementedError()

A few notes on this method:

• The avatarId parameter is essentially the username. It’s the job of some other code to extract the username
from the request headers and make sure it gets passed here.

• The mind is always None when writing a realm to be used with Guard . You can ignore it until you want to write
a realm for something else.

• Guard is always passed IResource as the interfaces parameter. If interfaces only contains interfaces
your code doesn’t understand, raising NotImplementedError is the thing to do, as above. You’ll only need to
worry about getting a different interface when you write a realm for something other than Guard .

• If you want to track when a user logs out, that’s what the last element of the returned tuple is for. It will be called
when this avatar logs out. lambda: None is the idiomatic no-op logout function.

• Notice that the path handling code in this example is written very poorly. This example may be vulnerable to
certain unintentional information disclosure attacks. This sort of problem is exactly the reason FilePath exists.
However, that’s an example for another day. . .

We’re almost ready to set up the resource for this example. To create an HTTPAuthSessionWrapper , though, we need
two things. First, a portal, which requires the realm above, plus at least one credentials checker:

from twisted.cred.portal import Portal
from twisted.cred.checkers import FilePasswordDB

portal = Portal(PublicHTMLRealm(), [FilePasswordDB('httpd.password')])

FilePasswordDB is the credentials checker. It knows how to read passwd(5) -style (loosely) files to check credentials
against. It is responsible for the authentication work after HTTPAuthSessionWrapper extracts the credentials from
the request.

Next we need either BasicCredentialFactory or DigestCredentialFactory . The former knows how to chal-
lenge HTTP clients to do basic authentication; the latter, digest authentication. We’ll use digest here:

from twisted.web.guard import DigestCredentialFactory

credentialFactory = DigestCredentialFactory("md5", "example.org")

The two parameters to this constructor are the hash algorithm and the HTTP authentication realm which will be used.
The only other valid hash algorithm is “sha” (but be careful, MD5 is more widely supported than SHA). The HTTP
authentication realm is mostly just a string that is presented to the user to let them know why they’re authenticating
(you can read more about this in the RFC ).

With those things created, we can finally instantiate HTTPAuthSessionWrapper :

from twisted.web.guard import HTTPAuthSessionWrapper

resource = HTTPAuthSessionWrapper(portal, [credentialFactory])

There’s just one last thing that needs to be done here. When rpy scripts were introduced, it was mentioned that they
are evaluated in an unusual context. This is the first example that actually needs to take this into account. It so happens
that DigestCredentialFactory instances are stateful. Authentication will only succeed if the same instance is used
to both generate challenges and examine the responses to those challenges. However, the normal mode of operation
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for an rpy script is for it to be re-executed for every request. This leads to a new DigestCredentialFactory being
created for every request, preventing any authentication attempt from ever succeeding.

There are two ways to deal with this. First, and the better of the two ways, we could move almost all of the code into
a real Python module, including the code that instantiates the DigestCredentialFactory . This would ensure that
the same instance was used for every request. Second, and the easier of the two ways, we could add a call to cache()
to the beginning of the rpy script:

cache()

cache is part of the globals of any rpy script, so you don’t need to import it (it’s okay to be cringing at this point).
Calling cache makes Twisted re-use the result of the first evaluation of the rpy script for subsequent requests too - just
what we want in this case.

Here’s the complete example (with imports re-arranged to the more conventional style):

cache()

from zope.interface import implementer

from twisted.cred.portal import IRealm, Portal
from twisted.cred.checkers import FilePasswordDB
from twisted.web.static import File
from twisted.web.resource import IResource
from twisted.web.guard import HTTPAuthSessionWrapper, DigestCredentialFactory

@implementer(IRealm)
class PublicHTMLRealm(object):

def requestAvatar(self, avatarId, mind, *interfaces):
if IResource in interfaces:

return (IResource, File("/home/%s/public_html" % (avatarId,)), lambda: None)
raise NotImplementedError()

portal = Portal(PublicHTMLRealm(), [FilePasswordDB('httpd.password')])

credentialFactory = DigestCredentialFactory("md5", "localhost:8080")
resource = HTTPAuthSessionWrapper(portal, [credentialFactory])

And voila, a password-protected per-user Twisted Web server.

Session Basics

Sessions are the most complicated topic covered in this series of examples, and because of that it is going to take a
few examples to cover all of the different aspects. This first example demonstrates the very basics of the Twisted Web
session API: how to get the session object for the current request and how to prematurely expire a session.

Before diving into the APIs, let’s look at the big picture of sessions in Twisted Web. Sessions are represented by
instances of Session . The Site creates a new instance of Session the first time an application asks for it for a
particular session. Session instances are kept on the Site instance until they expire (due to inactivity or because they
are explicitly expired). Each time after the first that a particular session’s Session object is requested, it is retrieved
from the Site .

With the conceptual underpinnings of the upcoming API in place, here comes the example. This will be a very simple
rpy script which tells a user what its unique session identifier is and lets it prematurely expire the session.

First, we’ll import Resource so we can define a couple of subclasses of it:
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from twisted.web.resource import Resource

Next we’ll define the resource which tells the client what its session identifier is. This is done easily by first getting the
session object using Request.getSession and then getting the session object’s uid attribute:

class ShowSession(Resource):
def render_GET(self, request):

return b'Your session id is: ' + request.getSession().uid

To let the client expire its own session before it times out, we’ll define another resource which expires whatever session
it is requested with. This is done using the Session.expire method:

class ExpireSession(Resource):
def render_GET(self, request):

request.getSession().expire()
return b'Your session has been expired.'

Finally, to make the example an rpy script, we’ll make an instance of ShowSession and give it an instance of
ExpireSession as a child using Resource.putChild :

resource = ShowSession()
resource.putChild(b"expire", ExpireSession())

And that is the complete example. You can fire this up and load the top page. You’ll see a (rather opaque) session
identifier that remains the same across reloads (at least until you flush the TWISTED_SESSION cookie from your browser
or enough time passes). You can then visit the expire child and go back to the top page and see that you have a new
session.

Here’s the complete source for the example:

from twisted.web.resource import Resource

class ShowSession(Resource):
def render_GET(self, request):

return b'Your session id is: ' + request.getSession().uid

class ExpireSession(Resource):
def render_GET(self, request):

request.getSession().expire()
return b'Your session has been expired.'

resource = ShowSession()
resource.putChild(b"expire", ExpireSession())
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Storing Objects in the Session

This example shows you how you can persist objects across requests in the session object.

As was discussed previously , instances of Session last as long as the notional session itself does. Each time Request.
getSession is called, if the session for the request is still active, then the same Session instance is returned as was
returned previously. Because of this, Session instances can be used to keep other objects around for as long as the
session exists.

It’s easier to demonstrate how this works than explain it, so here’s an example:

>>> from zope.interface import Interface, Attribute, implementer
>>> from twisted.python.components import registerAdapter
>>> from twisted.web.server import Session
>>> class ICounter(Interface):
... value = Attribute("An int value which counts up once per page view.")
...
>>> @implementer(ICounter)
... class Counter(object):
... def __init__(self, session):
... self.value = 0
...
>>> registerAdapter(Counter, Session, ICounter)
>>> ses = Session(None, None)
>>> data = ICounter(ses)
>>> print(data)
<__main__.Counter object at 0x8d535ec>
>>> print(data is ICounter(ses))
True
>>>

What? , I hear you say.

What’s shown in this example is the interface and adaption-based API which Session exposes for persisting state.
There are several critical pieces interacting here:

• ICounter is an interface which serves several purposes. Like all interfaces, it documents the API of some class
of objects (in this case, just the value attribute). It also serves as a key into what is basically a dictionary within
the session object: the interface is used to store or retrieve a value on the session (the Counter instance, in this
case).

• Counter is the class which actually holds the session data in this example. It implements ICounter (again,
mostly for documentation purposes). It also has a value attribute, as the interface declared.

• The registerAdapter call sets up the relationship between its three arguments so that adaption will do what
we want in this case.

• Adaption is performed by the expression ICounter(ses) . This is read as : adapt ses to ICounter . Because
of the registerAdapter call, it is roughly equivalent to Counter(ses) . However (because of certain things
Session does), it also saves the Counter instance created so that it will be returned the next time this adaption
is done. This is why the last statement produces True .

If you’re still not clear on some of the details there, don’t worry about it and just remember this: ICounter(ses) gives
you an object you can persist state on. It can be as much or as little state as you want, and you can use as few or as
many different Interface classes as you want on a single Session instance.

With those conceptual dependencies out of the way, it’s a very short step to actually getting persistent state into a
Twisted Web application. Here’s an example which implements a simple counter, re-using the definitions from the
example above:
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from twisted.web.resource import Resource

class CounterResource(Resource):
def render_GET(self, request):

session = request.getSession()
counter = ICounter(session)
counter.value += 1
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body>"
b"Visit #" + str(counter.value).encode("utf-8") +
b" for you!")

Pretty simple from this side, eh? All this does is use Request.getSession and the adaption from above, plus some
integer math to give you a session-based visit counter.

Here’s the complete source for an rpy script based on this example:

cache()

from zope.interface import Interface, Attribute, implementer
from twisted.python.components import registerAdapter
from twisted.web.server import Session
from twisted.web.resource import Resource

class ICounter(Interface):
value = Attribute("An int value which counts up once per page view.")

@implementer(ICounter)
class Counter(object):

def __init__(self, session):
self.value = 0

registerAdapter(Counter, Session, ICounter)

class CounterResource(Resource):
def render_GET(self, request):

session = request.getSession()
counter = ICounter(session)
counter.value += 1
return (b"<!DOCTYPE html><html><head><meta charset='utf-8'>"

b"<title></title></head><body>"
b"Visit #" + str(counter.value).encode("utf-8") +
b" for you!")

resource = CounterResource()

One more thing to note is the cache() call at the top of this example. As with the previous example where this came
up, this rpy script is stateful. This time, it’s the ICounter definition and the registerAdapter call that need to be
executed only once. If we didn’t use cache , every request would define a new, different interface named ICounter .
Each of these would be a different key in the session, so the counter would never get past one.
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Session Endings

The previous two examples introduced Twisted Web’s session APIs. This included accessing the session object, storing
state on it, and retrieving it later, as well as the idea that the Session object has a lifetime which is tied to the notional
session it represents. This example demonstrates how to exert some control over that lifetime and react when it expires.

The lifetime of a session is controlled by the sessionTimeout attribute of the Session class. This attribute gives
the number of seconds a session may go without being accessed before it expires. The default is 15 minutes. In this
example we’ll change that to a different value.

One way to override the value is with a subclass:

from twisted.web.server import Session

class ShortSession(Session):
sessionTimeout = 60

To have Twisted Web actually make use of this session class, rather than the default, it is also necessary to override
the sessionFactory attribute of Site . We could do this with another subclass, but we could also do it to just one
instance of Site :

from twisted.web.server import Site

factory = Site(rootResource)
factory.sessionFactory = ShortSession

Sessions given out for requests served by this Site will use ShortSession and only last one minute without activity.

You can have arbitrary functions run when sessions expire, too. This can be useful for cleaning up external re-
sources associated with the session, tracking usage statistics, and more. This functionality is provided via Session.
notifyOnExpire . It accepts a single argument: a function to call when the session expires. Here’s a trivial example
which prints a message whenever a session expires:

from twisted.web.resource import Resource

class ExpirationLogger(Resource):
sessions = set()

def render_GET(self, request):
session = request.getSession()
if session.uid not in self.sessions:

self.sessions.add(session.uid)
session.notifyOnExpire(lambda: self._expired(session.uid))

return ""

def _expired(self, uid):
print("Session", uid, "has expired.")
self.sessions.remove(uid)

Keep in mind that using a method as the callback will keep the instance (in this case, the ExpirationLogger resource)
in memory until the session expires.

With those pieces in hand, here’s an example that prints a message whenever a session expires, and uses sessions which
last for 5 seconds:
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from twisted.web.server import Site, Session
from twisted.web.resource import Resource
from twisted.internet import reactor, endpoints

class ShortSession(Session):
sessionTimeout = 5

class ExpirationLogger(Resource):
sessions = set()

def render_GET(self, request):
session = request.getSession()
if session.uid not in self.sessions:

self.sessions.add(session.uid)
session.notifyOnExpire(lambda: self._expired(session.uid))

return ""

def _expired(self, uid):
print("Session", uid, "has expired.")
self.sessions.remove(uid)

rootResource = Resource()
rootResource.putChild(b"logme", ExpirationLogger())
factory = Site(rootResource)
factory.sessionFactory = ShortSession

endpoint = endpoints.TCP4ServerEndpoint(reactor, 8080)
endpoint.listen(factory)
reactor.run()

Since Site customization is required, this example can’t be rpy-based, so it brings back the manual endpoints.
TCP4ServerEndpoint and reactor.run calls. Run it and visit /logme to see it in action. Keep visiting it to keep
your session active. Stop visiting it for five seconds to see your session expiration message.

This set of examples contains short, complete applications of twisted.web. For subjects not covered here, see the
Twisted Web tutorial and the API documentation.

1. Serving static content from a directory

2. Generating a page dynamically

3. Static URL dispatch

4. Dynamic URL dispatch

5. Error handling

6. Custom response codes

7. Handling POSTs

8. Other request bodies

9. rpy scripts (or, how to save yourself some typing)

10. Asynchronous responses

11. Asynchronous responses (via Deferred)

12. Interrupted responses
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13. Logging errors

14. Access logging

15. WSGIs

16. HTTP authentication

17. Session basics

18. Storing objects in the session

19. Session endings

7.1.7 Light Weight Templating With Resource Templates

Overview

While high-level templating systems can be used with Twisted (for example, DivmodNevow , sometimes one needs a
less file-heavy system which lets one directly write HTML. While ResourceScript is available, it has a high cod-
ing overhead, and requires some boring string arithmetic. ResourceTemplate fills the space between Nevow and
ResourceScript using Quixote’s PTL (Python Templating Language).

ResourceTemplates need Quixote installed. In Debian , that means installing the python-quixote package (apt-get
install python-quixote ). Other operating systems require other ways to install Quixote, or it can be done manu-
ally.

Configuring Twisted Web

The easiest way to get Twisted Web to support ResourceTemplates is to bind them to some extension using the web
tap’s --processor flag. Here is an example:

% twistd web --path=/var/www \
--processor=.rtl=twisted.web.script.ResourceTemplate

The above command line binds the rtl extension to use the ResourceTemplate processor. Other ways are possible, but
would require more Python coding and are outside the scope of this HOWTO.

Using ResourceTemplate

ResourceTemplates are coded in an extension of Python called the”Python Templating Language” . Complete docu-
mentation of the PTL is available at the quixote web site . The web server will expect the PTL source file to define
a variable named resource . This should be a twisted.web.resource.Resource , whose .render method be
called. Usually, you would want to define render using the keyword template rather than def .

Here is a simple example for a resource template.

webquote.rtl

from twisted.web.resource import Resource

def getQuote():
return "An apple a day keeps the doctor away."

class QuoteResource(Resource):
(continues on next page)
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template render(self, request):
"""\
<html>
<head><title>Quotes Galore</title></head>

<body><h1>Quotes</h1>"""
getQuote()
"</body></html>"

resource = QuoteResource()

7.1.8 Using the Twisted Web Client

Overview

This document describes how to use the HTTP client included in Twisted Web. After reading it, you should be able
to make HTTP and HTTPS requests using Twisted Web. You will be able to specify the request method, headers, and
body and you will be able to retrieve the response code, headers, and body.

A number of higher-level features are also explained, including proxying, automatic content encoding negotiation, and
cookie handling.

Prerequisites

This document assumes that you are familiar with Deferreds and Failures , and producers and consumers . It also
assumes you are familiar with the basic concepts of HTTP, such as requests and responses, methods, headers, and
message bodies. The HTTPS section of this document also assumes you are somewhat familiar with SSL and have
read about using SSL in Twisted .

The Agent

Issuing Requests

The twisted.web.client.Agent class is the entry point into the client API. Requests are issued using the request
method, which takes as parameters a request method, a request URI, the request headers, and an object which can
produce the request body (if there is to be one). The agent is responsible for connection setup. Because of this, it
requires a reactor as an argument to its initializer. An example of creating an agent and issuing a request using it might
look like this:

request.py

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

agent = Agent(reactor)

(continues on next page)
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d = agent.request(
b"GET",
b"http://httpbin.com/anything",
Headers({"User-Agent": ["Twisted Web Client Example"]}),
None,

)

def cbResponse(ignored):
print("Response received")

d.addCallback(cbResponse)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

As may be obvious, this issues a new GET request for / to the web server on example.com . Agent is responsible for
resolving the hostname into an IP address and connecting to it on port 80 (for HTTP URIs), port 443 (for HTTPS URIs),
or on the port number specified in the URI itself. It is also responsible for cleaning up the connection afterwards. This
code sends a request which includes one custom header, User-Agent . The last argument passed to Agent.request is
None , though, so the request has no body.

Sending a request which does include a body requires passing an object providing twisted.web.iweb.
IBodyProducer to Agent.request . This interface extends the more general IPushProducer by adding a new
length attribute and adding several constraints to the way the producer and consumer interact.

• The length attribute must be a non-negative integer or the constant twisted.web.iweb.UNKNOWN_LENGTH . If
the length is known, it will be used to specify the value for the Content-Length header in the request. If the length
is unknown the attribute should be set to UNKNOWN_LENGTH . Since more servers support Content-Length , if a
length can be provided it should be.

• An additional method is required on IBodyProducer implementations: startProducing . This method is
used to associate a consumer with the producer. It should return a Deferred which fires when all data has been
produced.

• IBodyProducer implementations should never call the consumer’s unregisterProducer method. Instead,
when it has produced all of the data it is going to produce, it should only fire the Deferred returned by
startProducing .

For additional details about the requirements of IBodyProducer implementations, see the API documentation.

Here’s a simple IBodyProducer implementation which writes an in-memory string to the consumer:

bytesprod.py

from zope.interface import implementer

from twisted.internet.defer import succeed
from twisted.web.iweb import IBodyProducer

(continues on next page)
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@implementer(IBodyProducer)
class BytesProducer:

def __init__(self, body):
self.body = body
self.length = len(body)

def startProducing(self, consumer):
consumer.write(self.body)
return succeed(None)

def pauseProducing(self):
pass

def stopProducing(self):
pass

This producer can be used to issue a request with a body:

sendbody.py

from bytesprod import BytesProducer

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

agent = Agent(reactor)
body = BytesProducer(b"hello, world")
d = agent.request(

b"POST",
b"http://httpbin.org/post",
Headers(

{
"User-Agent": ["Twisted Web Client Example"],
"Content-Type": ["text/x-greeting"],

}
),
body,

)

def cbResponse(ignored):
print("Response received")

d.addCallback(cbResponse)

def cbShutdown(ignored):
reactor.stop()

(continues on next page)
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d.addBoth(cbShutdown)

reactor.run()

If you want to upload a file or you just have some data in a string, you don’t have to copy StringProducer though.
Instead, you can use FileBodyProducer . This IBodyProducer implementation works with any file-like object (so
use it with a StringIO if your upload data is already in memory as a string); the idea is the same as StringProducer
from the previous example, but with a little extra code to only send data as fast as the server will take it.

filesendbody.py

from io import BytesIO

from twisted.internet import reactor
from twisted.web.client import Agent, FileBodyProducer
from twisted.web.http_headers import Headers

agent = Agent(reactor)
body = FileBodyProducer(BytesIO(b"hello, world"))
d = agent.request(

b"GET",
b"http://example.com/",
Headers(

{
"User-Agent": ["Twisted Web Client Example"],
"Content-Type": ["text/x-greeting"],

}
),
body,

)

def cbResponse(ignored):
print("Response received")

d.addCallback(cbResponse)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

FileBodyProducer closes the file when it no longer needs it.

If the connection or the request take too much time, you can cancel the Deferred returned by the Agent.request
method. This will abort the connection, and the Deferred will errback with CancelledError .
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Receiving Responses

So far, the examples have demonstrated how to issue a request. However, they have ignored the response, except for
showing that it is a Deferred which seems to fire when the response has been received. Next we’ll cover what that
response is and how to interpret it.

Agent.request , as with most Deferred -returning APIs, can return a Deferred which fires with a Failure . If
the request fails somehow, this will be reflected with a failure. This may be due to a problem looking up the host IP
address, or it may be because the HTTP server is not accepting connections, or it may be because of a problem parsing
the response, or any other problem which arises which prevents the response from being received. It does not include
responses with an error status.

If the request succeeds, though, the Deferred will fire with a Response . This happens as soon as all the response
headers have been received. It happens before any of the response body, if there is one, is processed. The Response
object has several attributes giving the response information: its code, version, phrase, and headers, as well as the
length of the body to expect. In addition to these, the Response also contains a reference to the request that it is a
response to; one particularly useful attribute on the request is absoluteURI : The absolute URI to which the request
was made. The Response object has a method which makes the response body available: deliverBody . Using the
attributes of the response object and this method, here’s an example which displays part of the response to a request:

response.py

from pprint import pformat

from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

class BeginningPrinter(Protocol):
def __init__(self, finished):

self.finished = finished
self.remaining = 1024 * 10

def dataReceived(self, bytes):
if self.remaining:

display = bytes[: self.remaining]
print("Some data received:")
print(display)
self.remaining -= len(display)

def connectionLost(self, reason):
print("Finished receiving body:", reason.getErrorMessage())
self.finished.callback(None)

agent = Agent(reactor)
d = agent.request(

b"GET",
b"http://httpbin.com/anything/",
Headers({"User-Agent": ["Twisted Web Client Example"]}),
None,

)
(continues on next page)
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def cbRequest(response):
print("Response version:", response.version)
print("Response code:", response.code)
print("Response phrase:", response.phrase)
print("Response headers:")
print(pformat(list(response.headers.getAllRawHeaders())))
finished = Deferred()
response.deliverBody(BeginningPrinter(finished))
return finished

d.addCallback(cbRequest)

def cbShutdown(ignored):
reactor.stop()

d.addBoth(cbShutdown)

reactor.run()

The BeginningPrinter protocol in this example is passed to Response.deliverBody and the response body is
then delivered to its dataReceived method as it arrives. When the body has been completely delivered, the protocol’s
connectionLostmethod is called. It is important to inspect the Failure passed to connectionLost . If the response
body has been completely received, the failure will wrap a twisted.web.client.ResponseDone exception. This
indicates that it is known that all data has been received. It is also possible for the failure to wrap a twisted.web.
http.PotentialDataLoss exception: this indicates that the server framed the response such that there is no way to
know when the entire response body has been received. Only HTTP/1.0 servers should behave this way. Finally, it is
possible for the exception to be of another type, indicating guaranteed data loss for some reason (a lost connection, a
memory error, etc).

Just as protocols associated with a TCP connection are given a transport, so will be a protocol passed to deliverBody
. Since it makes no sense to write more data to the connection at this stage of the request, though, the transport only
provides IPushProducer . This allows the protocol to control the flow of the response data: a call to the transport’s
pauseProducing method will pause delivery; a later call to resumeProducing will resume it. If it is decided that
the rest of the response body is not desired, stopProducing can be used to stop delivery permanently; after this, the
protocol’s connectionLost method will be called.

An important thing to keep in mind is that the body will only be read from the connection after Response.
deliverBody is called. This also means that the connection will remain open until this is done (and the body read).
So, in general, any response with a body must have that body read using deliverBody . If the application is not
interested in the body, it should issue a HEAD request or use a protocol which immediately calls stopProducing on
its transport.

If the body of the response isn’t going to be consumed incrementally, then readBody can be used to get the body as a
byte-string. This function returns a Deferred that fires with the body after the request has been completed; cancelling
this Deferred will close the connection to the HTTP server immediately.

responseBody.py

from pprint import pformat
(continues on next page)
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from sys import argv

from twisted.internet.task import react
from twisted.web.client import Agent, readBody
from twisted.web.http_headers import Headers

def cbRequest(response):
print("Response version:", response.version)
print("Response code:", response.code)
print("Response phrase:", response.phrase)
print("Response headers:")
print(pformat(list(response.headers.getAllRawHeaders())))
d = readBody(response)
d.addCallback(cbBody)
return d

def cbBody(body):
print("Response body:")
print(body)

def main(reactor, url=b"http://httpbin.org/get"):
agent = Agent(reactor)
d = agent.request(

b"GET", url, Headers({"User-Agent": ["Twisted Web Client Example"]}), None
)
d.addCallback(cbRequest)
return d

react(main, argv[1:])

Customizing your HTTPS Configuration

Everything you’ve read so far applies whether the scheme of the request URI is HTTP or HTTPS .

Since version 15.0.0, Twisted’s Agent HTTP client will validate https URLs against your platform’s trust store by
default.

Note: If you’re using an earlier version, please upgrade, as this is a critical security feature!

Note: Only Agent, and things that use it, validates HTTPS. Do not use getPage to retrieve HTTPS URLs; although
we have not yet removed all the examples that use it, we discourage its use.

You should pip install twisted[tls] in order to get all the dependencies necessary to do TLS properly. The
installation instructions gives more detail on optional dependencies and how to install them which may be of interest.
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For some uses, you may need to customize Agent’s use of HTTPS; for example, to provide a client certificate, or to use
a custom certificate authority for an internal network.

Here, we’re just going to show you how to inject the relevant TLS configuration into an Agent, so we’ll use the simplest
possible example, rather than a more useful but complex one.

Agent’s constructor takes an optional second argument, which allows you to customize its behavior with respect to
HTTPS. The object passed here must provide the twisted.web.iweb.IPolicyForHTTPS interface.

Using the very helpful badssl.com web API, we will construct a request that fails to validate, because the certificate
has the wrong hostname in it. The following Python program should produce a verification error when run as python
example.py https://wrong.host.badssl.com/.

import sys

from twisted.internet.task import react

from twisted.web.client import Agent, ResponseFailed

@react
def main(reactor):

agent = Agent(reactor)
requested = agent.request(b"GET", sys.argv[1].encode("ascii"))
def gotResponse(response):

print(response.code)
def noResponse(failure):

failure.trap(ResponseFailed)
print(failure.value.reasons[0].getTraceback())

return requested.addCallbacks(gotResponse, noResponse)

The verification error you see when running the above program is due to the mismatch between “wrong.host.badssl.
com”, the expected hostname derived from the URL, and “badssl.com”, the hostname contained in the certificate
presented by the server. In our pretend scenario, we want to construct an Agent that validates HTTPS certificates
normally, _except_ for this one host. For "wrong.host.badssl.com", we wish to supply the correct hostname to
check the certificate against manually, to work around this problem. In order to do that, we will supply our own policy
that creates a different TLS configuration depending on the hostname, like so:

import sys

from zope.interface import implementer

from twisted.internet.task import react
from twisted.internet.ssl import optionsForClientTLS

from twisted.web.iweb import IPolicyForHTTPS
from twisted.web.client import Agent, ResponseFailed, BrowserLikePolicyForHTTPS

@implementer(IPolicyForHTTPS)
class OneHostnameWorkaroundPolicy(object):

def __init__(self):
self._normalPolicy = BrowserLikePolicyForHTTPS()

def creatorForNetloc(self, hostname, port):
if hostname == b"wrong.host.badssl.com":

hostname = b"badssl.com"
return self._normalPolicy.creatorForNetloc(hostname, port)

(continues on next page)
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@react
def main(reactor):

agent = Agent(reactor, OneHostnameWorkaroundPolicy())
requested = agent.request(b"GET", sys.argv[1].encode("ascii"))
def gotResponse(response):

print(response.code)
def noResponse(failure):

failure.trap(ResponseFailed)
print(failure.value.reasons[0].getTraceback())

return requested.addCallbacks(gotResponse, noResponse)

Now, invoking python example.py https://wrong.host.badssl.com/ will happily give us a 200 status code;
however, running it with https://expired.badssl.com/ or https://self-signed.badssl.com/ or any of the
other error hostnames should still give an error.

Note: The technique presented above does not ignore the mismatching hostname, but rather, it provides the erroneous
hostname specifically so that the misconfiguration is expected. Twisted does not document any facilities for disabling
verification, since that makes TLS useless; instead, we strongly encourage you to figure out what properties you need
from the connection and verify those.

Using this TLS policy mechanism, you can customize Agent to use any feature of TLS that Twisted has support for, in-
cluding the examples given above; client certificates, alternate trust roots, and so on. For a more detailed explanation of
what options exist for client TLS configuration in Twisted, check out the documentation for the optionsForClientTLS
API and the Using SSL in Twisted chapter of this documentation.

HTTP Persistent Connection

HTTP persistent connections use the same TCP connection to send and receive multiple HTTP requests/responses.
This reduces latency and TCP connection establishment overhead.

The constructor of twisted.web.client.Agent takes an optional parameter pool, which should be an instance of
HTTPConnectionPool , which will be used to manage the connections. If the pool is created with the parameter
persistent set to True (the default), it will not close connections when the request is done, and instead hold them in
its cache to be re-used.

Here’s an example which sends requests over a persistent connection:

from twisted.internet import reactor
from twisted.internet.defer import Deferred, DeferredList
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent, HTTPConnectionPool

class IgnoreBody(Protocol):
def __init__(self, deferred):

self.deferred = deferred

def dataReceived(self, bytes):
pass

def connectionLost(self, reason):
(continues on next page)
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self.deferred.callback(None)

def cbRequest(response):
print('Response code:', response.code)
finished = Deferred()
response.deliverBody(IgnoreBody(finished))
return finished

pool = HTTPConnectionPool(reactor)
agent = Agent(reactor, pool=pool)

def requestGet(url):
d = agent.request('GET', url)
d.addCallback(cbRequest)
return d

# Two requests to the same host:
d = requestGet('http://localhost:8080/foo').addCallback(

lambda ign: requestGet("http://localhost:8080/bar"))
def cbShutdown(ignored):

reactor.stop()
d.addCallback(cbShutdown)

reactor.run()

Here, the two requests are to the same host, one after the each other. In most cases, the same connection will be used
for the second request, instead of two different connections when using a non-persistent pool.

Multiple Connections to the Same Server

twisted.web.client.HTTPConnectionPool instances have an attribute called maxPersistentPerHost which
limits the number of cached persistent connections to the same server. The default value is 2. This is effective only
when the persistent option is True. You can change the value like bellow:

from twisted.web.client import HTTPConnectionPool

pool = HTTPConnectionPool(reactor, persistent=True)
pool.maxPersistentPerHost = 1

With the default value of 2, the pool keeps around two connections to the same host at most. Eventually
the cached persistent connections will be closed, by default after 240 seconds; you can change this timeout
value with the cachedConnectionTimeout attribute of the pool. To force all connections to close use the
closeCachedConnections method.
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Automatic Retries

If a request fails without getting a response, and the request is something that hopefully can be retried without having
any side-effects (e.g. a request with method GET), it will be retried automatically when sending a request over a
previously-cached persistent connection. You can disable this behavior by setting retryAutomatically to False .
Note that each request will only be retried once.

Following redirects

By itself, Agent doesn’t follow HTTP redirects (responses with 301, 302, 303, 307 status codes and a location
header field). You need to use the twisted.web.client.RedirectAgent class to do so. It implements a rather
strict behavior of the RFC, meaning it will redirect 301 and 302 as 307, only on GET and HEAD requests.

The following example shows how to have a redirect-enabled agent.

from twisted.python.log import err
from twisted.web.client import Agent, RedirectAgent
from twisted.internet import reactor

def display(response):
print("Received response")
print(response)

def main():
agent = RedirectAgent(Agent(reactor))
d = agent.request("GET", "http://example.com/")
d.addCallbacks(display, err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

In contrast, twisted.web.client.BrowserLikeRedirectAgent implements more lenient behaviour that closely
emulates what web browsers do; in other words 301 and 302 POST redirects are treated like 303, meaning the method
is changed to GET before making the redirect request.

As mentioned previously, Response contains a reference to both the request that it is a response to, and the previously
received response , accessible by previousResponse . In most cases there will not be a previous response, but in
the case of RedirectAgent the response history can be obtained by following the previous responses from response
to response.

Using a HTTP proxy

To be able to use HTTP proxies with an agent, you can use the twisted.web.client.ProxyAgent class. It supports
the same interface as Agent, but takes the endpoint of the proxy as initializer argument. This is specifically intended
for talking to servers that implement the proxying variation of the HTTP protocol; for other types of proxies you will
want Agent.usingEndpointFactory (see documentation below).

Here’s an example demonstrating the use of an HTTP proxy running on localhost:8000.

from twisted.python.log import err
from twisted.web.client import ProxyAgent

(continues on next page)
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from twisted.internet import reactor
from twisted.internet.endpoints import TCP4ClientEndpoint

def display(response):
print("Received response")
print(response)

def main():
endpoint = TCP4ClientEndpoint(reactor, "localhost", 8000)
agent = ProxyAgent(endpoint)
d = agent.request("GET", "https://example.com/")
d.addCallbacks(display, err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

Please refer to the endpoints documentation for more information about how they work and the twisted.internet.
endpoints API documentation to learn what other kinds of endpoints exist.

Handling HTTP cookies

An existing agent instance can be wrapped with twisted.web.client.CookieAgent to automatically store, send
and track HTTP cookies. A CookieJar instance, from the Python standard library module cookielib , is used to store
the cookie information. An example of using CookieAgent to perform a request and display the collected cookies
might look like this:

cookies.py

from twisted.internet import reactor
from twisted.python import compat, log
from twisted.web.client import Agent, CookieAgent

def displayCookies(response, cookieJar):
print("Received response")
print(response)
print("Cookies:", len(cookieJar))
for cookie in cookieJar:

print(cookie)

def main():
cookieJar = compat.cookielib.CookieJar()
agent = CookieAgent(Agent(reactor), cookieJar)

d = agent.request(b"GET", b"http://httpbin.org/cookies/set?some=data")
d.addCallback(displayCookies, cookieJar)
d.addErrback(log.err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

(continues on next page)
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if __name__ == "__main__":
main()

Automatic Content Encoding Negotiation

twisted.web.client.ContentDecoderAgent adds support for sending Accept-Encoding request headers and in-
terpreting Content-Encoding response headers. These headers allow the server to encode the response body somehow,
typically with some compression scheme to save on transfer costs. ContentDecoderAgent provides this functionality
as a wrapper around an existing agent instance. Together with one or more decoder objects (such as twisted.web.
client.GzipDecoder ), this wrapper automatically negotiates an encoding to use and decodes the response body
accordingly. To application code using such an agent, there is no visible difference in the data delivered.

gzipdecoder.py

from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Protocol
from twisted.python import log
from twisted.web.client import Agent, ContentDecoderAgent, GzipDecoder

class BeginningPrinter(Protocol):
def __init__(self, finished):

self.finished = finished
self.remaining = 1024 * 10

def dataReceived(self, bytes):
if self.remaining:

display = bytes[: self.remaining]
print("Some data received:")
print(display)
self.remaining -= len(display)

def connectionLost(self, reason):
print("Finished receiving body:", reason.type, reason.value)
self.finished.callback(None)

def printBody(response):
finished = Deferred()
response.deliverBody(BeginningPrinter(finished))
return finished

def main():
agent = ContentDecoderAgent(Agent(reactor), [(b"gzip", GzipDecoder)])

d = agent.request(b"GET", b"http://httpbin.org/gzip")
d.addCallback(printBody)

(continues on next page)

7.1. Developer Guides 459



Twisted Documentation, Release 23.8.0

(continued from previous page)

d.addErrback(log.err)
d.addCallback(lambda ignored: reactor.stop())
reactor.run()

if __name__ == "__main__":
main()

Implementing support for new content encodings is as simple as writing a new class like GzipDecoder that can decode a
response using the new encoding. As there are not many content encodings in widespread use, gzip is the only encoding
supported by Twisted itself.

Connecting To Non-standard Destinations

Typically you want your HTTP client to open a TCP connection directly to the web server. Sometimes however
it’s useful to be able to connect some other way, e.g. making an HTTP request over a SOCKS proxy connection
or connecting to a server listening on a UNIX socket. For this reason, there is an alternate constructor called Agent.
usingEndpointFactory that takes an endpointFactory argument. This argument must provide the twisted.web.
iweb.IAgentEndpointFactory interface. Note that when talking to a HTTP proxy, i.e. a server that implements the
proxying-specific variant of HTTP you should use ProxyAgent - see documentation above.

endpointconstructor.py

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

"""
Send a HTTP request to Docker over a Unix socket.

Will probably need to be run as root.

Usage:
$ sudo python endpointconstructor.py [<docker API path>]

"""

from sys import argv

from zope.interface import implementer

from twisted.internet.endpoints import UNIXClientEndpoint
from twisted.internet.task import react
from twisted.web.client import Agent, readBody
from twisted.web.iweb import IAgentEndpointFactory

@implementer(IAgentEndpointFactory)
class DockerEndpointFactory:

"""
Connect to Docker's Unix socket.
"""

(continues on next page)
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def __init__(self, reactor):
self.reactor = reactor

def endpointForURI(self, uri):
return UNIXClientEndpoint(self.reactor, b"/var/run/docker.sock")

def main(reactor, path=b"/containers/json?all=1"):
agent = Agent.usingEndpointFactory(reactor, DockerEndpointFactory(reactor))
d = agent.request(b"GET", b"unix://localhost" + path)
d.addCallback(readBody)
d.addCallback(print)
return d

react(main, argv[1:])

Conclusion

You should now understand the basics of the Twisted Web HTTP client. In particular, you should understand:

• How to issue requests with arbitrary methods, headers, and bodies.

• How to access the response version, code, phrase, headers, and body.

• How to store, send, and track cookies.

• How to control the streaming of the response body.

• How to enable the HTTP persistent connection, and control the number of connections.

7.1.9 Glossary

This glossary is very incomplete. Contributions are welcome.

resource

An object accessible via HTTP at one or more URIs. In Twisted Web, a resource is represented by an
object which provides twisted.web.resource.IResource and most often is a subclass of twisted.
web.resource.Resource . For example, here is a resource which represents a simple HTML greeting.

from twisted.web.resource import Resource

class Greeting(Resource):
def render_GET(self, request):

return "

• Introduction

– Overview of Twisted Web

• Web Applications

– Using twisted.web

– Web application development

7.1. Developer Guides 461



Twisted Documentation, Release 23.8.0

– HTML Templating with twisted.web.template

– XML-RPC and SOAP

– Twisted Web in 60 Seconds: A series of short, complete examples using twisted.web

– Quixote resource templates

• Other

– Using the Twisted Web Client

• Appendix

– Glossary

7.2 Examples

7.2.1 twisted.web.client

• httpclient.py - use twisted.web.client.Agent to download a web page.

• (deprecated) getpage.py - use twisted.web.client.getPage to download a web page.

• (deprecated) dlpage.py - add callbacks to twisted.web.client.downloadPage to display errors that occur
when downloading a web page

7.2.2 XML-RPC

• xmlrpcserver.pyXML-RPC server with several methods, including echoing, faulting, returning deferreds and
failed deferreds

• xmlrpcclient.py - use twisted.web.xmlrpc.Proxy to call remote XML-RPC methods

• xmlrpc-debug.py - use xmlrpc.Proxy’s queryFactory to debug raw XML-RPC traffic

• advogato.py - use twisted.web.xmlrpc to post a diary entry to advogato.org; requires an advogato account

7.2.3 Virtual hosts and proxies

• proxy.py - use twisted.web.proxy.Proxy to make the simplest proxy

• logging-proxy.py - example of subclassing the core classes of twisted.web.proxy to log requests through
a proxy

• reverse-proxy.py - use twisted.web.proxy.ReverseProxyResource to make any HTTP request to the
proxy port get applied to a specified website

• rootscript.py - example use of twisted.web.vhost.NameVirtualHost

• web.py - an example of both using the processors attribute to set how certain file types are treated and using
twisted.web.vhost.VHostMonsterResource to reverse proxy
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7.2.4 .rpys and ResourceTemplate

• hello.rpy - use twisted.web.static to create a static resource to serve

• fortune.rpy - create a resource that returns the output of a process run on the server

• report.rpy - display various properties of a resource, including path, host, and port

• users.rpy - use twisted.web.distrib to publish user directories as for a “community web site”

• simple.rtl - example use of twisted.web.resource.ResourceTemplate

7.2.5 Miscellaneous

• webguard.py - pairing twisted.web with twisted.cred to guard resources against unauthenticated users

• silly-web.py - bare-bones distributed web setup with a master and slave using twisted.web.distrib and
twisted.spread.pb

• soap.py - use twisted.web.soap to publish SOAP methods

• Developer guides: documentation on using Twisted Web to develop your own applications

• Examples: short code examples using Twisted Web
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EIGHT

TWISTED WORDS (IRC AND XMPP)

8.1 Developer Guides

8.1.1 Overview of Twisted IM

Twisted IM (Instance Messenger) is a multi-protocol chat framework, based on the Twisted framework we’ve all come
to know and love. It’s fairly simple and extensible in two directions - it’s pretty easy to add new protocols, and it’s also
quite easy to add new front-ends.

Code flow

AccountManager

The control flow starts at the relevant subclass of baseaccount.AccountManager . The AccountManager is respon-
sible for, well, managing accounts - remembering what accounts are available, their settings, adding and removal of
accounts, and making accounts log on at startup.

This would be a good place to start your interface, load a list of accounts from disk and tell them to login. Most of the
method names in AccountManager are pretty self-explanatory, and your subclass can override whatever it wants, but
you need to override __init__ . Something like this:

...
def __init__(self):

self.chatui = ... # Your subclass of basechat.ChatUI
self.accounts = ... # Load account list
for a in self.accounts:

a.logOn(self.chatui)

ChatUI

Account objects talk to the user via a subclass of basechat.ChatUI . This class keeps track of all the various conver-
sations that are currently active, so that when an account receives and incoming message, it can put that message in its
correct context.

How much of this class you need to override depends on what you need to do. You will need to override
getConversation (a one-on-one conversation, like an IRC DCC chat) and getGroupConversation (a multiple
user conversation, like an IRC channel). You might want to override getGroup and getPerson .

The main problem with the default versions of the above routines is that they take a parameter, Class , which defaults
to an abstract implementation of that class - for example, getConversation has a Class parameter that defaults to
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basechat.Conversation which raises a lot of NotImplementedError s. In your subclass, override the method
with a new method whose Class parameter defaults to your own implementation of Conversation , that simply calls
the parent class’ implementation.

Conversation and GroupConversation

These classes are where your interface meets the chat protocol. Chat protocols get a message, find the appropriate
Conversation or GroupConversation object, and call its methods when various interesting things happen.

Override whatever methods you want to get the information you want to display. You must override the hide and show
methods, however - they are called frequently and the default implementation raises NotImplementedError .

Accounts

An account is an instance of a subclass of basesupport.AbstractAccount . For more details and sample code, see
the various *support files in twisted.words.im .

8.1.2 Using the Twisted IRC Client

A complete howto would explain how to actually use the IRC client. However, until that howto is written, here is a
howto that explains how to do text formatting for IRC.

Text formatting

The text formatting support in Twisted Words is based on the widely used mIRC format which supports bold, underline,
reverse video and colored text; nesting these attributes is also supported.

Creating formatted text

The API used for creating formatted text in the IRC client is almost the same as that used by Twisted insults .
Text attributes are built up by accessing and indexing attributes on a special module-level attribute, twisted.words.
protocols.irc.attributes , multiple values can be passed when indexing attributes to mix text with nested text
attributes. The resulting object can then be serialized to formatted text, with twisted.words.protocols.irc.
assembleFormattedText() , suitable for use with any of the IRC client messaging functions.

Bold, underline and reverse video attributes

Bold, underline and reverse video attributes are just flags and are the simplest text attributes to apply. They are ac-
cessed by the names bold , underline and reverseVideo , respectively, on twisted.words.protocols.irc.
attributes . For example, messaging someone the bold and underlined text “Hello world!”:

from twisted.words.protocols.irc import assembleFormattedText, attributes as A

# Message "someone" the bold and underlined text "Hello world!"
anIRCClient.msg('someone', assembleFormattedText(

A.bold[
A.underline['Hello world!']])
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The “normal” attribute

At first glance a text attribute called “normal” that does not apply any unusual text attributes may not seem that special
but it can be quite useful, both as a container:

A.normal[
'This is normal text. ',
A.bold['This is bold text! '],
'Back to normal',
A.underline['This is underlined text!']]

And also as a way to temporarily disable text attributes without having to close and respecify all text attributes for a
brief piece of text:

A.normal[
A.reverseVideo['This is reverse, ', A.normal['except for this'], ', text']]

It is worth noting that assembled text will always begin with the control code to disable other attributes for the sake of
correctness.

Color attributes

Since colors for both the foreground and background can be specified with IRC text formatting another level of attribute
access is introduced. Firstly the foreground or background, through the fg and bg attribute names respectively, is
accessed and then the color name is accessed. The available color attribute names are:

• white

• black

• blue

• green

• lightRed

• red

• magenta

• orange

• yellow

• lightGreen

• cyan

• lightCyan

• lightBlue

• lightMagenta

• gray

• lightGray

It is possible to nest foreground and background colors to alter both for a single piece of text. For example to display
black on green text:
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A.fg.black[A.bg.green['Like a terminal!']]

Parsing formatted text

Most IRC clients format text so it is logical that you may want to parse this formatted text. twisted.words.
protocols.irc.parseFormattedText() will parse text into structured text attributes. It is worth noting that while
feeding the output of parseFormattedText back to assembleFormattedText will produce the same final result,
the actual structure of the parsed text will differ. Color codes are mapped from 0 to 15, codes greater than 15 will begin
to wrap around.

Removing formatting

In some cases, such as an automaton handling user input from IRC, it is desirable to have all formatting stripped from
text. This can be accomplished with twisted.words.protocols.irc.stripFormatting() .

8.1.3 Communicating With IRC Clients

Communicating with clients is the whole point of an IRC server, so you want to make sure you’re doing it properly.
Today, we’ll be looking at receiving messages from a client and sending messages to the client.

Representing Clients in Twisted

Users in Twisted IRC are represented as subclasses of the IRC class. This works as the protocol for your Factory
class. It will also give you IRC features (like automatically parsing incoming lines) without you having to implement
them yourself. The rest of this guide assumes this setup.

Sending Messages

Messages are sent to users using the user object’s sendMessage method.

Sending Basic Messages

The basic syntax for sending messages to users is as follows:

user.sendCommand("COMMAND", (param1, param2), server.name)

The prefix keyword argument is optional, and it may be omitted to send a message without a prefix (for example, the
ERROR command). The command is whatever command you plan to send, e.g. “PRIVMSG”, “MODE”, etc. All
arguments following the command are the parameters you want to send for the command. If the last argument needs
to be prefixed with a colon (because it has spaces in it, e.g. a PRIVMSG message), you must add the colon to the
beginning of the parameter yourself. For example: .. code-block:: python

user.sendCommand(“PRIVMSG”, (user.nickname, “:{}”.format(message)), sendingUser.hostmask)
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Sending Messages with Tags

Twisted also allows sending message tags as specified in IRCv3.

Let’s say, for example, that your server has a feature to play back a little bit of previous channel content when someone
joins a channel. You want a way to tell people when this message occurred. The best way to provide this information
is through the server-time specification.

Let’s say you’re storing past messages in a channel object in some structure like this:

channel.pastMessages = [
("I sent some text!", "author!ident@host", datetime object representing the when the␣

→˓message was sent),
("I did, too!", "someone-else!ident@host", another datetime object)

]

Your actual implementation may vary. I went with something simple here. The times of the messages would be
generated using something like datetime.utcnow() when the message was received.

Tags are passed as a list of tuples. If you’re sending a number of tags, you may have an existing tag dictionary. You
can simply add to it (assuming message is the loop variable for channel.pastMessages above):

sendingTags["server-time"] = "{}Z".format(message[2].isoformat()[:-3])

This will generate the required time format and add it to the tag dictionary. The last three characters that we remove
are the microseconds; removing the last three digits changes the precision to milliseconds.

Once your tags are collected, you can send the message. The tag dictionary is passed using the tags argument (in the
same loop as above):

user.sendCommand("PRIVMSG", (user.nickname, message[0]), message[1], sendingTags)

Receiving Messages

Twisted Words will handle receiving messages and parsing lines into tokens. The parsed messages are passed into your
command through the user’s handleCommand method.

Handling Commands

The default IRC handleCommand method calls the irc_COMMAND method when it receives the command COMMAND,
and it calls irc_unknown if the method for the command received isn’t defined.

from twisted.words.protocols import irc

class IRCUser(irc.IRC):
# possibly other definitions here
def irc_unknown(self, prefix, command, params):

self.sendCommand(irc.ERR_UNKNOWNCOMMAND, (command, ":Unknown command"), server.
→˓name)

def irc_PRIVMSG(self, prefix, params):
# do some stuff to handle PRIVMSG for your server's setup

# lots of other command definitions
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If you have a server setup that doesn’t allow you to do this (e.g. a modular server program), you may, of course, override
the handleCommand function to route commands to your own handlers.

Receiving Messages with Tags

This has not yet been implemented.

• Twisted IM

• IRC

– Using the Twisted Words IRC client

– IRC Servers: Communicating With Clients

8.2 Examples

• ircLogBot.py - connects to an IRC server and logs all messages

• minchat.py - log bot using twisted.im

• pb_client.py

• xmpp_client.py

• cursesclient.py - trivial curses-based IRC client

• Developer guides: documentation on using Twisted Words to develop your own applications

• Examples: short code examples using Twisted Words
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API REFERENCE

This file will be overwritten by the pydoctor build triggered at the end of the Sphinx build.

It’s a hack to be able to reference the API index page from inside Sphinx and have it as part of the TOC.
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CHAPTER

TEN

DEVELOPMENT OF TWISTED

This documentation is for people who work on the Twisted codebase itself, rather than for people who want to use
Twisted in their projects.

10.1 Twisted Coding Standard

10.1.1 Naming

Try to choose names which are both easy to remember and meaningful. Some silliness is OK at the module naming
level (see twisted.spread . . . ) but when choosing class names, be as precise as possible.

Try to avoid terms that may have existing definitions or uses. This rule is often broken, since it is incredibly difficult, as
most normal words have already been taken by some other software. As an example, using the term “reactor” elsewhere
in Twisted for something that is not an implementor of IReactor adds additional meaning to the word and will cause
confusion.

More importantly, try to avoid meaningless words. In particular, words like “handler”, “processor”, “engine”, “man-
ager”, and “component” don’t really indicate what something does, only that it does something.

Use American spelling in both names and docstrings. For compound technical terms such as ‘filesystem’, use a non-
hyphenated spelling in both docstrings and code in order to avoid unnecessary capitalization.

10.1.2 Testing

Overview

Twisted development should always be test-driven . The complete test suite in the head of the Git trunk is required to be
passing on supported platforms at all times. Regressions in the test suite are addressed by reverting whatever revisions
introduced them.

Test Suite

Note: The test standard contains more in-depth information on this topic. What follows is intended to be a synopsis
of the most important points.

The Twisted test suite is spread across many subpackages of the twisted package. Many older tests are in twisted.
test . Others can be found at places such as twisted.web.test (for twisted.web tests) or twisted.internet.
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test (for twisted.internet tests). The latter arrangement, twisted.somepackage.test, is preferred for new
tests except when a test module already exists in twisted.test .

Parts of the Twisted test suite may serve as good examples of how to write tests for Twisted or for Twisted-based libraries
(newer parts of the test suite are generally better examples than older parts - check when the code you are looking at
was written before you use it as an example of what you should write). The names of test modules must begin with
test_ so that they are automatically discoverable by test runners such as Trial. Twisted’s unit tests are written using
twisted.trial, an xUnit library which has been extensively customized for use in testing Twisted and Twisted-based
libraries.

Implementation (i.e., non-test) source files should begin with a test-case-name tag which gives the name of any test
modules or packages which exercise them. This lets tools discover a subset of the entire test suite which they can run
first to find tests which might be broken by a particular change.

All unit test methods should have docstrings specifying at a high level the intent of the test. That is, a description that
users of the method would understand.

If you modify, or write a new, HOWTO, please read the documentation writing standard.

10.1.3 Copyright Header

Whenever a new file is added to the repository, add the following license header at the top of the file:

# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

When you update existing files, if there is no copyright header, add one.

10.1.4 Whitespace

Code must be formatted according to the The Black Code Style. This entire source tree can be reformatted by running:

tox -e lint

Only changed files can be reformatted by running:

pipx run pre-commit run

10.1.5 Modules

Modules must be named in all lower-case, preferably short, single words. If a module name contains multiple words,
they may be separated by underscores or not separated at all.

Modules must have a copyright message, a docstring, and a reference to a test module that contains the bulk of its tests.
New modules must have the absolute_import, division, and optionally the print_function imports from the
__future__ module.

Use this template:

new_module_template.py

# -*- test-case-name: <test module> -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.

(continues on next page)
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(continued from previous page)

"""
Docstring goes here.
"""

__all__ = []

In most cases, modules should contain more than one class, function, or method; if a module contains only one object,
consider refactoring to include more related functionality in that module.

Depending on the situation, it is acceptable to have imports that look like this:

from twisted.internet.defer import Deferred

or like this:

from twisted.internet import defer

That is, modules should import modules or classes and functions, but not packages.

Wildcard import syntax may not be used by code in Twisted. These imports lead to code which is difficult to read and
maintain by introducing complexity which strains human readers and automated tools alike. If you find yourself with
many imports to make from a single module and wish to save typing, consider importing the module itself, rather than
its attributes.

Relative imports (or sibling imports) may not be used by code in Twisted. Relative imports allow certain circularities to
be introduced which can ultimately lead to unimportable modules or duplicate instances of a single module. Relative
imports also make the task of refactoring more difficult.

In case of local names conflicts due to import, use the as syntax, for example:

from twisted.trial import util as trial_util

The encoding must always be UTF-8, so no coding cookie is necessary.

10.1.6 Packages

Package names follow the same conventions as module names. All modules must be encapsulated in some package.
Nested packages may be used to further organize related modules.

__init__.py must never contain anything other than a docstring and (optionally) an __all__ attribute. Packages
are not modules and should be treated differently. This rule may be broken to preserve backwards compatibility if a
module is made into a nested package as part of a refactoring.

If you wish to promote code from a module to a package, for example, to break a large module out into several smaller
files, the accepted way to do this is to promote from within the module. For example,

# parent/
# --- __init__.py ---
import child

# --- child.py ---
import parent
class Foo:

(continues on next page)
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(continued from previous page)

pass
parent.Foo = Foo

Packages must not depend circularly upon each other. To simplify maintaining this state, packages must also not import
each other circularly. While this applies to all packages within Twisted, one twisted.python deserves particular
attention, as it may not depend on any other Twisted package.

10.1.7 Strings

All strings in Twisted which are not interfacing directly with Python (e.g. sys.path contents, module names, and
anything which returns str on both Python 2 and 3) should be marked explicitly as “bytestrings” or “text/Unicode
strings”. This is done by using the b (for bytestrings) or u (for Unicode strings) prefixes when using string literals.
String literals not marked with this are “native/bare strings”, and have a different meaning on Python 2 (where a bare
string is a bytestring) and Python 3 (where a bare string is a Unicode string).

u"I am text, also known as a Unicode string!"
b"I am a bytestring!"
"I am a native bare string, and therefore may be either!"

Bytestrings and text must not be implicitly concatenated, as this causes an invisible ASCII encode/decode on Python
2, and causes an exception on Python 3.

Use + to combine bytestrings, not string formatting (either “percent formatting” or .format()).

HTTPVersion = b"1.1"
transport.write(b"HTTP/" + HTTPVersion)

Utilities are available in twisted.python.compat to paper over some use cases where other Python code (especially
the standard library) expects a “native string”, or provides a native string where a bytestring is actually required (namely
twisted.python.compat.nativeString and twisted.python.compat.networkString)

String Formatting Operations

When using “percent formatting”, you should always use a tuple if you’re using non-mapping values. This is to avoid
unexpected behavior when you think you’re passing in a single value, but the value is unexpectedly a tuple, e.g.:

def foo(x):
return "Hi %s\n" % x

The example shows you can pass in foo("foo") or foo(3) fine, but if you pass in foo((1,2)), it raises a TypeError.
You should use this instead:

def foo(x):
return "Hi %s\n" % (x,)
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10.1.8 Docstrings

Docstrings should always be used to describe the purpose of methods, functions, classes, and modules. Moreover, all
methods, functions, classes, and modules must have docstrings. In addition to documenting the purpose of the object,
the docstring must document all of parameters or attributes of the object.

When documenting a class with one or more attributes which are initialized directly from the value of a __init__
argument by the same name (or differing only in that the attribute is private), it is sufficient to document the __init__
parameter (in the __init__ docstring). For example:

class Ninja(object):
"""
@ivar speed: See L{__init__}
@ivar _stealth: See C{stealth} parameter of L{__init__}
"""
def __init__(self, speed, stealth):

"""
@param speed: The maximum rate at which this ninja can travel (m/s)
@type speed: L{int} or L{float}

@param stealth: This ninja's ability to avoid being noticed in its
activities, as a percentage modifier.

@type: L{int}
"""
self.speed = speed
self._stealth = stealth

It is not necessary to have a second copy of the documentation for the attribute in the class docstring, only a reference
to the method (typically __init__ which does document the attribute’s meaning). Of course, if there is any inter-
esting additional behavior about the attribute that does not apply to the __init__ argument, that behavior should be
documented in the class docstring.

Docstrings are never to be used to provide semantic information about an object; this rule may be violated if the code
in question is to be used in a system where this is a requirement (such as Zope).

Docstrings should be indented to the level of the code they are documenting.

Docstrings must be triple-quoted, with opening and the closing of the docstrings being on a line by themselves. For
example:

class Ninja(object):
"""
A L{Ninja} is a warrior specializing in various unorthodox arts of war.
"""
def attack(self, someone):

"""
Attack C{someone} with this L{Ninja}'s shuriken.
"""

Docstrings are written in epytext format; more documentation is available in the Epytext Markup Language documen-
tation.

When you are referring to a type, you should use L{}, whether it’s in the stdlib , in Twisted or somewhere else.

NoneType is an exception and we are referring it just as L{None}.

Pydoctor, the software we use to generate the documentation, links to the Python standard library if you use L{} with
standard Python types (e.g. L{str}).
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For the API doc C{something} means “I made up a new word, and I want it to be monospaced, like it’s an identifier in
code and not an English noun”

L{something} means “I am referring to the previously-defined concept/package/module/class/function/method/attribute
identified as something”

Additionally, to accommodate emacs users, single quotes of the type of the docstring’s triple-quote should be escaped.
This will prevent font-lock from accidentally fontifying large portions of the file as a string.

For example,

def foo2bar(f):
"""
Convert L{foo}s to L{bar}s.

A function that should be used when you have a C{foo} but you want a
C{bar}; note that this is a non-destructive operation. If this method
can't convert the C{foo} to a C{bar} it will raise a L{FooException}.

@param f: C{foo}
@type f: L{str}

For example::

import wombat
def sample(something):

f = something.getFoo()
f.doFooThing()
b = wombat.foo2bar(f)
b.doBarThing()
return b

"""
# Optionally, actual code can go here.

10.1.9 Comments

Start by reading the PEP8 Comments section. Ignore Documentation Strings section from PEP8 as Twisted uses a
different docstring standard.

FIXME/TODO comments must have an associated ticket and contain a reference to it in the form of a full URL to the
ticket. A brief amount of text should provide info about why the FIXME was added. It does not have to be the full
ticket description, just enough to help readers decide if their next step should be reading the ticket or continue reading
the code.

# FIXME: https://twistedmatrix.com/trac/ticket/1235
# Threads that have died before calling stop() are not joined.
for thread in threads:

thread.join()
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10.1.10 Versioning

The API documentation should be marked up with version information. When a new API is added the class should be
marked with the epytext @since: field to include the version number when the change was introduced. The placeholder
string Twisted NEXT will be replaced at release time with the appropriate version number. For example:

def bar2baz():
"""
Bazify a bar.

@since: Twisted NEXT
"""

The @since tag cannot be applied to arguments. When adding a new argument, indicate the version of introduction
on a separate line. For example, if the swizzle keyword argument is added after the release of the above function in
Twisted 18.5.0:

def bar2baz(swizzle=False):
"""
Bazify a bar, with optional swizzling.

@param swizzle: Activate swizzling.

Present Since Twisted NEXT

@type swizzle: L{bool}

@since: Twisted 18.5.0
"""

10.1.11 Scripts

For each “script” , that is, a program you expect a Twisted user to run from the command-line, the following things
must be done:

1. Write a module in twisted.scripts which contains a callable global named run. This will be called by the
command line part with no arguments (it will usually read sys.argv ). Feel free to write more functions or
classes in this module, if you feel they are useful to others.

2. Create a file which contains a shebang line for Python. This file should be placed in the bin/ directory; for
example, bin/twistd.

#!/usr/bin/env python

To make sure that the script is portable across different UNIX like operating systems we use the /usr/bin/env com-
mand. The env command allows you to run a program in a modified environment. That way you don’t have to search
for a program via the PATH environment variable. This makes the script more portable but note that it is not a foolproof
method. Always make sure that /usr/bin/env exists or use a softlink/symbolic link to point it to the correct path.
Python’s distutils will rewrite the shebang line upon installation so this policy only covers the source files in version
control.

1. For core scripts, add an entry point to [project.scripts] in pyproject.toml:
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[project.scripts]
...
twistd = "twisted.scripts.twistd:run"
yourmodule = "twisted.scripts.yourmodule:run"

2. And end with:

from twisted.scripts.yourmodule import run
run()

3. Write a manpage and add it to the man folder of a subproject’s doc folder. On Debian systems you can find a
skeleton example of a manpage in /usr/share/doc/man-db/examples/manpage.example.

This will ensure that your program will have a proper console_scripts entry point, which pyproject.toml will
use to generate a console script which will work correctly for users of Git, Windows releases and Debian packages.

10.1.12 Examples

For example scripts you expect a Twisted user to run from the command-line, add this Python shebang line at the top
of the file:

#!/usr/bin/env python

10.1.13 Standard Library Extension Modules

When using the extension version of a module for which there is also a Python version, place the import statement
inside a try/except block, and import the Python version if the import fails. This allows code to work on platforms
where the extension version is not available. For example:

try:
import cPickle as pickle

except ImportError:
import pickle

Use the “as” syntax of the import statement as well, to set the name of the extension module to the name of the Python
module.

Some modules don’t exist across all supported Python versions. For example, Python 2.3’s setsmodule was deprecated
in Python 2.6 in favor of the set and frozenset builtins. twisted.python.compat would be the place to add set
and frozenset implementations that work across Python versions.

10.1.14 Classes

Classes are to be named in mixed case, with the first letter capitalized; each word separated by having its first letter
capitalized. Acronyms should be capitalized in their entirety. Class names should not be prefixed with the name of the
module they are in. Examples of classes meeting this criteria:

• twisted.spread.pb.ViewPoint

• twisted.parser.patterns.Pattern

Examples of classes not meeting this criteria:

• event.EventHandler
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• main.MainGadget

An effort should be made to prevent class names from clashing with each other between modules, to reduce the need
for qualification when importing. For example, a Service subclass for Forums might be named twisted.forum.
service.ForumService, and a Service subclass for Words might be twisted.words.service.WordsService.
Since neither of these modules are volatile (see above) the classes may be imported directly into the user’s namespace
and not cause confusion.

New-style Classes

Classes and instances in Python come in two flavors: old-style or classic, and new-style. Up to Python 2.1, old-style
classes were the only flavour available to the user, new-style classes were introduced in Python 2.2 to unify classes and
types. All classes added to Twisted must be written as new-style classes. If x is an instance of a new-style class, then
type(x) is the same as x.__class__.

10.1.15 Methods

Methods should be in mixed case, with the first letter lower case, each word separated by having its first letter capitalized.
For example, someMethodName, method.

Sometimes, a class will dispatch to a specialized sort of method using its name; for example, twisted.reflect.
Accessor. In those cases, the type of method should be a prefix in all lower-case with a trailing underscore, so method
names will have an underscore in them. For example, get_someAttribute. Underscores in method names in twisted
code are therefore expected to have some semantic associated with them.

Some methods, in particular addCallback and its cousins return self to allow for chaining calls. In this case, wrap the
chain in parenthesis, and start each chained call on a separate line, for example:

return (foo()
.addCallback(bar)
.addCallback(thud)
.addCallback(wozers))

10.1.16 Using the Global Reactor

Even though it may be convenient, module-level imports of the global Twisted reactor (from twisted.internet
import reactor) should be avoided. Importing the reactor at the module level means that reactor selection occurs on
initial import, and not at the request of the code that originally imported the module. Applications may wish to import
their own reactor, or otherwise use a reactor different than Twisted’s default (for example, using the experimental
cfreactor on macOS); importing at the module level means they would have to monkeypatch in the different reactor, or
use similar hacks. This is especially apparent in Twisted’s own test suite; many tests wish to provide their own reactor
which controls the passage of time and simulates timeouts.

Below is an example of the pattern for accepting the user’s choice of reactor – importing the global one if none is
specified – taken (and trimmed for brevity) from existing Twisted source code.

class Session(object):
"""
A user's session with a system.

@ivar _reactor: An object providing L{IReactorTime} to use for scheduling
expiration.

"""
(continues on next page)
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(continued from previous page)

def __init__(self, site, uid, reactor=None):
"""
Initialize a session with a unique ID for that session.
"""
if reactor is None:

from twisted.internet import reactor
self._reactor = reactor

# ... other code ...

The reactor attribute should be private by default, but if it is useful to the users of the code, there is no reason why it
can not be public.

10.1.17 Callback Arguments

There are several methods whose purpose is to help the user set up callback functions, for example Deferred.
addCallback or the reactor’s callLater method. To make access to the callback as transparent as possible, most of
these methods use **kwargs to capture arbitrary arguments that are destined for the user’s callback. This allows the
call to the setup function to look very much like the eventual call to the target callback function.

In these methods, take care to not have other argument names that will “steal” the user’s callback’s arguments. When
sensible, prefix these “internal” argument names with an underscore. For example, RemoteReference.callRemote
is meant to be called like this:

myref.callRemote("addUser", "bob", "555-1212")

# on the remote end, the following method is invoked:
def addUser(name, phone):

...

where “addUser” is the remote method name. The user might also choose to call it with named parameters like this:

myref.callRemote("addUser", name="bob", phone="555-1212")

In this case, callRemote (and any code that uses the **kwargs syntax) must be careful to not use “name”, “phone”,
or any other name that might overlap with a user-provided named parameter. Therefore, callRemote is implemented
with the following signature:

class SomeClass(object):
def callRemote(self, _name, *args, **kw):

...

Do whatever you can to reduce user confusion. It may also be appropriate to assert that the kwargs dictionary does
not contain parameters with names that will eventually cause problems.
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10.1.18 Special Methods

The augmented assignment protocol, defined by __iadd__ and other similarly named methods, can be used to allow
objects to be modified in place or to rebind names if an object is immutable – both through use of the same operator. This
can lead to confusing code, which in turn leads to buggy code. For this reason, methods of the augmented assignment
protocol should not be used in Twisted.

10.1.19 Functions

Functions should be named similarly to methods.

Functions or methods which are responding to events to complete a callback or errback should be named
_cbMethodName or _ebMethodName, in order to distinguish them from normal methods.

10.1.20 Attributes

Attributes should be named similarly to functions and methods. Attributes should be named descriptively; at-
tribute names like mode, type, and buf are generally discouraged. Instead, use displayMode, playerType, or
inputBuffer.

Do not use Python’s “private” attribute syntax; prefix non-public attributes with a single leading underscore. Since
several classes have the same name in Twisted, and they are distinguished by which package they come from, Python’s
double-underscore name mangling will not work reliably in some cases. Also, name-mangled private variables are
more difficult to address when unit testing or persisting a class.

An attribute (or function, method or class) should be considered private when one or more of the following conditions
are true:

• The attribute represents intermediate state which is not always kept up-to-date.

• Referring to the contents of the attribute or otherwise maintaining a reference to it may cause resources to leak.

• Assigning to the attribute will break internal assumptions.

• The attribute is part of a known-to-be-sub-optimal interface and will certainly be removed in a future release.

10.1.21 Python 3

Twisted was ported to Python 3. Please see Porting to Python 3 for details.

10.1.22 Database

Database tables will be named with plural nouns.

Database columns will be named with underscores between words, all lower case, since most databases do not distin-
guish between case.

Any attribute, method argument, or method name that corresponds directly to a column in the database will be named
exactly the same as that column, regardless of other coding conventions surrounding that circumstance.

All SQL keywords should be in upper case.
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10.1.23 C Code

C code must be optional, and work across multiple platforms (MSVC++14 for Python 3 on Windows, as well as recent
GCCs and Clangs for Linux, macOS, and FreeBSD).

C code should be kept in external bindings packages which Twisted depends on. If creating new C extension modules,
using cffi is highly encouraged, as it will perform well on PyPy and CPython, and be easier to use on Python 2 and 3.
Consider optimizing for PyPy instead of creating bespoke C code.

10.1.24 Commit Messages

The commit messages are being distributed in a myriad of ways. Because of that, you need to observe a few simple
rules when writing a commit message.

The first line of the message is being used as both the subject of the commit email and the announcement on #twisted.
Therefore, it should be short (aim for < 80 characters) and descriptive – and must be able to stand alone (it is best if it is
a complete sentence). The rest of the e-mail should be separated with hard line breaks into short lines (< 70 characters).
This is free-format, so you can do whatever you like here.

Commit messages should be about what, not how: we can get how from Git diff. Explain reasons for commits, and
what they affect.

Each commit should be a single logical change, which is internally consistent. If you can’t summarize your changes in
one short line, this is probably a sign that they should be broken into multiple checkins.

10.1.25 Source Control

Twisted currently uses Git for source control. All development must occur using branches; when a task is considered
complete another Twisted developer may review it and if no problems are found, it may be merged into trunk. The
Twisted wiki has a start.

If you wish to ignore certain files, create a .gitignore file, or edit it if it exists. For example:

dropin.cache
*.pyc
*.pyo
*.o
*.lo
*.la #*#
.*.rej
*.rej
.*~

10.1.26 Fallback

In case of conventions not enforced in this document, the reference documents to use in fallback are:

• The Black code style

• PEP 8 for Python code

• PEP 7 for C code
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10.1.27 Recommendations

These things aren’t necessarily standardizeable (in that code can’t be easily checked for compliance) but are a good
idea to keep in mind while working on Twisted.

If you’re going to work on a fragment of the Twisted codebase, please consider finding a way that you would use such
a fragment in daily life. Using a Twisted Web server on your website encourages you to actively maintain and improve
your code, as the little everyday issues with using it become apparent. Twisted is a big codebase! If you’re refactoring
something, please make sure to recursively grep for the names of functions you’re changing. You may be surprised to
learn where something is called. Especially if you are moving or renaming a function, class, method, or module, make
sure that it won’t instantly break other code.

10.2 Development process

This page described the process that should be followed for contributing to Twisted.

If you’re going to be doing development on Twisted itself, or if you want to take advantage of bleeding-edge features
(or bug fixes) that are not yet available in a numbered release, you’ll probably want to check out a tree from the Twisted
Git repository.

The trunk is the main branch and is where all current development takes place.

10.2.1 Checkout and initial dev virtual environment

Twisted uses Git to track code changes. Git tutorials can be found elsewhere, see in particular Git and GitHub learning
resources :

$ git clone https://github.com/twisted/twisted twisted
$ python3 -m venv ./venv
$ . venv/bin/activate
$ pip install -e .[dev]
$ pip install pre-commit

Please note that all subsequent commands in this document assume that your Twisted virtual environment is active.
(However, we will not assume you’ve put it in ./venv; feel free to use whatever Python environment manager you are
comfortable with.)

The output of git blame will be better if you configure it to use our ignore file:

$ cd twisted
$ git config blame.ignoreRevsFile .git-blame-ignore-revs

10.2.2 Running tests

The tests are handled by the trial testing framework. It knows about deferred and any other good stuff provided by
Twisted. To run the full unit-test suite, do:

trial twisted

To run a single test file (like twisted/test/test_defer.py ), do one of:
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trial twisted.test.test_defer
# or
trial twisted/test/test_defer.py

To run any tests that are related to a code file, like twisted/protocols/imap4.py , do:

trial --testmodule twisted/mail/imap4.py

This depends upon the .py file having an appropriate “test-case-name” tag that indicates which test cases provide
coverage. See the Test Standards document for details about using “test-case-name”. In this example, the twisted.
mail.test.test_imap test will be run.

Some tests create temporary files in ./_trial_temp, which you can inspect for debugging purposes, but this directory
will be deleted on each subsequent test run, so if you’re debugging some filesystem code you may want to move it aside
first.

10.2.3 Building docs

Twisted’s narrative documentation — i.e. the documentation sourced from .rst files in ./docs/ — is generated by
Sphinx. Its API reference documentation — i.e. the documentation sourced from docstrings in .py files — is generated
by pydoctor.

To build the HTML form of the docs into the doc/ directory, do the following. This will trigger a full build including
the API docs:

tox -e narrativedocs
firefox docs/_build/index.html

10.2.4 Committing and pre-commit hooks

When submitting a PR, create a GitHub issue first, and prefix the name of the for the PR branch with the associated
GitHub issue number, so that we can easily cross-reference them. For example, use 1234-some-brach-name as the
name of the branch working to fix issue 1234.

To speed up acceptance of your PR, you may want to make sure it passes our pre-commit code style checks locally.
If you skip this step, you may find some reformatting commits generated by the service we use, pre-commit . We
don’t mind, so feel free to let the computer do the job instead, but it may extend the amount of time you’re waiting for
automated tests to run.

To set up git to run these checks automatically every time you commit code, run this:

pre-commit install

Or to manually trigger the checks before each commit, run:

pre-commit
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10.2.5 Release notes management

It is up to the authors of individual changes to write high-level descriptions for their changes. They are not a commit or
a merge message. These descriptions will be aggregated into the release notes distributed with Twisted releases. They
should be written in such a way to help other users decide whether or not they need to upgrade, or whether a certain
defect is fixed in a release.

During development, to avoid generating commit conflicts, we use the towncrier tool to manage separate news fragments
for each change. At the release time, all these “release fragments” are aggregated into our single NEWS release file.

Changes must be accompanied by a file whose content describes that change in at least one newsfragments directory.
There are newsfragments directories for each subproject and one root directory for core Twisted changes. If a change
affects multiple areas of Twisted, then each affected area can have a newsfragments entry to detail the relevant changes.
An entry must be a file named <issue number>.<change type> (eg. 1234.bugfix). You should replace <issue number>
with the issue number which is being resolved by the change (if multiple issues are resolved, multiple files with the
same contents should be added). The <change type> extension is replaced by one of the following literal strings:

• feature - Issues which are adding a new feature

• bugfix - Issues which are fixing a bug

• doc - Issues primarily about fixing or improving documentation (any variety)

• removal - Issues which are deprecating something or removing something which was already deprecated

• misc - Issues which are very minor and not worth summarizing outside of the git changelog. These should be
empty (their contents will be ignored)

To get a sense of how the text in these files is presented to users, take a look at NEWS.rst the real overall news file].
The goal when writing the content for one of these files is to produce text that will fit well into the overall news files.

Here are a few which should help you write good news fragments:

• The entry SHOULD contain a high-level description of the change suitable for end users.

• When the changes touch Python code, the grammatical subject of the sentence SHOULD be a Python
class/method/function/interface/variable/etc, and the verb SHOULD be something that the object does. The
verb MAY be prefixed with “now”.

• For bugfix, it MAY contain a reference to the version in which the bug was introduced.

Here are some examples.

Features:

twisted.protocols.amp now raises InvalidSignature when bad arguments are passed to␣
→˓Command.makeArguments

The new module twisted.internet.endpoints provides an interface for specifying address␣
→˓families separately from socket types.

Bugfix:

twisted.internet.ssl.Certificate(...).getPublicKey().keyHash() now produces a stable␣
→˓value regardless of OpenSSL version. Unfortunately this means that it is different␣
→˓than the value produced by older Twisted versions.

twisted.names.secondary.SecondaryAuthority can now answer queries again (broken since 13.
→˓2.0).

(continues on next page)
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(continued from previous page)

The SSL server string endpoint parser (twisted.internet.endpoints.serverFromString) now␣
→˓constructs endpoints which, by default, disable the insecure SSLv3 protocol.

Deprecations:

twisted.trial.util.findObject is now deprecated.

twisted.conch.insults.colors is now deprecated in favor of twisted.conch.insults.helper.

twisted.runner.procmon.ProcessMonitor's active, consistency, and consistencyDelay␣
→˓attributes are now deprecated.

Removals:

twisted.internet.interfaces.IReactorTime.cancelCallLater, deprecated since Twisted 2.5,␣
→˓has been removed.

Support for versions of pyOpenSSL older than 0.10 has been removed.

Documentation:

The documentation for twisted.internet.defer.DeferredSemaphore now describes the actual␣
→˓usage for `limit` and `tokens` instance attributes.

The docstring for twisted.conch.ssh.userauth.SSHUserAuthClient is now clearer on how the␣
→˓preferredOrder instance variable is handled.

twisted.mail.alias now has full API documentation.

The howto document page of Deferred now has documentation about the cancellation.

You don’t need to worry about newlines in the file; the contents will be rewrapped when added to the NEWS files.

10.2.6 Review process

Any change to be accepted into the main branch must pass the review process.

See the dedicated review process page for more details.

10.2.7 Reverting a change

If a change set somehow introduces a test suite regression or is otherwise found to be undesirable, it is to be reverted.

Any developer may revert a commit that introduces a test suite regression on a supported platform. The revert message
should be as explicit as possible. If it’s a failure, put the message of the error in the commit message, possible with
more details about the test environment. If there are too many failures, it can be put in the issue tracker, with a reference
in the message.

Use the “Reopens” tag in the commit message to reference the relevant issue:

Revert revision-sha: Brief description

(continues on next page)
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(continued from previous page)

A description of the problem, or a traceback if pertinent

Reopens: #issue-number

Reverted branches are to be reviewed again before being merged.

10.3 Code Review Process

All commits to Twisted’s trunk must follow this review process.

Both authors and reviewers should be intimately familiar with all requirements on this page.

Long story short for contributors / PR authors:

• Start by creating a GitHub Issue describing the issue or the reason a change is needed.

• Follow our coding standard and implement the required changes

• Create a GitHub Pull Request to have the changes merged in the main trunk

• Make sure all the PR checks are green and the changes are ready for review.

• Leave an explicit comment on the PR containing the please review text. You can use a draft PR but once ready,
leave the explicit comment asking for the review. This will trigger the review process and the required team
notifications.

• Wait for a review or try to find a review via IRC, mailing list or Gitter

• Engage in a conversation with the reviewer to get the changes approved.

• Once the changes from the PR are approved, the PR can be merged.

10.3.1 Authors: Before you get started

For the most part, we’d love for you to jump right in and start writing code! The code review process should catch any
serious problems with your contribution, and the continuous integration system should catch most tricky cross-platform
issues. It’s easy to get too caught up in trying to do everything perfectly the first time and never get any code written,
so you should usually err on the side of just trying something out rather than waiting for someone to tell you if it’s OK.
That being said, there are a few things that you should be aware of before you write your first line of code.

Make sure you have a clear idea of what work needs doing. Write down your idea first; file an issue before you write a
patch. A really good issue will give a precise description of what needs to change and why it needs changing; it avoids
giving precise details of exactly how the code needs to change, because the patch should supply those details. A really
bad issue will say “here is a patch I wrote, apply it”. If you’re just getting started with contributing to Twisted, it would
be good to find an existing issue rather than come up with something yourself, so you have an idea how to go through
the process before you start making difficult changes. You’ll need to have a good description of your work for other
parts of the process as well (the NEWS file, the commit message) which is another reason thinking about what you’re
trying to do helps.

If you’re filing a bug because you noticed a regression in the current pre-release, make sure to mark it as a regression,
add it to the release milestone, and post something to the mailing list as well. It’s very important for us to spot regressions
before they make it into a final release, so redundant communication is better in this case!

Issues should be described well enough that the change is already justified and the new code should be easy enough to
read that further explanations aren’t necessary to understand it, but sometimes diffs themselves can be more difficult to
read than either the old or new state of the code, so comments like ‘’the implementation of foo moved from bar.py to
baz.py” can sometimes make a reviewer’s job easier.
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Try not to write too much code at once. A good change needs to be under 1000 lines of diff for a reviewer to be able
to deal with it before getting fatigued and missing things. You should be aiming for things in the neighborhood of 200
lines. This is for your benefit as well as the reviewer’s; we don’t want you to spend weeks on a 10,000-line monster of
a feature, only to have it rejected because we’re not interested in having such a feature at all.

10.3.2 Authors: Things your branch or patch must contain

• Code which follows the coding standards.

• 100% unit test coverage for all modified and new code (even if it didn’t have tests before)

• 100% API docstring coverage for all modified and new code (even if it didn’t have docs before)

• No backwards-incompatible changes. Also be sparing when adding ‘public’ names to the API, as they must be
supported in the future. If it can start with an underscore and not be exposed publicly, it probably should.

• Appropriate new or modified “End User” guide documentation (in the form of rst files in the docs/ directory)

• A file in all relevant “newsfragments” directories describing changes that affect users See the Newsfiles section
below.

10.3.3 Authors: How to get your change reviewed

• There must be an issue in the Twisted Github Issue tracker describing the desired outcome.
See more info below.

• Note: For security issues, see Security.

• Create a GitHub Pull request

• Write a comment or PR description with any relevant information for the reviewer.

• Once the PR is ready for review, leave a separate comment on that PR containing the text please review. This
will trigger the review process and will notify the review team.

10.3.4 Reviewers: How to review a change

• Be familiar with the Twisted codebase, coding standard, and these review requirements.

• Don’t be the author of the change. It makes no sense to review your code, and we assume that before pushing the
code to a public PR, you already did the first round of self-review.

• Make sure that all checks are green!

• Note any unreliable / flaky tests should have a separate issue created.

• Review the change, and write a detailed comment about all potential improvements to the branch (See [#Howto-
beagoodreviewer below]).

• Use GitHub review UI to approve or request changes to the PR.

• If the author does not have commit access, merge the change for them or add the “needs-merge” label.
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10.3.5 Authors: How to merge the change to trunk

• If your reviewers are happy with the changes for your PR, you can merge it.

• Check in the GitHub PR that all tests are green (or the failed one are just unrelated/spurious failures)

• Use the GitHub merge button to merge the request, using the GitHub default commit subject, and with the
standard commit format required by Twisted. See below for details.

• Alternatively, you can use the command line and merge the change into a checkout of Twisted trunk (as a merge
commit, using git merge –no-ff ) and commit it.

If this fix has implications for an ongoing pre-release in progress, please announce it on the mailing list so that the
release manager will know.

A change has implications for the release process if:

• a pre-release has been issued for which there is no final release

• this issue was a known regression and is now closed, so another pre-release should be issued

• this issue was in the release milestone and is now closed, so another pre-release should be issued

• as part of the final review, the reviewer noticed that this is fixing something that could be considered a regression.
In general, if there’s any doubt, communicate to the mailing list. The mailing list is fairly low traffic, and so a little
extra noise about interesting developments is much better than letting an important fix slip through the cracks.
If you’re not sure whether something qualifies as a regression or not, let the release manager know so they can
decide.

• If no regression appears, you can delete the source branch.

10.3.6 Who can review a PR?

Changes must be reviewed by a developer other than the author of the changes. If changes are paired on, a third party
must review them. If changes constitute the work of several people who worked independently, a non-author must
review them.

A reviewer need not necessarily be familiar with the specific area of Twisted being changed, but he or she should feel
confident in his or her abilities to spot problems in the change.

Twisted committers may review anyone’s PRs; those submitted by other committers or those submitted by non-
committer contributors. If a non-committer contributor submits a PR that is acceptable to merge, it is the committer’s
responsibility to commit and merge the PR. When a committer reviews a PR, they are responsible if there are any
problems with the review.

Non-committer contributors may review PRs that committers have submitted. When a non-committer does a passing
review, the committer may accept it and land their change, but they are then responsible for the adequacy of the review.
So, if a non-committer does a review you feel might be incomplete, put it back into review and explain what they might
have missed - this kind of reviewing-the-review is important to make sure that more people learn how to do reviews
well!
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10.3.7 How to be a good reviewer

First, make sure all of the obvious things are accounted for. Check the “Things your branch or patch must contain” list
above, and make sure each point applies to the branch.

A reviewer may reject a change for various reasons, many of which are hard to quantify. Use your best judgment, and
don’t be afraid to point out problems that don’t fit into the list of branch requirements laid out in this document.

Here are some extra things to consider while reviewing a change:

• Is the code written in a straightforward manner that will allow it to be easily maintained in the future, possibly
by a developer other than the author?

• If it introduces a new feature, is that feature generally useful and have its long-term implications been considered
and accounted for? * Will it confuse application developers? * Does it encourage application code using it to
be well factored and easily testable? * Is it similar to any existing feature offered by Twisted, such that it might
make sense as an extension or modification to some other piece of code, rather than an entirely new functional
unit?

• Does it require new documentation and examples?

When you’re done with the review, always say what the next step should be: for example, if the author is a committer,
can they commit after making a few minor fixes? If your review feedback is more substantial, should they re-submit
for another review?

If you are officially “doing a review”, please make sure you do a complete review and look for ‘’all” of these things, so
that the author has as much feedback as possible to work with while their ticket is out of the review state. If you don’t
have time to do a complete review, and you just notice one or two things about the ticket, just make a comment to help
the future reviewer, and don’t remove the review keyword, so another reviewer might have a look. For example, say,
“I just checked for a news file and I noticed there wasn’t one”, or, “I saw some trailing whitespace in these methods”.
If you remove the PR from the review queue, you may substantially increase the amount of time that the author has to
wait for a real, comprehensive review, which is very frustrating.

10.4 Twisted Release Process

This document describes the Twisted release process. Although it is still incomplete, every effort has been made to
ensure that it is accurate and up-to-date.

If you want to make changes to the release process, follow the normal Twisted development process (contribute release
automation software that has documentation and unit tests demonstrating that it works).

10.4.1 Outcomes

By the end of a Twisted release we’ll have:

• Wheel and sdist package published on PyPI Twisted project.

• Updated documentation (API & howtos) on Twisted Read The Docs for stable and $RELEASE versions.

• Announcement email sent to Twisted main list

• A GitHub Release with the associated tag in our Git repository
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10.4.2 Prerequisites

To release Twisted, you will need:

• Commit privileges to Twisted GitHub repository.

10.4.3 Dependencies

Below is the list of moving parts and web services used by the release process. For day to day operation, you should
not need management access to them. If things go wrong, you should be aware of them and get administration access.

• Release tag is automatically created via the GitHub Release GUI.

• PyPi file publishing is done via GitHub Actions workflow when a tag is created. Any Twisted contributor in
GitHub should have access to modify the workflow.

• docs.twistedmatrix.com is a CNAME and you will need access to Twisted DNS server to modify it.

• Documentation is published via Read The Docs Twisted project. There is an automated rule
<https://readthedocs.org/dashboard/twisted/rules/regex/1057/> to activate the documentation for every tag
matching ^twisted-\d+\.\d+\.\d+$ (release candidates are excluded) From RTD Advanced Settings the
branch named stable is configured as the default branch. There is also a “active” documentation version for the
branch named stable.

10.4.4 Version numbers

Twisted releases use a time-based numbering scheme following PEP440 convention. Releases versions like
YY.MM.mm, where YY is the last two digits of the year of the release, MM is the month of release, and mm is
the number of the bugfix release.

There are 3 release types:

• Major release when YY.MM is updated.

• Bugfix / patch / point release when the mm number is updated

• Release candidates which are pre-releases as YY.MM.mmrc1

For example:

• A release in Jan 2017 is 17.1.0

• A release in Nov 2017 is 17.11.0

• If 17.11.0 has some critical defects, then a bugfix 17.11.1

• The first release candidate of 17.1.0 is 17.1.0rc1, the second is 17.1.0rc2

Every release of Twisted includes the whole project.

Throughout this document, we’ll refer to the version number of the release as $RELEASE. Examples of $RELEASE
include 10.0.0, 10.1.0, 10.1.1 etc.

We’ll refer to the first two components of the release as $API, since all releases that share those numbers are mutually
API compatible. e.g. for 10.0.0, $API is 10.0; for 10.1.0 and 10.1.1, $API is 10.1.

Incremental automatically picks the correct version number for you. Please retrieve it after you run it.
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10.4.5 Overview

To release Twisted, we

1. Prepare for a release

2. Release one or more release candidates

3. Release the final release

10.4.6 Prepare for a release

1. Check for any regressions using Trac regression report

2. Any regression should be fixed and merged into trunk before making the release branch

3. Choose a version number. $RELEASE will be something like 21.7.0 for a major release. $RELEASE will be
something like 21.7.1 for a bugfix release.

4. File a ticket in Trac called “Release $RELEASE” and assign it to yourself.

5. Make a branch for the release. It’s very important to use release-$RELEASE-$TRAC_ID as the branch name
(4290 is Trac ticket ID, 21.7.0 is the release number) as this is used as a hint for CI:

• git fetch origin

• git checkout origin/trunk

• git checkout -b release-21.7.0-4290

10.4.7 How to do a release candidate

This section describes the steps and requirements for creating the first release candidate.

Prepare the branch

1. Check that all the CI tests on the main branch (trunk) pass. Failing tests on the main branch should be considered
release blocker. They should be fixed in separate ticket/PR. The release can continue once the main branch is
green again.

2. In your Git repo, fetch and check out the new release branch.

3. Run python -m incremental.update Twisted --rc

4. Commit the changes made by Incremental.

5. Run tox -e towncrier.

6. Commit the changes made by towncrier - this automatically removes the newsfragment files.

7. Bump copyright dates in LICENSE, src/twisted/copyright.py, and README.rst if required

8. Push the changes up to GitHub and create a new release PR.

9. The GitHub PR is dedicated to the final release and the same PR is used to release the candidate and final version.

10. Wait for all the PR checks to pass.

11. If a check fails investigate it. If is just a flaky tests, retry the run. Any serious error should be considered a
blocker and should be fixed in a separate ticket/PR. Avoid making non-release changes (even minor one) as part
of the release branch.
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12. Use the GitHub Create Release UI the make a new release.

13. Create a tag using the format twisted-VERSION based on the latest commit on the release branch.

14. Use Twisted VERSION as the name of the release.

15. Add the release NEWS to GitHub Release page.

16. Make sure ‘This is a pre-release` is checked.

17. Github Actions will upload the dist to PyPI when a new tag is pushed to the repo.

18. You can check the status of the automatic upload via GitHub Action

19. Read the Docs hooks not have version for the release candidate. Use the Read the Docs published for the pull
request.

20. The review for the PR will be requested after the files are on PyPI so that a full review and manual test can be
done.

21. Most probably there will be some minor comments received via email or GitHub regarding the final content of
the release notes. It’s OK to make those changes as part of the release branch. It’s OK to update the text of the
candidate release notes, in the final NEWS file the release candidate version is removed and replaced with the
final version. No need for a new ticket or separate pull request. These changes will be reviewed as part of the
final release review process.

22. While the final public release is not made and the release tag created the release branch will not be kept up to
date with trunk.

Announce

1. Write the release announcement

2. Announce the release candidate on

• the twisted-python mailing list by sending the an email with the subject: Twisted $RELEASE Pre-Release
Announcement

• on IRC in the #twisted-dev topic by sending the version number or pip install command

The release candidate announcement might mention the important changes since the last release, and ask readers to
test this release candidate.

Here’s what the $RELEASE release candidate announcement might look like:

On behalf of the Twisted contributors I announce the release candidate of Twisted
→˓$RELEASE

Short summary of the release.
For example:
Python 3.5 is no longer a supported platform.
The minimum supported platform is Python 3.6.7.

The notable changes are:

* Mention the main new features.
* As well as important bug fixes
* Or deprecation/removals

(continues on next page)
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(continued from previous page)

The release and NEWS file is available for review at

https://github.com/twisted/twisted/pull/PRID/files

Release candidate documentation is available at

https://twisted--PRID.org.readthedocs.build/en/PRID/

Wheels for the release candidate are available on PyPI

https://pypi.org/project/Twisted/$RELEASErc1

python -m pip install Twisted==$RELEASErc1

Please test it and report any issues.
If nothing comes up in one week,
$RELEASE will be released based on the latest release candidate.

Many thanks to everyone who had a part in Twisted
the supporters of the Twisted Software Foundation,
the developers, and all the people testing and building great things with Twisted!

A week is a generally good length of time to wait before doing the final release.

10.4.8 How to do a final release

Prepare the branch

1. Have the release branch, previously used to generate a release candidate, checked out

2. Run python -m incremental.update Twisted --newversion $RELEASE

3. Manually update the release version and date inside the NEWS file. The release candidate notes will be removed
from the final NEWS file. Manually move all the release notes from the release candidates to the notes for the
final version.

4. Commit and push.

5. Submit the ticket for the final review.

6. Pause until the ticket is reviewed and accepted.

7. Use the GitHub Create Release UI the make a new release.

8. Create a tag using the format twisted-VERSION based on the latest commit on the release branch that was ap-
proved after the review.

9. Use Twisted VERSION as the name of the release.

10. Add the release NEWS to GitHub Release page.

11. Make sure ‘This is a pre-release` is not checked.

12. Github Actions will upload the dist to PyPI when a new tag is pushed to the repo. PyPI is the only canonical
source for Twisted packages.

13. Read the Docs hooks will publish a new version of the docs for the tag.
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Announce

1. Write the release announcement that should be similar to the release candidate, with the updated version and
release date.

2. Announce the release

• Send a text version of the announcement to: twisted@python.org

• Twitter, TikTok, Instagram, Snapchat if you feel like it :)

• #twisted message on IRC

Post release

1. Run python -m incremental.update Twisted --post to add a post version number.

2. Commit the post0 update change.

3. Update the trunk into the release branch, resolving any possible conflicts.

4. No need to request another review.

5. Merge the release branch into trunk (via GitHub PR UI), closing the release ticket at the same time.

10.4.9 Security release

A security release is a release that contains a fix that has an associated security advisory.

All steps for a generic release are followed. A few extra steps are required to communicate the security issue.

These releases are done as soon as the PR for the security advisory is merged.

The PR contributors and the release manager should communicate and coordinate the release.

Any step blocking the release should be done by the PR contributors. The role of the release manager is just to make
sure this process is followed.

1. Make sure there is a GitHub Security advisory opened for this ticket.

2. Make sure the PR was approved.

3. Make sure all the details all provided in the GitHub security advisory.

4. The security fix will be available in the first release candidate for the new release. So the Patched versions will
look like YEAR.MONTH.0rc1.

5. Use the GitHub UI to merge the PR.

6. Once committed in the main branch, create a new branch and follow the general release candidate procedures.

Once the PR is merged, the fix is public, but unreleased. Try to do the release candidate as soon as possible after the
security PR merge.

If possible, try not to do the security release at the end of working week or during weekends.
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10.4.10 Release candidate fixes

This section described the steps to follow when after a release candidate is published, critical or regression defects are
found.

If a defect is found after the final release is published, check the next section: Bug fix releases.

1. Pause the release process.

2. Separate tickets should be files for each defect.

3. The defect should be fixed, reviewed and merged in trunk.

4. On the release branch, cherry-pick the merges from trunk that merges the fixes git cherry-pick -m 1
TRUNK_MERGE_SHA.

5. Follow the same steps as for any release candidate, with the exception that a new branch is not created. Use the
same python -m incremental.update Twisted –rc command to increment the release candidate version.

Don’t delete a tag that was already pushed for a release. Create a new tag with incremented version.

10.4.11 Bug fix releases

Sometimes, bugs happen, and sometimes these are regressions in the current released version.

We don’t do maintenance / patch releases, including for security issues, due to lack of resources.

We just do a normal release using the calendar base versioning scheme.

We welcome additional volunteers to help drive the release effort.

10.5 Unit Tests in Twisted

Each unit test tests one bit of functionality in the software. Unit tests are entirely automated and complete quickly. Unit
tests for the entire system are gathered into one test suite, and may all be run in a single batch. The result of a unit test is
simple: either it passes, or it doesn’t. All this means you can test the entire system at any time without inconvenience,
and quickly see what passes and what fails.

10.5.1 Unit Tests in the Twisted Philosophy

The Twisted development team adheres to the practice of Extreme Programming (XP), and the usage of unit tests is a
cornerstone XP practice. Unit tests are a tool to give you increased confidence. You changed an algorithm – did you
break something? Run the unit tests. If a test fails, you know where to look, because each test covers only a small
amount of code, and you know it has something to do with the changes you just made. If all the tests pass, you’re good
to go, and you don’t need to second-guess yourself or worry that you just accidentally broke someone else’s program.
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10.5.2 What to Test, What Not to Test

You don’t have to write a test for every single method you write, only production methods that could
possibly break.

– Kent Beck, Extreme Programming Explained

10.5.3 Running the Tests

How

From the root of the Twisted source tree, run Trial :

$ bin/trial twisted

You’ll find that having something like this in your emacs init files is quite handy:

(defun runtests () (interactive)
(compile "python /somepath/Twisted/bin/trial /somepath/Twisted"))

(global-set-key [(alt t)] 'runtests)

When

Always, always, always be sure all the tests pass before committing any code. If someone else checks out code at the
start of a development session and finds failing tests, they will not be happy and may decide to hunt you down .

Since this is a geographically dispersed team, the person who can help you get your code working probably isn’t in the
room with you. You may want to share your work in progress over the network, but you want to leave the main Git tree
in good working order. So use a branch , and merge your changes back in only after your problem is solved and all the
unit tests pass again.

10.5.4 Adding a Test

Please don’t add new modules to Twisted without adding tests for them too. Otherwise we could change something
which breaks your module and not find out until later, making it hard to know exactly what the change that broke it
was, or until after a release, and nobody wants broken code in a release.

Tests go into dedicated test packages such as twisted/test/ or twisted/conch/test/ , and are named test_foo.
py , where foo is the name of the module or package being tested. Extensive documentation on using the PyUnit
framework for writing unit tests can be found in the links section below.

One deviation from the standard PyUnit documentation: To ensure that any variations in test results are due to variations
in the code or environment and not the test process itself, Twisted ships with its own, compatible, testing framework.
That just means that when you import the unittest module, you will from twisted.trial import unittest instead
of the standard import unittest .

As long as you have followed the module naming and placement conventions, trial will be smart enough to pick up
any new tests you write.

PyUnit provides a large number of assertion methods to be used when writing tests. Many of these are redun-
dant. For consistency, Twisted unit tests should use the assert forms rather than the fail forms. Also, use
assertEqual , assertNotEqual , and assertAlmostEqual rather than assertEquals , assertNotEquals , and
assertAlmostEquals . assertTrue is also preferred over assert_ . You may notice this convention is not followed
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everywhere in the Twisted codebase. If you are changing some test code and notice the wrong method being used in
nearby code, feel free to adjust it.

When you add a unit test, make sure all methods have docstrings specifying at a high level the intent of the test. That
is, a description that users of the method would understand.

10.5.5 Test Implementation Guidelines

Here are some guidelines to follow when writing tests for the Twisted test suite. Many tests predate these guidelines
and so do not follow them. When in doubt, follow the guidelines given here, not the example of old unit tests.

Naming Test Classes

When writing tests for the Twisted test suite, test classes are named FooTests, where Foo is the name of the component
being tested. Here is an example:

class SSHClientTests(unittest.TestCase):
def test_sshClient(self):

foo() # the actual test

Real I/O

Most unit tests should avoid performing real, platform-implemented I/O operations. Real I/O is slow, unreliable, and
unwieldy.

When implementing a protocol, twisted.internet.testing.StringTransport can be used instead of a real TCP
transport. StringTransport is fast, deterministic, and can easily be used to exercise all possible network behaviors.

If you need pair a client to a server and have them talk to each other, use twisted.test.iosim.connect with
twisted.test.iosim.FakeTransport transports.

Real Time

Most unit tests should also avoid waiting for real time to pass. Unit tests which construct and advance a twisted.
internet.task.Clock are fast and deterministic.

When designing your code allow for the reactor to be injected during tests.

from twisted.internet.task import Clock

def test_timeBasedFeature(self):
"""
In this test a Clock scheduler is used.
"""
clock = Clock()
yourThing = SomeThing()
yourThing._reactor = clock

state = yourThing.getState()

clock.advance(10)

(continues on next page)
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(continued from previous page)

# Get state after 10 seconds.
state = yourThing.getState()

Test Data

Keeping test data in the source tree should be avoided where possible.

In some cases it can not be avoided, but where it’s obvious how to do so, do it. Test data can be generated at run time
or stored inside the test modules as constants.

When file system access is required, dumping data into a temporary path during the test run opens up more testing
opportunities. Inside the temporary path you can control various path properties or permissions.

You should design your code so that data can be read from arbitrary input streams.

Tests should be able to run even if they are run inside an installed copy of Twisted.

publicRSA_openssh = ("ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEArzJx8OYOnJmzf4tf"
"vLi8DVPrJ3/c9k2I/Az64fxjHf9imyRJbixtQhlH9lfNjUIx+4LmrJH5QNRsFporcHDKOTwTT"
"h5KmRpslkYHRivcJSkbh/C+BR3utDS555mV comment")

def test_loadOpenSSHRSAPublic(self):
"""
L{keys.Key.fromStrea} can load RSA keys serialized in OpenSSH format.
"""
keys.Key.fromStream(StringIO(publicRSA_openssh))

The Global Reactor

Since unit tests are avoiding real I/O and real time, they can usually avoid using a real reactor. The only exceptions
to this are unit tests for a real reactor implementation. Unit tests for protocol implementations or other application
code should not use a reactor. Unit tests for real reactor implementations should not use the global reactor, but should
instead use twisted.internet.test.reactormixins.ReactorBuilder so they can be applied to all of the reactor
implementations automatically. In no case should new unit tests use the global reactor.

10.5.6 Skipping Tests

Trial, the Twisted unit test framework, has some extensions which are designed to encourage developers to add new
tests. One common situation is that a test exercises some optional functionality: maybe it depends upon certain external
libraries being available, maybe it only works on certain operating systems. The important common factor is that
nobody considers these limitations to be a bug.

To make it easy to test as much as possible, some tests may be skipped in certain situations. Individual test cases
can raise the SkipTest exception to indicate that they should be skipped, and the remainder of the test is not run. In
the summary (the very last thing printed, at the bottom of the test output) the test is counted as a”skip” instead of a
“success” or “fail” . This should be used inside a conditional which looks for the necessary prerequisites:

class SSHClientTests(unittest.TestCase):
def test_sshClient(self):

if not ssh_path:
raise unittest.SkipTest("cannot find ssh, nothing to test")

foo() # do actual test after the SkipTest
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You can also set the .skip attribute on the method, with a string to indicate why the test is being skipped. This
is convenient for temporarily turning off a test case, but it can also be set conditionally (by manipulating the class
attributes after they’ve been defined):

class SomeThingTests(unittest.TestCase):
def test_thing(self):

dotest()
test_thing.skip = "disabled locally"

class MyTests(unittest.TestCase):
def test_one(self):

...
def test_thing(self):

dotest()

if not haveThing:
MyTests.test_thing.im_func.skip = "cannot test without Thing"
# but test_one() will still run

Finally, you can turn off an entire TestCase at once by setting the .skip attribute on the class. If you organize your tests
by the functionality they depend upon, this is a convenient way to disable just the tests which cannot be run.

class TCPTests(unittest.TestCase):
...

class SSLTests(unittest.TestCase):
if not haveSSL:

skip = "cannot test without SSL support"
# but TCPTests will still run
...

10.5.7 Testing New Functionality

Two good practices which arise from the “XP” development process are sometimes at odds with each other:

• Unit tests are a good thing. Good developers recoil in horror when they see a failing unit test. They should drop
everything until the test has been fixed.

• Good developers write the unit tests first. Once tests are done, they write implementation code until the unit tests
pass. Then they stop.

These two goals will sometimes conflict. The unit tests that are written first, before any implementation has been done,
are certain to fail. We want developers to commit their code frequently, for reliability and to improve coordination
between multiple people working on the same problem together. While the code is being written, other developers
(those not involved in the new feature) should not have to pay attention to failures in the new code. We should not
dilute our well-indoctrinated Failing Test Horror Syndrome by crying wolf when an incomplete module has not yet
started passing its unit tests. To do so would either teach the module author to put off writing or committing their unit
tests until after all the functionality is working, or it would teach the other developers to ignore failing test cases. Both
are bad things.

“.todo” is intended to solve this problem. When a developer first starts writing the unit tests for functionality that has
not yet been implemented, they can set the .todo attribute on the test methods that are expected to fail. These methods
will still be run, but their failure will not be counted the same as normal failures: they will go into an “expected failures”
category. Developers should learn to treat this category as a second-priority queue, behind actual test failures.
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As the developer implements the feature, the tests will eventually start passing. This is surprising: after all those
tests are marked as being expected to fail. The .todo tests which nevertheless pass are put into a”unexpected success”
category. The developer should remove the .todo tag from these tests. At that point, they become normal tests, and
their failure is once again cause for immediate action by the entire development team.

The life cycle of a test is thus:

1. Test is created, marked .todo . Test fails: “expected failure” .

2. Code is written, test starts to pass. “unexpected success” .

3. .todo tag is removed. Test passes. “success” .

4. Code is broken, test starts to fail. “failure” . Developers spring into action.

5. Code is fixed, test passes once more. “success” .

.todo may be of use while you are developing a feature, but by the time you are ready to commit anything all the tests
you have written should be passing. In other words never commit to trunk tests marked as .todo. For unfinished tests
you should create a follow up ticket and add the tests to the ticket’s description.

You can also ignore the .todo marker and just make sure you write test first to see them failing before starting to work
on the fix.

10.5.8 Line Coverage Information

Trial provides line coverage information, which is very useful to ensure old code has decent coverage. Passing the
--coverage option to Trial will generate the coverage information in a file called coverage which can be found in
the _trial_temp folder.

10.5.9 Associating Test Cases With Source Files

Please add a test-case-name tag to the source file that is covered by your new test. This is a comment at the beginning
of the file which looks like one of the following:

# -*- test-case-name: twisted.test.test_defer -*-

or

#!/usr/bin/env python
# -*- test-case-name: twisted.test.test_defer -*-

This format is understood by emacs to mark “File Variables” . The intention is to accept test-case-name anywhere
emacs would on the first or second line of the file (but not in the File Variables: block that emacs accepts at the
end of the file). If you need to define other emacs file variables, you can either put them in the File Variables:
block or use a semicolon-separated list of variable definitions:

# -*- test-case-name: twisted.test.test_defer; fill-column: 75; -*-

If the code is exercised by multiple test cases, those may be marked by using a comma-separated list of tests, as follows:
(NOTE: not all tools can handle this yet.. trial --testmodule does, though)

# -*- test-case-name: twisted.test.test_defer,twisted.test.test_tcp -*-

The test-case-name tag will allow trial --testmodule twisted/dir/myfile.py to determine which test
cases need to be run to exercise the code in myfile.py . Several tools (as well as https://launchpad.net/twisted-emacs’s
twisted-dev.el ‘s F9 command) use this to automatically run the right tests.
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10.5.10 Links

• A chapter on Unit Testing in Mark Pilgrim’s Dive Into Python .

• unittest module documentation, in the Python Library Reference .

• UnitTest on the PortlandPatternRepository Wiki , where all the cool ExtremeProgramming kids hang out.

• Unit Tests in Extreme Programming: A Gentle Introduction .

• Ron Jeffries expounds on the importance of Unit Tests at 100% .

• Ron Jeffries writes about the Unit Test in the Extreme Programming practices of C3 .

• PyUnit’s homepage .

• The top-level tests directory, twisted/test.

See also Tips for writing tests for Twisted code .

10.6 Twisted Writing Standard

The Twisted writing standard describes the documentation writing styles we prefer in our narrative documentation.

This standard applies particularly to howtos and other descriptive documentation. For writing API documentation,
please refer to Docstrings section in our coding standard.

This document is meant to help Twisted documentation authors produce documentation that does not have the following
problems:

• misleads users about what is good Twisted style;

• misleads users into thinking that an advanced howto is an introduction to writing their first Twisted server; and

• misleads users about whether they fit the document’s target audience: for example, that they are able to use
enterprise without knowing how to write SQL queries.

10.6.1 General style

Documents should aim to be clear and concise, allowing the API documentation and the example code to tell as much
of the story as they can. Demonstrations and where necessary supported arguments should always preferred to simple
statements (“here is how you would simplify this code with Deferreds” rather than “Deferreds make code simpler”).

Documents should be clearly delineated into sections and subsections. Each of these sections, like the overall document,
should have a single clear purpose. This is most easily tested by trying to have meaningful headings: a section which
is headed by “More details” or “Advanced stuff” is not purposeful enough. There should be fairly obvious ways to
split a document. The two most common are task based sectioning and sectioning which follows module and class
separations.

Documentation must use American English spelling, and where possible avoid any local variants of either vocabulary
or grammar. Grammatically complex sentences should ideally be avoided: these make reading unnecessarily difficult,
particularly for non-native speakers.

When referring to a hypothetical person, (such as “a user of a website written with twisted.web”), gender neutral
pronouns (they/their/them) should be used.

For reStructuredText documents which are handled by the Sphinx documentation generator make lines short, and break
lines at natural places, such as after commas and semicolons, rather than after the 79th column. We call this semantic
newlines. This rule does not apply to docstrings.
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Sometimes when editing a narrative documentation file, I wrap the lines semantically.
Instead of inserting a newline at 79 columns (or whatever),
or making paragraphs one long line,
I put in newlines at a point that seems logical to me.
Modern code-oriented text editors are very good at wrapping and arranging long lines.

10.6.2 Evangelism and usage documents

The Twisted documentation should maintain a reasonable distinction between “evangelism” documentation, which
compares the Twisted design or Twisted best practice with other approaches and argues for the Twisted approach,
and “usage” documentation, which describes the Twisted approach in detail without comparison to other possible
approaches.

While both kinds of documentation are useful, they have different audiences. The first kind of document, evangelical
documents, is useful to a reader who is researching and comparing approaches and seeking to understand the Twisted
approach or Twisted functionality in order to decide whether it is useful to them. The second kind of document, usage
documents, are useful to a reader who has decided to use Twisted and simply wants further information about available
functions and architectures they can use to accomplish their goal.

Since they have distinct audiences, evangelism and detailed usage documentation belongs in separate files. There
should be links between them in ‘Further reading’ or similar sections.

10.6.3 Descriptions of features

Descriptions of any feature added since release 2.0 of Twisted core must have a note describing which release of which
Twisted project they were added in at the first mention in each document. If they are not yet released, give them the
number of the next minor release.

For example, a substantial change might have a version number added in the introduction:

This document describes the Application infrastructure for deploying Twisted applications (added in
Twisted 1.3) .

The version does not need to be mentioned elsewhere in the document except for specific features which were added in
subsequent releases, which might should be mentioned separately.

The simplest way to create a .tac file, SuperTac (added in Twisted Core 99.7) . . .

In the case where the usage of a feature has substantially changed, the number should be that of the release in which
the current usage became available. For example:

This document describes the Application infrastructure for deploying Twisted applications (up-
dated[/substantially updated] in Twisted 2.7) .

10.6.4 Linking

The first occurrence of the name of any module, class or function should always link to the API documents. Subsequent
mentions may or may not link at the author’s discretion: discussions which are very closely bound to a particular API
should probably link in the first mention in the given section.

Links between howtos are encouraged. Overview documents and tutorials should always link to reference documents
and in depth documents. These documents should link among themselves wherever it’s needed: if you’re tempted to
re-describe the functionality of another module, you should certainly link instead.
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Linking to standard library documentation is also encouraged when referencing standard library objects. Intersphinx
is supported in Twisted documentation, with prefixes for linking to either the Python 2 standard library documentation
(via py2) or Python 3 (via py3) as needed.

10.6.5 Introductions

The introductory section of a Twisted howto should immediately follow the top-level heading and precede any sub-
headings.

The following items should be present in the introduction to Twisted howtos: the introductory paragraph and the
description of the target audience.

Introductory paragraph

The introductory paragraph of a document should summarize what the document is designed to present. It should
use the both proper names for the Twisted technologies and simple non-Twisted descriptions of the technologies. For
example, in this paragraph both the name of the technology (“Conch”) and a description (“SSH server”) are used:

This document describes setting up a SSH server to serve data from the file system using Conch, the
Twisted SSH implementation.

The introductory paragraph should be relatively short, but should, like the above, somewhere define the document’s
objective: what the reader should be able to do using instructions in the document.

Description of target audience

Subsequent paragraphs in the introduction should describe the target audience of the document: who would want to
read it, and what they should know before they can expect to use your document. For example:

The target audience of this document is a Twisted user who has a set of filesystem like data objects that
they would like to make available to authenticated users over SFTP.

Following the directions in this document will require that you are familiar with managing authentication
via the Twisted Cred system.

Use your discretion about the extent to which you list assumed knowledge. Very introductory documents that are going
to be among a reader’s first exposure to Twisted will even need to specify that they rely on knowledge of Python and
of certain networking concepts (ports, servers, clients, connections) but documents that are going to be sought out by
existing Twisted users for particular purposes only need to specify other Twisted knowledge that is assumed.

Any knowledge of technologies that wouldn’t be considered “core Python” and/or “simple networking” need to be
explicitly specified, no matter how obvious they seem to someone familiar with the technology. For example, it needs
to be stated that someone using enterprise should know SQL and should know how to set up and populate databases
for testing purposes.

Where possible, link to other documents that will fill in missing knowledge for the reader. Linking to documents in the
Twisted repository is preferred but not essential.
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Goals of document

The introduction should finish with a list of tasks that the user can expect to see the document accomplish. These tasks
should be concrete rather than abstract, so rather than telling the user that they will “understand Twisted Conch”, you
would list the specific tasks that they will see the document do. For example:

This document will demonstrate the following tasks using Twisted Conch:

• creating an anonymous access read-only SFTP server using a filesystem backend;

• creating an anonymous access read-only SFTP server using a proxy backend connecting to an HTTP
server; and

• creating an anonymous access read and write SFTP server using a filesystem backend.

In many cases this will essentially be a list of your code examples, but it need not be. If large sections of your code are
devoted to design discussions, your goals might resemble the following:

This document will discuss the following design aspects of writing Conch servers:

• authentication of users; and

• choice of data backends.

10.6.6 Example code

Wherever possible, example code should be provided to illustrate a certain technique or piece of functionality.

Example code should try and meet as many of the following requirements as possible:

• example code should be a complete working example suitable for copying and pasting and running by the reader
(where possible, provide a link to a file to download);

• example code should be short;

• example code should be commented very extensively, with the assumption that this code may be read by a Twisted
newcomer;

• example code should conform to the coding standard ; and

• example code should exhibit ‘best practice’, not only for dealing with the target functionality, but also for use of
the application framework and so on.

The requirement to have a complete working example will occasionally impose upon authors the need to have a few
dummy functions: in Twisted documentation the most common example is where a function is needed to generate a
Deferred and fire it after some time has passed. An example might be this, where deferLater is used to fire a callback
after a period of time:

from twisted.internet import task, reactor

def getDummyDeferred():
"""
Dummy method which returns a deferred that will fire in 5 seconds with
a result
"""
return task.deferLater(reactor, 5, lambda x: "RESULT")

As in the above example, it is imperative to clearly mark that the function is a dummy in as many ways as you can:
using Dummy in the function name, explaining that it is a dummy in the docstring, and marking particular lines as being
required to create an effect for the purposes of demonstration. In most cases, this will save the reader from mistaking
this dummy method for an idiom they should use in their Twisted code.
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10.6.7 Conclusions

The conclusion of a howto should follow the very last section heading in a file. This heading would usually be called
“Conclusion”.

The conclusion of a howto should remind the reader of the tasks that they have done while reading the document. For
example:

In this document, you have seen how to:

1. set up an anonymous read-only SFTP server;

2. set up a SFTP server where users authenticate;

3. set up a SFTP server where users are restricted to some parts of the filesystem based on authentica-
tion; and

4. set up a SFTP server where users have write access to some parts of the filesystem based on authen-
tication.

If appropriate, the howto could follow this description with links to other documents that might be of interest to the
reader with their newfound knowledge. However, these links should be limited to fairly obvious extensions of at least
one of the listed tasks.

10.7 Twisted Compatibility Policy

10.7.1 Motivation

The Twisted project has a small development team, and we cannot afford to provide anything but critical bug-fix sup-
port for multiple version branches of Twisted. However, we all want Twisted to provide a positive experience during
development, deployment, and usage. Therefore we need to provide the most trouble-free upgrade process possible,
so that Twisted application developers will not shy away from upgrades that include necessary bugfixes and feature
enhancements.

Twisted is used by a wide variety of applications, many of which are proprietary or otherwise inaccessible to the Twisted
development team. Each of these applications is developed against a particular version of Twisted. The most important
compatibility to preserve is at the Python API level. Python does not provide us with a strict way to partition public and
private objects (methods, classes, modules), so it is unfortunately quite likely that many of those applications are using
arbitrary parts of Twisted. Our compatibility strategy needs to take this into account, and be comprehensive across our
entire codebase.

Exceptions can be made for modules aggressively marked unstable or experimental, but even experimental modules
will start being used in production code if they have been around for long enough.

The purpose of this document is to to lay out rules for Twisted application developers who wish to weather the changes
when Twisted upgrades, and procedures for Twisted engine developers - both contributors and core team members - to
follow when who want to make changes which may be incompatible to Twisted itself.
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10.7.2 Defining Compatibility

The word “compatibility” is itself difficult to define. While comprehensive compatibility is good, total compatibility
is neither feasible nor desirable. Total compatibility requires that nothing ever change, since any change to Python
code is detectable by a sufficiently determined program. There is some folk knowledge around which kind of changes
obviously won’t break other programs, but this knowledge is spotty and inconsistent. Rather than attempt to disallow
specific kinds of changes, here we will lay out a list of changes which are considered compatible.

Throughout this document, compatible changes are those which meet these specific criteria. Although a change may be
broadly considered backward compatible, as long as it does not meet this official standard, it will be officially deemed
incompatible and put through the process for incompatible changes.

The compatibility policy described here is 99% about changes to interface, not changes to functionality.

Note: Ultimately we want to make the user happy but we cannot put every possible thing that will make every possible
user happy into this policy.

10.7.3 Brief notes for developers

Here is a summary of the things that need to be done for deprecating code. This is not an exhaustive read and beside
this list you should continue reading the rest of this document:

• Do not change the function’s behavior as part of the deprecation process.

• Cause imports or usage of the class/function/method to emit a DeprecationWarning either call warnings.warn or
use one of the helper APIs

• The warning text must include the version of Twisted in which the function is first deprecated (which will always
be a version in the future)

• The warning text should recommend a replacement, if one exists.

• The warning must “point to” the code which called the function. For example, in the normal case, this means
stacklevel=2 passed to warnings.warn.

• There must be a unit test which verifies the deprecation warning.

• A .removal news fragment must be added to announce the deprecation.

10.7.4 Procedure for Incompatible Changes

Any change specifically described in the next section as compatible may be made at any time, in any release.

The First One’s Always Free

The general purpose of this document is to provide a pleasant upgrade experience for Twisted application developers
and users.

The specific purpose of this procedure is to achieve that experience by making sure that any application which runs
without warnings may be upgraded one minor version of twisted (y to y+1 in x.y.z) or from the last minor revision of
a major release to the first minor revision of the next major release (x to x + 1 in x.y.z to x.0.z, when there will be no
x.y+1.z).

In other words, any application which runs its tests without triggering any warnings from Twisted should be able to
have its Twisted version upgraded at least once with no ill effects except the possible production of new warnings.
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Incompatible Changes

Any change which is not specifically described as compatible must be made in 2 phases. If a change is made in release
R, the timeline is:

1. Release R: New functionality is added and old functionality is deprecated with a DeprecationWarning.

2. At the earliest, release R+2 and one year after release R, but often much later: Old functionality is completely
removed.

Removal should happen once the deprecated API becomes an additional maintenance burden.

For example, if it makes implementation of a new feature more difficult, if it makes documentation of non-deprecated
APIs more confusing, or if its unit tests become an undue burden on the continuous integration system.

Removal should not be undertaken just to follow a timeline. Twisted should strive, as much as practical, not to break
applications relying on it.

10.7.5 Procedure for Exceptions to this Policy

Every change is unique.

Sometimes, we’ll want to make a change that fits with the spirit of this document (keeping Twisted working for applica-
tions which rely upon it) but may not fit with the letter of the procedure described above (the change modifies behavior
of an existing API sufficiently that something might break). Generally, the reason that one would want to do this is to
give applications a performance enhancement or bug fix that could break behavior in unintended hypothetical uses of an
existing API, but we don’t want well-behaved applications to pay the penalty of a deprecation/adopt-a-new-API/removal
cycle in order to get the benefits of the improvement if they don’t need to.

If this is the case for your change, it’s possible to make such a modification without a deprecation/removal cycle.
However, we must give users an opportunity to discover whether a particular incompatible change affects them: we
should not trust our own assessments of how code uses the API. In order to propose an incompatible change, start a
discussion on the mailing list. Make sure that it is eye-catching, so those who don’t read all list messages in depth will
notice it, by prefixing the subject with INCOMPATIBLE CHANGE: (capitalized like so). Always include a link to
the ticket, and branch (if relevant).

In order to conclude such a discussion, there must be a branch available so that developers can run their unit tests
against it to mechanically verify that their understanding of their own code is correct. If nobody can produce a failing
test or broken application within a week’s time from such a branch being both 1. available and 2. announced, and
at least three committers agree that the change is worthwhile, then the branch can be considered approved for the
incompatible change in question.

Since some codebases that use Twisted are presumably proprietary and confidential, there should be a good-faith pre-
sumption if someone says they have broken tests but cannot immediately produce code to share.

The branch must be available for one week’s time.

Note: The announcement forum for incompatible changes and the waiting period required are subject to change as we
discover how effective this method is; the important aspect of this policy is that users have some way of finding out in
advance about changes which might affect them.
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10.7.6 Compatible Changes. Changes not Covered by the Compatibility Policy

Here is a non-exhaustive list of changes which are not covered by the compatibility policy. These changes can be made
without having to worry about the compatibility policy.

Test Changes

No code or data in a test package should be imported or used by a non-test package within Twisted. By doing so, there’s
no chance anything could access these objects by going through the public API.

Test code and test helpers are considered private API and should not be imported outside of the Twisted testing infras-
tructure.

Private Changes

Code is considered private if the user would have to type a leading underscore to access it. In other words, a function,
module, method, attribute or class whose name begins with an underscore may be arbitrarily changed.

Bug Fixes and Gross Violation of Specifications

If Twisted documents an object as complying with a published specification, and there are inputs which can cause
Twisted to behave in obvious violation of that specification, then changes may be made to correct the behavior in the
face of those inputs.

If application code must support multiple versions of Twisted, and work around violations of such specifications, then
it must test for the presence of such a bug before compensating for it.

For example, Twisted supplies a DOM implementation in twisted.web.microdom. If an issue were discovered where
parsing the string <xml>Hello</xml> and then serializing it again resulted in >xml<Hello>/xml<, that would grossly
violate the XML specification for well-formedness. Such code could be fixed with no warning other than release notes
detailing that this error is now fixed.

Raw Source Code

The most basic thing that can happen between Twisted versions, of course, is that the code may change. That means
that no application may ever rely on, for example, the value of any func_code object’s co_code attribute remaining
stable, or the checksum of a .py file remaining stable.

Docstrings may also change at any time. Applications must not depend on any Twisted class, module, or method’s
metadata attributes such as __module__, __name__, __qualname__, __annotations__ and __doc__ to remain the
same.

New Attributes

New code may also be added. Applications must not depend on the output of the dir() function on any object re-
maining stable, nor on any object’s __all__ attribute, nor on any object’s __dict__ not having new keys added to it.
These may happen in any maintenance or bugfix release, no matter how minor.
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Pickling

Even though Python objects can be pickled and unpickled without explicit support for this, whether a particular pickled
object can be unpickled after any particular change to the implementation of that object is less certain. Because of this,
applications must not depend on any object defined by Twisted to provide pickle compatibility between any release
unless the object explicitly documents this as a feature it has.

Representations

The printable representations of objects, as returned by repr(<object>) and defined by def __repr__(self):
are for debugging and informational purposes. Because of this, applications must not depend on any object defined
by Twisted to provide repr compatibility between any release. Attribute Access ^^^^^^^^^^^^^^^^ How an object’s
attributes are defined and accessed is considered an implementation detail. To allow backwards compatibility, an
attribute may be moved from the instance __dict__ into an @property or other descriptor based accessor.

Adding new attributes to a constructed object, or monkey patching, is not considered a public use. This restriction
allows both creating and converting to slotted classes. Because of this, applications must not depend on any object
defined by Twisted to provide __dict__ or __slots__ compatibility between any release.

10.7.7 Changes Covered by the Compatibility Policy

Here is a non-exhaustive list of changes which are not covered by the compatibility policy.

Some changes appear to be in keeping with the above rules describing what is compatible, but are in fact not.

Interface Changes

Although methods may be added to implementations, adding those methods to interfaces may introduce an unexpected
requirement in user code.

Note: There is currently no way to express, in zope.interface, that an interface may optionally provide certain features
which need to be tested for. Although we can add new code, we can’t add new requirements on user code to implement
new methods.

This is easier to deal with in a system which uses abstract base classes because new requirements can provide default
implementations which provide warnings. Something could also be put in place to do the same with interfaces, since
they already install a metaclass, but this is tricky territory. The only example I’m aware of here is the Microsoft tradition
of ISomeInterfaceN where N is a monotonically ascending number for each release.

Private Objects Available via Public Entry Points

If a public entry point returns a private object, that private object must preserve its public attributes.

In the following example, _ProtectedClass can no longer be arbitrarily changed. Specifically, getUsers() is now a
public method, thanks to get_users_database() exposing it. However, _checkPassword() can still be arbitrarily
changed or removed.

For example:
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class _ProtectedClass:
"""
A private class which is initialized only by an entry point.
"""
def getUsers(self):

"""
A public method covered by the compatibility policy.
"""
return []

def _checkPassword(self):
"""
A private method not covered by the compatibility policy.
"""
return False

def get_users_database():
"""
A method guarding the initialization of the private class.

Since the method is public and it returns an instance of the
C{_ProtectedClass}, this makes the _ProtectedClass a public class.
"""
return _ProtectedClass()

Private Class Inherited by Public Subclass

A private class which is inherited or exposed in any way by public subclass will make the inherited class public.

The private is still protected against direct instantiation.

class _Base(object):
"""
A class which should not be directly instantiated.
"""
def getActiveUsers(self):

return []

def getExpiredusers(self):
return []

class Users(_Base):
"""
Public class inheriting from a private class.
"""
pass

In the following example _Base is effectively public, since getActiveUsers() and getExpiredusers() are both
exposed via the public Users class.
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Documented and Tested Gross Violation of Specifications

If the behaviour of a what was later found as a bug was documented, or fixing it caused existing tests to break, then
the change should be considered incompatible, regardless of how gross its violation. It may be that such violations
are introduced specifically to deal with other grossly non-compliant implementations of said specification. If it is
determined that those reasons are invalid or ought to be exposed through a different API, the change is compatible.

10.7.8 Application Developer Upgrade Procedure

When an application wants to be upgraded to a new version of Twisted, it can do so immediately.

However, if the application wants to get the same for free behavior for the next upgrade, the application’s tests should
be run treating warnings as errors, and fixed.

10.7.9 Supporting and de-supporting Python versions

Twisted does not have a formal policy around supporting new versions of Python or de-supporting old versions of
Python. We strive to support Twisted on any version of Python that is the default Python for a vendor-supported release
from a major platform, namely Debian, Ubuntu, the latest release of Windows, or the latest release of macOS. The
versions of Python currently supported are listed in the INSTALL file for each release.

A distribution release + Python version is only considered supported when a buildbot builder exists for it.

Removing support for a Python version will be announced at least 1 release prior to the removal.

10.7.10 How to deprecate APIs

Classes

Classes are deprecated by raising a warning when they are access from within their module, using the
deprecatedModuleAttribute helper.

class SSLContextFactory:
"""
An SSL context factory.
"""
deprecatedModuleAttribute(

Version("Twisted", 12, 2, 0),
"Use twisted.internet.ssl.DefaultOpenSSLContextFactory instead.",
"twisted.mail.protocols", "SSLContextFactory")

Functions and methods

To deprecate a function or a method, add a call to warnings.warn to the beginning of the implementation of that method.
The warning should be of type DeprecationWarning and the stack level should be set so that the warning refers to
the code which is invoking the deprecated function or method. The deprecation message must include the name of the
function which is deprecated, the version of Twisted in which it was first deprecated, and a suggestion for a replacement.
If the API provides functionality which it is determined is beyond the scope of Twisted or it has no replacement, then
it may be deprecated without a replacement.

There is also a deprecated decorator which works for new-style classes.

For example:
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import warnings

from twisted.python.deprecate import deprecated
from twisted.python.versions import Version

@deprecated(Version("Twisted", 1, 2, 0), "twisted.baz")
def some_function(bar):

"""
Function deprecated using a decorator.
"""
return bar * 3

@deprecated(Version("Twisted", 1, 2, 0))
def some_function(bar):

"""
Function deprecated using a decorator and which has no replacement.
"""
return bar * 3

def some_function(bar):
"""
Function with a direct call to warnings.
"""
warnings.warn(

'some_function is deprecated since Twisted 1.2.0. '
'Use twisted.baz instead.',
category=DeprecationWarning,
stacklevel=2)

return bar * 3

Instance attributes

To deprecate an attribute on instances of a new-type class, make the attribute into a property and call warnings.warn
from the getter and/or setter function for that property. You can also use the deprecatedProperty decorator which
works for new-style classes.

from twisted.python.deprecate import deprecated
from twisted.python.versions import Version

class SomeThing(object):
"""
A class for which the C{user} ivar is not yet deprecated.
"""

def __init__(self, user):
self.user = user

(continues on next page)
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(continued from previous page)

class SomeThingWithDeprecation(object):
"""
A class for which the C{user} ivar is now deprecated.
"""

def __init__(self, user=None):
self._user = user

@deprecatedProperty(Version("Twisted", 1, 2, 0))
def user(self):

return self._user

@user.setter
def user(self, value):

self._user = value

Module attributes

Modules cannot have properties, so module attributes should be deprecated using the deprecatedModuleAttribute
helper.

from twisted.python import _textattributes
from twisted.python.deprecate import deprecatedModuleAttribute
from twisted.python.versions import Version

flatten = _textattributes.flatten

deprecatedModuleAttribute(
Version('Twisted', 13, 1, 0),
'Use twisted.conch.insults.text.assembleFormattedText instead.',
'twisted.conch.insults.text',
'flatten')

Modules

To deprecate an entire module, deprecatedModuleAttribute can be used on the parent package’s __init__.py.

There are two other options:

• Put a warnings.warn() call into the top-level code of the module.

• Deprecate all of the attributes of the module.
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10.7.11 Testing Deprecation Code

Like all changes in Twisted, deprecations must come with associated automated tests.

Due to a bug in Trial (#6348), unhandled deprecation warnings will not cause test failures or show in test results.

While the Trial bug is not fixed, to trigger test failures on unhandled deprecation warnings use:

python -Werror::DeprecationWarning ./bin/trial twisted.conch

There are several options for checking that a code is deprecated and that using it raises a DeprecationWarning.

There are helper methods available for handling deprecated callables (callDeprecated) and deprecated classes or
module attributes (getDeprecatedModuleAttribute).

If the deprecation warning has a customized message or cannot be caught using these helpers, you can use assertWarns
to specify the exact warning you expect.

Lastly, you can use flushWarnings after performing any deprecated activity. This is the most precise, but also the
most verbose, way to assert that you’ve raised a DeprecationWarning.

from twisted.trial import unittest

class DeprecationTests(unittest.TestCase):
"""
Tests for deprecated code.
"""
def test_deprecationUsingFlushWarnings(self):

"""
flushWarnings() is the recommended way of checking for deprecations.
Make sure you only flushWarning from the targeted code, and not all
warnings.
"""
db.getUser('some-user')

message = (
'twisted.Identity.getUser was deprecated in Twisted 15.0.0: '
'Use twisted.get_user instead.'
)

warnings = self.flushWarnings(
[self.test_deprecationUsingFlushWarnings])

self.assertEqual(1, len(warnings))
self.assertEqual(DeprecationWarning, warnings[0]['category'])
self.assertEqual(message, warnings[0]['message'])

def test_deprecationUsingCallDeprecated(self):
"""
callDeprecated() assumes that the DeprecationWarning message
follows Twisted's standard format.
"""
self.callDeprecated(

Version("Twisted", 1, 2, 0), db.getUser, 'some-user')

(continues on next page)

10.7. Twisted Compatibility Policy 517

https://twistedmatrix.com/trac/ticket/6348


Twisted Documentation, Release 23.8.0

(continued from previous page)

def test_deprecationUsingAssertWarns(self):
"""
assertWarns() is designed as a general helper to check any
type of warnings and can be used for DeprecationsWarnings.
"""
self.assertWarns(

DeprecationWarning,
'twisted.Identity.getUser was deprecated in Twisted 15.0.0 '
'Use twisted.get_user instead.',
__file__,
db.getUser, 'some-user')

When code is deprecated, all previous tests in which the code is called and tested will now raise
DeprecationWarnings. Making calls to the deprecated code without raising these warnings can be done using the
callDeprecated helper.

from twisted.trial import unittest

class IdentityTests(unittest.TestCase):
"""
Tests for our Identity behavior.
"""

def test_getUserHomePath(self):
"""
This is a test in which we check the returned value of C{getUser}
but we also explicitly handle the deprecations warnings emitted
during its execution.
"""
user = self.callDeprecated(

Version("Twisted", 1, 2, 0), db.getUser, 'some-user')

self.assertEqual('some-value', user.homePath)

Tests which need to use deprecated classes should use the getDeprecatedModuleAttribute helper.

from twisted.trial import unittest

class UsernameHashedPasswordTests(unittest.TestCase):
"""
Tests for L{UsernameHashedPassword}.
"""
def test_initialisation(self):

"""
The initialisation of L{UsernameHashedPassword} will set C{username}
and C{hashed} on it.
"""
UsernameHashedPassword = self.getDeprecatedModuleAttribute(

'twisted.cred.credentials', 'UsernameHashedPassword', Version('Twisted', 20,␣
→˓3, 0))

(continues on next page)
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creds = UsernameHashedPassword(b"foo", b"bar")
self.assertEqual(creds.username, b"foo")
self.assertEqual(creds.hashed, b"bar")

10.8 Naming Conventions

While this may sound like a small detail, clear method naming is important to provide an API that developers familiar
with event-based programming can pick up quickly.

Since the idea of a method call maps very neatly onto that of a received event, all event handlers are simply methods
named after past-tense verbs. All class names are descriptive nouns, designed to mirror the is-a relationship of the
abstractions they implement. All requests for notification or transmission are present-tense imperative verbs.

Here are some examples of this naming scheme:

• An event notification of data received from peer:dataReceived(data)

• A request to send data: write(data)

• A class that implements a protocol: Protocol

The naming is platform neutral. This means that the names are equally appropriate in a wide variety of environments,
as long as they can publish the required events.

It is self-consistent. Things that deal with TCP use the acronym TCP, and it is always capitalized. Dropping, losing,
terminating, and closing the connection are all referred to as “losing” the connection. This symmetrical naming allows
developers to easily locate other API calls if they have learned a few related to what they want to do.

It is semantically clear. The semantics of dataReceived are simple: there are some bytes available for processing. This
remains true even if the lower-level machinery to get the data is highly complex.

10.9 Philosophy

10.9.1 Abstraction Levels

When implementing interfaces to the operating system or the network, provide two interfaces:

• One that doesn’t hide platform specific or library specific functionality. For example, you can use file descriptors
on Unix, and Win32 events on Windows.

• One that provides a high level interface hiding platform specific details. E.g. process running uses same API on
Unix and Windows, although the implementation is very different.

Restated in a more general way:

• Provide all low level functionality for your specific domain, without limiting the policies and decisions the user
can make.

• Provide a high level abstraction on top of the low level implementation (or implementations) which implements
the common use cases and functionality that is used in most cases.
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10.9.2 Learning Curves

Require the minimal amount of work and learning on part of the user to get started. If this means they have less
functionality, that’s OK, when they need it they can learn a bit more. This will also lead to a cleaner, easier to test
design.

For example - using twistd is a great way to deploy applications. But to get started you don’t need to know about it.
Later on you can start using twistd, but its usage is optional.
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ELEVEN

REPORT A SECURITY ISSUE

We take security very seriously. Your input and feedback on our security is always appreciated.

You can send urgent or sensitive reports directly to security@twistedmatrix.com

You may use our PGP public key if you wish. We will create a GitHub security advisory to coordinate a fix. Include
your GitHub username so that we add you as a collaborator on the advisory. See GHSA-c2jg-hw38-jrqq for an example.
We’ll get back to you as soon as we can.

Twisted is an all volunteer project and there may be some delay before we can respond.

Feel free to follow up if you think an unreasonable amount of time has elapsed without a response!

All releases, including security releases, are announced on the mailing list. Consider subscribing to receive notification
about the availability of a security fix.
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CHAPTER

TWELVE

SECURITY PROCEDURE FOR DEVELOPERS

The goal of the normal Twisted development procedure is to make all steps transparent and record all information at
all times in a public location - either the issue tracker or a branch.

The goal of the security variation of the Twisted development procedure is to keep track of progress resolving security
issues while minimizing the window of time where information useful to attackers is available before a fix for the issue
is available to Twisted users.

This process is intended as a helpful recommendation. Elements of it may be followed more or less strictly depending
on the severity of the issue in question:

1. Begin by filing a ticket which does not describe the issue and simply says ‘security issue, description pending’
and has the ‘security’ keyword.

2. Create a security advisory in GitHub using the GitHub UI. This will trigger the creation of a private repository
that can be use for developing a patch. This automatically created private repository is also used to review the
PR in private.

3. Make the required changes to fix the security issue in the new private repository.

4. Create a new PR using the GitHub security advisory UI. This will generate a private PR. Request the review and
get the approval for the PR. Don’t merge the PR after approval. In the PR description define the desired merge
commit message. The PR will be merged by the release manager at the same time with the first release candidate.

5. Automated notifications for the private repository and private PR are limited. Try to communicate over IRC,
gitter or other means to find a person to review the new PR. Coordinate with the release manager. More info
about the release process can be found on the release process dedicated page.

6. We are not aware of a way to securely transmit our code to our public continuous integration systems. Reviewers
should manually run the automated tests on their local forks of the new private repository.

Aside from hiding the details of the issue while development is ongoing, all of the normal policies apply. Security fixes
require unit tests, code review, etc.

12.1 PGP key for email communication

Below is the PGP key for security@twistedmatrix.com:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.22 (Darwin)

mQINBFFGXnMBEACrFZe22Ps0uTdXASlz2iA6cRU8GZv7fYeaMOtOBMECP+iK7l/b
3OOr4NgYdQbaJBitKde88xoJdxePXD7pysmtHvxR6bDGeaA/YRGa9Cc0u7S3TpOG
jRIKjaREk4EW0VmMhtkkZbGaMTiCpPlhQci8R6IO6x2eJveRsH32MiKzm6XqsRML

(continues on next page)
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a2grFCO2SKXbMywcA21qXvCDF7KnfhNFzeHE+qMNjn+9zi1rMK0YNo0DMSCDkYXH
ytyo44CeQNnn9itgDqEP0xM03C+x50YbUFJzt+uTZeBIshhnfdHPaYuULRreUHcM
PNltj2+3kRzJlELXhHxjNLk0u+wdsSUg2vjuKCiaCDu1gkfaBkT4wyDoQ8XtWzNE
ya2vzH/D5s0motyFLSqScf56CAg5xLCILbFaYCfc+cuB4JwRRGliiXDtWkBZW6Qw
lAMmuz/b1TWkMkCZDcBNfk2P22KIp/+B1J254yQ8Lap+RXFnDu9UOZAa02pZt+ix
m1ZG7A1f5Gi6hhxicVeZwwHErcILBJs3v2wdY4Tz7Gy2MrR0PQ02NVCz6L0mre99
y9SIltLHPLyax4GHIUvBGs4muu5xeyf64iEAmFBt5BJTN5WumTqlbCw2TSJptjxG
6KGNdRu9yj75GcQUoTGN9fzaNA0oNZsxw+5JS4k3bEn5cKlEMaLacFrkLwARAQAB
tC9BbGV4YW5kZXIgTmF0aGFuIEdheW5vciA8YWxleC5nYXlub3JAZ21haWwuY29t
PohGBBARAgAGBQJRRmjVAAoJELFzJ9QBcd8wNCkAn1STe+QvEvMGWzqv1LVj5Zp9
UIcxAKDnQjNyYlP7A1+6f/LOpsrAkwE61ohGBBARAgAGBQJRR1muAAoJEJnN6p2k
E1s4JUAAn3FaKuAvaNNlAi9CIu/Jrv3HmGXTAKCihc1sCZSOB69PHNLTzzFEW0YZ
vIhGBBARAgAGBQJRR40XAAoJELgaG/IpZ/8eA1oAn32rCfZOks/Lwkpga/Cx/Bx7
xlPvAKCLQQD/e04+SLAdKWSLTLA0E8ffhohGBBARAgAGBQJRShTKAAoJEF+sgInN
hO5IQmgAnA96F28mGlGJGN2XQqJ70KBhm/4VAJ4tPteL3KApHgzxAis4CAA98O6u
f4hGBBARCAAGBQJRRmTKAAoJEPFuK5USrRNnZtUAoJgjmaG1xgstYAuM4kLfcn3b
4DyVAKDi9x+PYTkV1su3BOhtQ1H+KXvtJYhGBBARCgAGBQJRR5hjAAoJEDaEwMCM
iyrh2esAn2mOviXUmrzVf70x8N+Chyo+/5TbAJ9WAKRJ7ahkTN9y8xvUTG3aGK8D
L4hKBBARAgAKBQJRR1YeAwUBeAAKCRAD18SnZ5GxTxzTAJwNzi26WnCZ3K8zaLnM
/3ZvmszRrwCeNMBAJXkexcds8tQ9yWw3Dbtz+caISgQQEQIACgUCUUevdgMFAXgA
CgkQw05XR+I91nfMJwCgqyKEY2w74hZMwHLEnZux+/gm1lMAmQF6xHGV/WDCMzTN
VjudSScvhHlJiEoEEBECAAoFAlFKFJUDBQF4AAoJEKxorARBxukwHPkAn1khBRhb
DWblKlOsqxJfA8Um1/KXAJ9yrIoHIBRnMdTd66l71bhFbemCjohKBBARAgAKBQJR
2g/mAwUBeAAKCRDMyEnqoT1lfRqdAJ4rNlg+S5ULX4jHoUu7N1yE+den5QCfUf1k
hXMk6yVu8gc9cKVO3IbV0QSISgQQEQIACgUCUdog4QMFAXgACgkQ/cHwQQKUmesY
fQCfS8T/n5eJzPkltk1T0oz+ZATwzogAnRq4RcJ8MRL4PQNXC2LPiyYGtAV9iGIE
EBEIAAoFAlFHctwDBQF4AAoJEI0ua6zm1qquXiEA/0mcLYY6JOSfGT4TaU1sHq0v
246Esdt8OyQj1DS24ss/AQCHim26f6m6uBEbczjO6IamFa5dwtvwfjN0WR14zHnY
t4hiBBARCAAKBQJRR59gAwUBeAAKCRAC4CNExhl7PK+YAP9T4Ke57e50hxEuvAAr
vSa83bmQ3/KphfdBansOVYO7UwD+InkmYZbtjN6rnnz33VqzDt+1DbxBENnLwWQb
Gr0XJ+CJARwEEAECAAYFAlFGaPMACgkQQf6sfHtaj44i3Qf/UjJiaFVFEiMZT1ap
WI9XMg/FMGWagDXLBtLIOZCaNxZJGkI7Zgb0Kgf9eoHw6XIf/0xbNO/a40Sipd82
WSsf761GDFaFaB4Uty1P8oUjWvWE2OHhVbELsew5cfdDl9qHeiY6gAK9kR5Uzqdj
eSlEuL/HuxIOUw7H4h2dT7XRt0wO/q4NR+qo7i/j4NlNO/Exz4+N82rT5v54EZ/M
kg4XYiTxJXTfQ6fztslW+bBwsyEnYhs0yqxqOrsfls49uWCmfW4kyQAQsS4MK8MN
2sKahleuzV1t7Yu5T9nIq1V21YnlQmh6re5MB7perwGXQR0BfeK7l76mZz+SAtoM
bEz3hokBHAQQAQIABgUCUUZqPwAKCRAdddRk72hdSIPWB/4vXY22AH62dEerfQDQ
IHlvwC+7QaBsEzS8LtUy6BYAa4KLzfijbSMDQq2bRb/9/qwOp3Z45GTRw8Sk3xLW
S2kVR4PMxd73AxZ9qOSbb6ENu3TsrFfTE1ma13+c6cTxYrXPgnVEhA0qCqPk0TF4
J/dN9kjrD3Ue3CTux5lUgVIDfIFnv+heIqr1O7mbsN6AMr/CwwKcr4oX0LAx9tZZ
XfhgF0ycK7TK372PhWbPi2PTYDyoC1NFHpvZAYaFiYIhQ3/3WatLp0uksvIXW+vC
KgCdwEHrtTMlrDb6vZfgyVp6PmWcy6iaZYHMFDokuIsV5SkJTwXV7qkq4Bw5BIBQ
fic3iQEcBBABAgAGBQJRR1cuAAoJEIgVnCSDD29+jb4H/3CBQ4cj2YD5Aac7Z3hl
706+ruv/6xYf0N0HOvAS0TDvP2obmtrHk2NdlZ9Ba7Pc3oEEFycHCdPHBOEk/VOi
zfl74tUjCPbHd880j1zU1jW/CWP23pCRdWTw8sj/9CaCOIcIQ9C7RgYB29I75HR/
1Bl8FAaZ2n0yfZMhwRUWtKparfnOaBU9L1u03yKYXKuWWZ24teG7vFFA2EeSVOaZ
nFOnv+rTsitmgmHt2UjwnYIMzSeqMpdOv5J+GvcZMpKamj3Z0mwKG+RqTcYkJ9T0
6ki7TjoqpmXkzXlOIhdP6ABhdUoGRsiY5fiyWWRYL2WEa1bS6xmX9pC/pvvJni+H
kmmJASAEEAECAAoFAlFH8OsDBQF4AAoJEJwpvFYAQekwbdEH/i7pGDk+OqFrqDof
ySwkkihb3XQKLrqBpv9YOAeb5BpKTHwmj8QmLL/+5dTLBJsKX1GfupjkWoWi7QMu
LxquMkTzyxg06LZ3E1s6PF7ragveEBHkE6bQHrHJkPm8n75jBdnnD/GxW86JWWBt
Tb4ASz+ZqpTFNhaP0Fnq7wiGblPm3Wa/irDoaHFcykZxU958xPqpTYSqXeHp+Eat

(continues on next page)
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4ruR8sk3yfKWiS1+UVGFtDdhjauZMUNGYpcd5BQOCHPr5/4WRwHfxxsM+4t6mwFO
5ZKyqiJyhxExE2LFABzP29QFJBxPyhjFsB2OfHZjD8UxwJ0SHUTXDqiAp7nJHeFm
QSbk/ZWJASAEEAECAAoFAlHaH+MDBQF4AAoJEGFL+OXwzFIwp48H/jnsYx1okfb5
Y6IyCEF83qcCM8ahQER4BY170tEknrJfVZDE4uLLCwGHwWM8358jhjsrvyYmVUm2
i02BL0FCN8D07aAhytyk7Jccj558YQi8eqSJ1BYaPqp4XjivwLxilIzWLhWEkH3G
/oz0sonmjoRii3BW5Hxo9Oob6ptsgSshO/VgsNeUpjrQOOPKeo1/ckCtD8HD1SEN
xYCHWuK+5/e4KvOriRN1q+iFm+S+VCCrhWItYVyCpXRE4SH9PN2qrh8syl9bPqtG
5cqGDe9jf4JtVXHWQynYAjcSo4z50GDcGv2NfqdB2H7UsWn2DvroBrt6QPAxgq9V
MZciJ1oc56qJAhwEEAECAAYFAlFGaNoACgkQtDYo1hguougtFhAAv7kZkS6ezvs0
82w8mcjmmZQu0XaM+Hbo2L2CBXoNtBkQe/UJ9obaCNyLWgDL8KooGb7lc14X1sfL
5+cWCXv9QVsIuBV3qC/7D6whBf8hHBcIv9+RdzPXml2vZd6Bv1kvxVcRhtoQxHGu
U5CGLBn/nM9DrhXfRw7qCS79bD9TGHmS7+W3C9IfoHixCF0HjChCgkFB6doPZKCP
6BYNu7K6aWTRun+GLe+Bcz6Mc4LRwi7vPhRBpG+B7st/WGqBuR6kyekx0GSv2JgT
puGxVbaBjJvJSWjTVv90vGKVeqwsHi+PNztDmc3/T58QfMlXALz2tYp0j8Z+KT2y
G+AWJNkTe43Aq7FFuFVhFqFt0E/4ImjC4FUwMarsiJWCcRn0TPXT7+3yXejn6EDs
5t535OGPC2SwH9ZXN52wpx/Ctk2nYw+uaPaMsMhxkDQrIdlYLr9OCnz/G0K64nt/
yUCEbFTGvxo8nFHv1hDeh03FfNlUyQa+PYDFC4xrCHIqTxVuZNmUUOYpX9rZKRVy
1l3y2S3ptkbEksow5v5UyMoqba8KFE1Ncmny79G6gRBGHPGh5q6T5M02G9n4eMmq
jeW/8vl2lsLnaWDUNDCJ7QfWhjiOSXKt3BhShY3dlGL03sJBGr90zBU07ndUJKhP
tR8mx3jY98soSZn0kbJktY0YP6BdTVCJAhwEEAECAAYFAlFGaakACgkQQfDDUUYI
VryItg/7BPSq3DRuMHFvb6BbBo5V2hGRLrgUlLU0U7hTP1U+PExrx3ccocFjmAnu
/cDPxUyGVYBfXsDoSF8kv0nZ5M7sc5pbA/ksrfrEQn3EHfd7OYcmiMufQY808A7b
5vLkpRa/QIp5xI/uslBm5p3mZiRMc4lrFtzYWHkWpeebLGTA74gtDab6gCh0d/Hy
tlP451kzS+V2cFUJtkxksDoIjTwPIZCGwy5ezc3CLpmU0WucsCtKfRJ8P6YLLTAB
4WjyTUUgwFuCJd8/3PmZaBZAMFhi50cSzsaqnJFeTsUCvWpw3ZNL14l9+jPqvQMB
vzZN5QMBbgnwzHX1pn5YNFmto0/03ycuEFq7eYtNrPT+XreQLskMbNkvjXyUWQcL
hU+9hju0SX6rKGl+pD4D7sxLytGVgoULv/ElydTL0EeIInac8KULOsRrHyQTplBY
mYKwbNrCvoxO81ctjkJb1vFnPJxWrAbNaC1gbTviDWgBzRLxlCfou/m3d8sFvxzt
66w1vPiwSKv560m3z8RulDzwnGxjIiKo3Jy5MwXqxXKGP5W+MxfwpHfLG4OP+iiy
brTv5VoQ0P7/9vIFy8zAG1H78pDjIDbO58eMIUk7y+166I1RO8iHUphAHuOz8k9E
DGFLKYLDnCc5DCrkoj6BGHAVS4loAsA27+5amBpLgTvbq79WtqCJAhwEEAECAAYF
AlFGal4ACgkQq7cd7u6kKwOrsQ//crHwOGfoAV9Pg3E2hdRj0lCiLRbgrzvrZjMn
/J4WZnl0Z9+vpPJN/l74QyCqXTHlszSGApQb8181y2IueyzWpmRBeS/96eA3ruh5
gx4IahlN/tAM51qDYhHEpIfetAh1tKJYGJfPugu++zmV4s9rRoaw44BTIKafCwTu
uKXQGf2dMqs2SFvtYEgZOk79DosEJnUYn9bYujK2UpHKiZ4ir3N/OqygLmvsZWIX
59F3csX7n+QcOSTUeK9yco5UTBj6Kl2bN33caVueja7hloIKAqTFHdghxgG8eXsW
zj9Bj+dkRQHkLqqoprPyb3xBjsKmvXhH1X2HHwMUYJkFmklu8Enw/lN6O5pfFTGU
VkOccUsssTXhzLi2Nep/hXapWZLQCRD5SUkxB3Z6kUlYcpoFFmUtOj6eRi43X76w
hHkTDhImzL/WM3QSr1pgNXrNANZMkkoqMKu/SH+uhHFFoHuDvLYlYxT1YydwCx2J
x4rIeod29KN4zwOcmrNblxkxji/D8WjOiGTtGs0u2rerW012M4Byx4JYh9qsTAHr
i6aRN7E5shABDwTDKdAOywJAR2T4B4S6JsvYTg+dkFvF71PtEpC5WLtXGiuyTpFK
GLgmnBp3IyFkonl/P17my13BXKLTSrXMjSkzyowVcy2XM45ue1v0JyuUVOyHuV4J
wjzsdRKJAhwEEAECAAYFAlFGkdgACgkQS8lS8MsxRb/D/A//TYQZtAtbo31GUG6t
KO2Y+mrKGQwRSCUT8T7EWMAnp6bsPl2GyhLRIT3mD1MywZAucOjvYcO/RndO6c2t
03qnxDHl/KTzADyEGMKhm8RN37yMDFriYOzLvCwFneanOfBDTtqqlpu5w74KJEmo
G86iFi1uEzEZ1j/8nrMTDlZIZ1lyLo2fN8L1UidLujFXMWTQPiZof3FKycEehAWL
AYs65t5lzQ8PZUOqq1BZI4jHaY9ex/n9xtW3Jec9Fxzqgt84sSAPeFpLy21V1K5D
8k2WvptvCnmWOY+b8liBm9dTF+1aJls+7+Q5xhpZM8v8AE/3WtQsTwm0nL8Svo4b
AJ64mhQ0NZTucvi/XlXaryC7NsjJ6oybSjxwn4ZKZBEOqs4NDLbiNAiBs1F7aNZ4
L3PI77UXQypnKfKJnF+Hz8MCO1ye/URt7CrgaFGiR/MpytKVxFyhRmW2hx6EtmuW
IYc35lyb0PZpn3eDVBsAMUm6SOmSw++E9Jr9gQ67HB3SyV62tppTZvsc0ag0gqPz
J7hKE5Uc6zUmh9an1zgcAc2LYn/pRVZ1RvsOSSD8SNPC+LLwzkyyvVAiLad24D2W

(continues on next page)
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JaKcVf/3zMzRBusJKB+MGGThsV+VK6gpKNzbaKndSEr5P00iY+IR+hkDwQN0FVF3
3ios+cQKNiUSfXMj11gGnolAQeSJAhwEEAECAAYFAlFHlEcACgkQpOrfHwCApmMr
ZA//f3d7LgFHve9F23S0GxmAh1ImlMDQbQhri5M2T38quwMAbI1Y2t4Ahc+K8dIw
/ZiRhgehN0Oe/T5b8d1NqfTpPgDOybtLGyXkEkCXNMDB+pnp687RSQ8oQRJakxU4
Abhls5kWvGsw1aqZuRykUOiizh/tv5/JMO1BpYiF0SQ9+7+KGU1X3CY9S06judBK
ykE+5lQizNBi1lnZr52eY7ZJqX+dpkk7KaF4r8B0FwhRJ3hFGeHdx7CYyhUmArFC
J/PXYX05ctmCF3wAz3JqmvIdyIH9b9vPkmgvMHwMztESLJiy1ZEI1oldAuirYGB6
4PC2Eyvb1Ldk8YZCkMp6c30fxOT+BER+9v7XPdZ4bBfyeEjGiGejIehkmolMr9L3
EbN+nIwGyF+c/1b1g4dX8DBMfuIhPs9VAfdemFqftApEVWuomdtSa4Hzy3XVy1c2
az9PLXuh62RPIFR5oN7HsPYWMC1ofpEJEnFrmKwslbyuaIRmxUsLkzQZ6b1eVDf2
38h2kxbcmLDMzNv5LObqQSpHCOtd9D17IgGDDKW7S9uEWxBb+3fcKgzHrg5t1hEq
S1R38WTWLQh2yUazLZOzb81upX2vYuXe7UYeCSZ/hE1vJmVlXNCCHbTZPuIx1tC0
jSCUDsCF3189i11BjqDokuJ+okt/X9Bwxf002Qo3L+q2TpKJAhwEEAECAAYFAlFH
lg8ACgkQEWHL/OZ1URMdiQ//bmlrkBl3gQWidh9DkkHo2epwE93k5QhSYupA5BOv
yfUvnxS2m/vnzpIV60v+Ho30mtaDVVzZu6ZBjrpMDpNzlawHjlhvNYFMSYDpxrE5
0jvP+VFOeLszsnZNLEEj6Q3JtpHmQrvEiPwL5l7njXd1ByKX20bMzNhJ2MOJ/G80
xk+/rLRMNxo83i6i9ggcIVzQ7H/Ti0oO0xE/amaa4QNlKk7Bu3Mp5gJIsAQVBf1D
gDFO2HqN+YcOZAv3j7AmbxUXGqI+zsqlsHQr6gYaQsb4V5o7rhPZDeSziBJQ6SaN
wFTv2tm66hifLkwqulrjoX0vDkmvfW9F7ME4+atYWlvLGPgAuHPnZS7+ztD2PcSQ
qUI+Aodbc1qyaPo3f2vDC82ViMVPz/2EsZWUpEXkcZIDyiqsDw5ewxKxNtqO4v5v
r8cczyiY8inqkb49EpxxORg3b2CIKZIybBA0Vdk7ByP4qsUlyRBYxRyVTT95M8hQ
IN9G8QSGdwD9aaKzzV2lJIPhnwB4b701g5eUtBYqR9o612mKluLv4/c+uFqBrDfn
BeTIO7jmFFrQrUyDqypHdTG1z3z2cIJnk3Xv6PKV0W/1jXrTROwy8fAoPj0leDK9
XWNKM0m4vPbWVs2esXKLqYuKUlHKT7dqPuHn2n+qIs9ffqlxntfEjUTtUBaBIpnB
OOWJAhwEEAECAAYFAlFHnLcACgkQ4nsIXt6qSxsxuA/8DZUsJH4dnWseeB+khl0t
k6yhzU91/5c+IhIXdkNepB75/BDxMEaZL/OstYD58J/zzct6gCM0Yo+9mBD/C1Dy
94dbxAaCh7AJ+CK734cliwTno9gfL2B+mCvqG0J+hbFWAFbz5pQiUOtbZjS++mMM
TYfvkpes0GNA8s88RFhGU7OYCxtthsNnQzzpi58un6HyUzPZKxvmvQ885wwgjH7j
UoFVUHmIZjPAsVH2pZ7esaOGBi/KNSuvdj7fFpRtdT/pTRXhfxL+BtUx6LBzz6Zw
bn1oUfdwzdMYjmnoxtJ32rNoRIHKUuqvucnDXJIZFRduKB1XQqIF8cr6+sxJPUW7
AmlwRSPXa7cx2QAzrJ2KqnGZKH0jiRSA03QqaRR/jrLmw4Mum8+fnkziVnNT7ygF
adKWl11cUZGyqKI35zPdUtdD33XnCzUnz3qUwWCa5PJrIAEMBWbka5v+yT7LBbT0
8XX6eLWMdV/EnUzKKAVo5/QseYbH8OIMEs/hBgZicZU3OH2i3JJX9gAD8+j4o6R4
vv9AMSCT3AHS+FeVO2M+MWC6BNxVZOToeIW0mYt5SNpTXDNjMl84fYQ/KXW1MtF1
YVt844/bHfdqCGShIRPDlbVIX1FopY1q8ECU5KBKCx0Hk+vWq6v/nOHIudJ8qObP
fIznGr54Cd3GFR0YUyJ1tSCJAhwEEAECAAYFAlFH7eQACgkQBJhSPRbxNIDncw//
VQDNF+39lC6IgvehXZphYaMpifHkPE/DwPm3ZkVvy45pIzYlsmuqR45qLV09AgJH
ytD/j4BbHRfAOyiL125/KZ3A9d3PGuu6XcqX/VreHj++ODctBPXe9JJyWiscQWvE
9OYulK0hIrnX60GO1astPmNkzZG4MKeT0eeBAvL+wIoJfyqxslAV0WpLvVE+ZMLT
ZsSXcebACJnvKuBe1N4gVNHo9CLlTtF8V7U94sxakhmSEW93LWK7MMN/X5wBiPiw
IYT07xklB1h5552hHuY7TkzTbwTFZfEgvvVX+DlsWgLUsLpkiZRjhJEB9TxNDaSQ
w1lrmcgsVRPso8VqNS8JceYfodJJtRO9SiLDcAksFeZb/C7vgIcgGVJTDccyC8b8
fLkVdGE1ViwRTTzvzemI4Em0rW3wgUL1gasm2URA+M374uVr6En4V+7JHZAJoN9a
RK2FKfbg+eUQzaI/PaWEj0SJyYUOisLIxAnbN5g4fle//nO5/pIH4WwnjLqZMbq7
tEjNKrIngpZjaMd/zRuyTVSq+9Lik68AP693GoMLyf/t3Y03LRKCo9PmuqAAc9v7
BVPXmB/8EoTU+Y3bWONls9czT/c6B5PVW9zgRxPfvZiHzssu9ERvzlqeEWQxKxMD
OVYVE45NCjLi23dLBFyCtHuIGLvN/Lj2XDCW8b/tYxKJAhwEEAECAAYFAlFKgkUA
CgkQ2RrUKkq3FnjjyQ/+L5VT3+1G0TDlVYeWBffURtJyi2t94xUtxoy4dt0/96Cm
ADs1d81kRqbRjbS1YdrOZkcl21LFUfQXdcEd7badMQu6SZ/tTAsNiWh+FovtazYr
HbM5jUk9Z8u8q5vBLyFxku6B5us6KKUe0Y5EtpQP/zu9kIA9blAs8s4H71eVTeKn
KKFZ5dRsfgGZU1SHxEMx73sihR+1DOCR2D+hOHWvULSQNd+JKz0PgJ0WCPt2on3l
drJ00hq7AevGsxgFwqfOyrFIFy/ovJy80JpFS6hQrLMhVjsjLIt5HraUTzjmEIRZ

(continues on next page)
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EttnBelyA5rsZZIMven1WBBqk4kEiGim8apVaw42GutOtYDdrahXtNPzrZUlwWe3
RcZuySDWy1Q9kUbJIMbOCg2r52/Ca9d4wU6QuTKuNTS2Eef++i2T52CVdsROrNcN
eOVHfDWKQvCqc2fw52w29yBJV1otONsnp63y7YkFuXbQ02TVq9kn7d2QnCXaMgQo
uwcwf75rAQAgJBqH5SVGBCfG7oe1rrGDK3Twh4yM2n/i+2ARUhi7Y5S7Z8tZblv9
urFOKlU19kys2Fzc+qUikSeaSK64i7TmzOUiE663vujUXbLWWwCEyL1gaY9H8qOD
FCefMl0VphkAqBzvvK7qdFGQnOECb9J9SHiM0wan28pRO0/aAy1faVukhadhxw6J
AhwEEAECAAYFAlFbZigACgkQEm61Y6dLBr9vAg//dVfLA+i0AvyX5lrfBIL0/D3R
YSv4g1LLH/sRx92oXoNA2FhbnnYoHemwln/bfiGygEjHQFcuIlD2QNW1aft7Wqbh
8ni6h0sfE1WuvBD4MjKVT8ZLOSm17AvXi8IW9h367Nub1KyT8sfpUoIs+2vAeSyH
jNXYTRgPbbcIlPg9MYGLn6U+LeGY2lphag6GL9IPS1lLIYh93hdQvB3kRmiFp9+1
pwEYp/07oVENGFFKcs/HcaM4py07FddCmE2uwGtscnzG2vVv/ipPbCJoxTZsx9Aw
k2ydP3mdF5jGYCYAiIOCD5jmt0QKnAl2JWEzQI2HRY7Cod0cbSM06k4gDYCDNTzu
MXzl2LohcePuYoKk6WurU5hjLMrszNiGJ89ms4+YidO/pwBpw2PDAw2fYXtt5SPE
S7tOQIDqIqEb2GUFa+R21kljZQf7uGA+VaFoxto0UwKLDIg0YeQ2kUqkjEtiYIML
NRSqn4Pf2oHcHLgdSikATmtsnkfYltkLuDXWfLrxKqvgKhQDEWqZR6RPtwMI8s8n
0T3simE+MWYJfMZ5by/43gvm48TpB4HI4Xw4bABCG00599SzOnLGXDstTT357Q04
l1vPWM9lS+zg9+A5AYZaurygtKMIHI+tWOf2am2Zd1JE1wY+VqRrNAYuhRZdYKcK
CVQAtHCTK4vKPqfDZHmJAhwEEAEIAAYFAlFGaMwACgkQF2fxLhDe+/NjcA//c7R8
tHwsS26c4Fj9AXIsDzoYXe/JndTYUQ6N6MCL9gt3Z9//r2yTAQrpyqvyxib32eh2
oX5Q++V0kABy8fHDuKshnxKvfZz8C9gCpAxX6W7tPuRMAz6RPO23+wFyqorS4AVe
fRKaxHMiLlf1475lGbxCCETSb9p1C5irG0rnvXgAzcbKhfQdeoxTwckcB1cxdpQ1
fBwj1ODuGLCZ83j71bKyFvlTwfIrVLQFic/5epApXZBNQRnrbDtlXXYbPCPB89SM
0SzJYUI4oHSnMYlv9KkhH7Mc1W7JSe2BuzOXeIvGBFsNkNNsy2A9qrjG/33cluwK
ZvLAkPs4ITg64vXvfuwlsKC/HK8JPKs7Iypy3IbLe/AKDJsmvH7J66PjFyeJ/1hz
deRBPtzohya7hCaZ+aTLRG/e/3hzbN7sqAbNozC0wWZbyD4Z8ouIR3nRcE80qfb6
/OwnBgarK0DqaUCInzvGgsOAM3h7/ILccvQT+AvTtvi7dKelPXkzQ1xcf0G9R1qX
MQmwMGjbmbBi0YfDX7N5O7hX+R6vUlQ9vjaAJRp6DwlQoC4hgjEbZQ9821eOTLkg
XtEh+Ed4ZWds9fRyAPn6CH75NSWTqDojmXApB/5OgDArEEfBi86qWT1EZ8FfmXAA
SXbBPnDWHvLDEeYuNBCgZQx4NirnOd0UCk94laqJAhwEEAEIAAYFAlFGa+gACgkQ
aWZt/rAOlj7O7Q/+O2m7R3QHgP7GHtcsGNSSQVkeV4H7zLNQooTkUJ66XjfRITvB
TZW/u+yWRbFYAZBNTqp9JQl5CUOiTRVp8sYl+2G7vD58CyiaXVI6jgKJi+vRPYUL
1Ztc+OJC+3P1WdAdG6c1VQsh3R9hACPfBiaZEyyfEs6qkaNnpOVwOuIG0gT9XLVI
jYlaAXilRtMLcrGW3cPxSTq1pjFsv5Mns2OOgu4eV37DLHRREzAzeCCEXPnIQlrC
Q7Wj1vRw6xp12p3zhY+PziDicr60QNPfQrjHlbfXy24jFErN8A/EhvgbeE6+T4xz
IFDyHltxXWZO8ZZUBVJ9FqNI1rE+EkzCQuarH/UPTmUwcFnQ3kSNmST0Wxgh40nu
RRYFJ/fSm9r7AZp3xMOuFAXKt87OBUwZucS3XZEN1glWDxKeOsTGAYCDqr8QXfEK
le1uJaWTfTb/purdGEAGaDKxoEcuUpTxvVtix/5Sr4Bn8FkFrib2ZlFIoT70aUAf
J5uEX0eLzwmrH9dkLUNb0UJ/VDOULvlRbvY4s2v9EX2ab5ZWcpjwZvUrhfiYa1k2
KqAMKbs99oDb+9rw4Mnt8MxRvK8IlPPBYVJ1sXIrfBPxbDEZgdgYMncZpzuHC+/e
Ls1gxVMSB4mm4dIGG+A6ONPOiz+pU/BrSleBa5IImHYOTa1G0+JYyoaqNhqJAhwE
EAEIAAYFAlHaIOQACgkQ9SMcYueEOozWUxAAiF2o2pjlv/PPM7SdXDL9yHnmMPi3
UBE82j2Fcep6FRmHeAlhB1qs+kDLl9ilnPBhbGl2Hw5oMBRq5Ht0/ZTAxNcADNVi
+aqLfM1eaU6wDWy4HMB4c9Y7n5PJ9KKHfeJNOwDmjWEShg7ETo1aO8VFhLJ3Cv25
I2P658AENb7HWnH8QKlsoKHguqhr4X8wupyDtToTsetwD/fdQ1QofE/6tRSIVmOv
4QcnT4WaH+vY7dgnvFu/ZRIRkq8xXbNrbJ5Q7YMBA2Sx2ZvDowxr/EAWYu9K5bfj
mBxBuffP3liwqAYes+fOmrNs2d2l6JeerFIgvam8w0+1V9G0Za1H+SXsF0+b31DW
5G+Uc8Ad5oRx6rnx/vqWJED2lrhk4W4Emq6+RKSGAOWAIDLwrFPDPhmlqxdpjONu
Wy7VPLWyRjA+XQwdc5LUsWAEuJbSQlQqXFaz2qg+zkNn3XLyN39LLhzFGMzr/tkw
h5gee+xNq/z/L/DWeO5drbIwi2ZcT+mCgP1g0D2xabFBKJz2+MYyiZ1ZJ/uYiwkH
hg6Hay85vOTQuHlJPEA4BcsYwfs7Er/xg4/IQPC2D2ixyzDY2q70XYnN5nXsDgYq
jbevwGi2JchNt80k6LGsACKgtFgaAtx+OkKfslyPDqdqc6lxDfHTSQ3JiMOpruLz
7OBBSzlaS3n9W+aJAhwEEAEIAAYFAlHlfsMACgkQLR+3kWpS4SFoNQ//V5Gw6u+v

(continues on next page)

12.1. PGP key for email communication 527



Twisted Documentation, Release 23.8.0

(continued from previous page)

V5sarI3TRPTFrUEyQBXMz4lFpU9ZRrXaD/td8vV9STRCd66CYhVmV7t8vArStwvw
LXHeb5add9SM8MIlQyEm4+87v7rgWKErh5q5zUmCJ3lCS+i7W4MxVrpVtl3qDoAR
AuQcZwEkTcp90T1H7UsZ5Chv8udxGViBGylz6wDyDj6tJRcU/ZOshUM8nV6Ixqvy
eFUdkrj7aa+sF3ilsm970EhME8rQPwM55mAFWc0wdPhzbQDSLlKEbVWOKOYpiNhB
qMZ54KJYmiAyHFOO2wPdNWV9lHfwftA9+knRNdQhkMVsC+crqFNNl1Ck2afShPsQ
8E3OgsaK8NF+u8u6MsTv6SVgbL7lLA0rKNN08aDh5x7UDv+G8Uv1hIeMhFSrxw11
PyFGYwmScPtcHisaEHP78x3n9xoWbi8LexczUTBjugOqpl0mTcuekAU0QnGbs/EN
SPELqgyZpQ7VjhdPJr8ywROqSnpSrZL6EQcIP9F+CSVVps+Bs5FHmpHE/OSFLNuA
WljJCDzmaqRbwP+LjaXK8aha6lWLXnSSmrmbE7ytQ8JIBX7dYkxJoBJ9P/n5QF+l
gSJxEu4kvPPex0Iu/YYaeekbzl0G+z35HXU96FEzcykBp5J58Z/KT4S32odUmfrG
dpu1kxUDx1Jo8edM2sNKriFDOJJ/5ZZbzoGJAhwEEAEKAAYFAlFKim0ACgkQ7EsD
PHAJatHgGBAAoIPM2gXAs7H7aQwyROrhoa3+R6uO+mckXAD+wpzWxxvzEwHq3H1F
6ez+Bm0LPsgyxgz7dQtJUOPLoeBgrNgtIzs2I34EqT1fGVinDL3kFyjh7Hz0YJq0
O841Dn6m77jkrYqhfJOBTG7rJyWUQqCUZqFtq0negiMUrnaK8Bz3ePicMa2C+h0Y
lmA2T0BgDUPIdmj3MKhBnXaiscKr/WobWUO4zCBo51LY9tu8UymoqPRziu7IUKoW
Peln4byE13lZ9pERRVyDlSEB4WAs/kTlLLrU15A3CeBhFHCQEeDWymmjgnllRVkL
8IyJG60T42ISqzeqn4qaoa1cU2blVyTntJFFYFiWseKvzN6kGjvPt5CB7lEoKP65
VSvq2FVzMCwqznnZwle+fm23FTYCLQ2iCnpftALcsS+0Hc9vCyjEblWkzHNUFzv5
qZgitS9E1EddAiDeVJj1UJqP5De2Ax/q9Z8NjwUY0ymPqQ5kW41QnofILYn3Zy4x
UiZjSoLs8pArzXJBxqnIQ1TX6DJuf4/JQelU2Jn5RKyv49BRwfOCj5Iimy5jZ3sc
a1m+gxsNw8i8IdBdVjB96/ZQdzt0fBzZc1f0KXEf+tPxKOS0V+7mBQdkKUtz8Cpz
wNl0uqn1rAZyKvUajYkzO385L891gSPkY6iNLU62cT3V17xm/hSha9aJAiAEEAEC
AAoFAlFHsgoDBQF4AAoJEFqICfeKqlXNQmUP/A5Lz/d71lX6qsybvCokZHNUFpdp
yNXGf7V/ewSRtq2wEh82d3jefrID1syQYrNQf4sysYrByaDkjjrFl+EN1t5xNYwz
/05+8kNkQ4TZnMNEzzgeieKTAWf2CHrz7j6ru18JlxOpguDHQNkegcrDHCiRIDki
LZqCl29/aMPsBGb2+pt7XY0gYca9rzK7qohxK4ScncTfDTjrbStirPN00P5yP3am
DtZuRAlQN6N5oVmmT6iEw2OwSd1eg8u7frjvExKScVQaWHqKH9B8Wya/P1QgeKr9
RTowvMvTriL9vYYlvvX9VKUXTEp41VGdr+CrdttnZqvZ33i2JzR9Yn9+rEdUJkXj
Hxg7GPFH3Sh8N1Q3CFDnwgg5OJ7B1b+KW76yGSedLNTC4RTHlWTUjdNOpCWDFhIK
n35TNyV2iYjSqZDqbDCLet166mUiPnvlelL5YpeQw3yJabMo0Fkd0rju3kCyvaGD
upFAQofv7zkeyEVjpz54S9vegwBv84xfUm0qO5OWhpT5gfznTEWuuIsAhU6ZR5gr
JgwbV6vgCAes5/SmJLf9I5VRmP8OBw2hinPhN6ebjdkTHaIG6Y2Je1ax169x7oct
/a+UWZGKziKcOE3tyVfSL/YtUKAxhhe84oWH+Fhzum7HelzONoetz9+HEqzP6X5n
DReQFlg8cL6Eg/THiQIgBBABAgAKBQJRR7d6AwUBeAAKCRAkbZmymXg2szFvD/4m
7uZwbJEZ2GFLx6LacK1MoTUQTRgr7tyLlZP7jjzX0cs1HFN4Gl/Aj09w4KROoam+
YRPlfLz3UGaa4Vml09IIKG6hXCWFACtE8U808fWeKWlzvjP0uQAjLZxRLO1h1GpJ
QjgeEScy8pchPiMBlPakixpHPzQm9mhfomLAptC2YpzgvouOlWwryDqKFhbhWzx0
lpLM4+PVJGp9gnilVSE6nDoLyt1QIRajLOTNYWqvYhCYxpYuFxvy0Gzs/uhhDKFk
/blpEpXr/mpLilc+NBtTLexSkuI1gMgklNgAEu1mFW/gEh+/xvlvIkpBTJ+r0wyg
gJ2NU19l3FFMUtce431K8mEmAuipEElBJjsoudY8lFJsA4yW2HxmjFdIdjkhTY5Z
N6uB4EUNb/HDpofLLQGwbitTRFdNSl6Voda+SnKXX4AKVmmV3TZP2kAoVK1Dophy
iisRkvvRHxvMwLR+RN4Fj075qWfL8b6hqq95DZSxCJYi7vb0b644c6mBxRXXlvyj
BUx5Qtx8ikcMmREJdvURpkuKycJQdG2XroaP7/LkdMG6lbWCO8xZde3ZOxM31q4y
LyFkr8WoRrZh/cSRo9kUHeEukEVbCC6VQAHVcr/dCXDCRqLw87/yh7rNHGICVfPP
7PTM3ENKVU9JbriwcyhV0RkE//oqXD9Y7OWHBEvoX4kCIAQQAQIACgUCUUqChAMF
AXgACgkQROCd6mSpCNNn4w/8DjgvfBE+LxxaBvSqszijmzuXIfwIWJN8guaCVf36
Hwhry+okOL4UrcxX0nPgBngf0vU3WaorBcE1G5sJJN5QtK5hg50ncvfXqO9mVBLf
S8+vqTHl2gPB/qR0+y8FF6v0s4OPruyRRxL3BUXnTvgv9rxasSMYY8CM6qNqgBk4
onNjjagOCYJZUmua9/KF6/4rBHbwwF4dOOv3+LdjzduUT6D5uBMBkXiv1Y9848Jf
OYCKlnpqdtLZKEQ6ZD/z5NiGoGxMAO3YSMi3nTUbsrPtVcqE05LQkhrFfYeqGr2v
gUIoDnr1jK+BydwdPnc810aLaGTDZRY/d7XvJ6lDSijdDDZzCldYBoXjligdY1LK
jVwUV4qacKnx3T1vEjucUOJURuC5JpgMqSKdk0vUwNSJXQ7PW8kX4aaURxokrchR
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jtfkyXmp9bdsC9x4hi1C9WY6Ii5MIdWcx0vTyFh4BwKJBsM379/1ICZn4zG3CSEl
mdxBBtT1kWk5ukMwFSlV9Tu1CnwF8I31jFyJf0cfyAv6myfKqV7eRNsDRAJ6ZDg8
O1CSJuWNqZGCiJjSMEE8SOrtOAUXNSIMVjHUCjP0FDoz6LEAwKjYpouWNk5tWQMr
EQgXWU5TsdUjMSTZlTOhmkpSbrM97bfcl/r5zOrKiy1+6dMzuPpddeLcQ33SAY52
pw6JAiAEEAECAAoFAlHaIOwDBQF4AAoJEGSVNWcbDzQ7Mc8P/A3FJDWLYrOEAULi
v6JHaOeaepWCoPPv5Hpe2fA1cDa/KXUAgwNv9YtDqys7GgbyzheoqKVO1vkOGc3R
eKwa9NYUzUR6YiE0Us6srq8jjd31CunioAfiirr2RVsWZY5MpYyrz/7I0USsFFhs
CqCwCBP7YMGs7+SUsObjtSH1pqTCjafdv4KkbrWqH4coDGqTC6EFPNAVfNc6RfTl
DqjwMSuZ0ZXddTok8ZiT3ejxqZ7gvNGxmoxTIl7KXbWI9uHb3WmzGGdyAd1Gw/1C
Mff//o6S1hzA1XG/bpp3eCPt8nMgJMZFsgTlLnINXU6pdzYj6RnRmVrsTswg67Dq
b1cfqqDdkzzeGTsYHJ7nL3w2t/CyI9Prmz0uh93fYCH5G+OBbZdlB+CkTiWfO3l0
1g/qVumndhBr0ZisUOm/HhxPrTrHxXFL0bAZHwOF+VjlG0Tq7uTuZFgnegFi/0Os
d7Tr7MhaP+jzQvh0msymU2b+gvAJ45HxkXPnkt1x9R6eYpGWZ5YmNuPe7O8RY6+E
QLcz/5e+jIMQEgPVz6p5g1rtWLPbjZSzeUbF+1S0ZnpqvfR7o957XZnXgtn436uI
7hFDkO2RwnVmVMu4/Ix+a2UOcaSsLyP6YiTfqwSFMgMtDLopVoM/jSfrp397ZPMX
kXC130k/vvQijhQXvB+K+Sr5D1zDiQI4BBMBAgAiBQJRRl5zAhsDBgsJCAcDAgYV
CAIJCgsEFgIDAQIeAQIXgAAKCRASX1xn3+lAhAj2D/9gN8vp6Yp3/xfSFtC4xrmo
YZratoV3I7nOGiuXUc34ETLlINuGvVZ6D37KfcK4EqNjuJE99keyTlr1y2X4BORx
29h+iFKuNlv81QGOs65qN7eeubLvx1UMiRefFdLkbnmw6BhNhrzitJViiRz/Fqpz
rTz57S2dgOD5mp5Z3WBpYWFg40x7mNkY3BA07+oRmLuqpf9/RY9eARXSzjgl+3aX
yNPW60Bwbm8hfCrmIbhcchRa4sNpyEsGFwnU9Pv8z6fsgLgdJoqJGAhZnoWOuL4e
J94Ow1ctat+ikbbmQ07qTzH79d0xR+TwL1M/OpDJtjG+4XzZo5jXeuIVon6dspGl
oIWyzb+Q/qHJ1yJMdbNDl/ygjLUmcvutG5pHO5xVVn/zwtCBlrAnfEZgk9C1cFw1
WzZCgEIfespz1KSzYIi0c1YVIFhwU/7CNwrCb8w5x13D5eja28BKR+EtXenGk+IF
eKeZorLgQf7IfLa9jAIDFh1dftcNrhRfLOdz1A59Ec1Fr5OXFia9Rrq1Br2tB4DF
u6haLQoxgvz/V/XZ3fA3gd4Cx8Ov+cFfG5iyT5j+H9F4lDuiE2zeDhMYNmvpOTtp
Zp1iI4WndIYB/RxocEcx0xjZDYxC0tS7HQ5RrKKcRQuUPIOdd6EINqLAmyri8p3k
aEr+xBQ/rL0lKm58eIt4xrRNQWxleGFuZGVyIE5hdGhhbiBHYXlub3IgKERqYW5n
byBTb2Z0d2FyZSBGb3VuZGF0aW9uKSA8YWxleEBkamFuZ29wcm9qZWN0LmNvbT6I
SgQQEQIACgUCUdoP3gMFAXgACgkQzMhJ6qE9ZX14mACgwd4EW3okd76FU9M/fDaG
ElQXtAMAn3f0SBrvzqzZ69EZAA29gwszsz+EiEoEEBECAAoFAlHaIOEDBQF4AAoJ
EP3B8EEClJnra5QAoLLCgONLfhPH2a1VX3oZeDE7ma/fAJ962iM3t4AAliJotJTo
jWySM3IiD4kBIAQQAQIACgUCUdof2wMFAXgACgkQYUv45fDMUjALhQgAiFGs1AD+
Dx5Ryfdh3WRbq5Z6QFkKFEcgak8UudnwphOb15VurraNpxZzes/Y4PLsPaXjQie4
jUDB1VN7pbF5rk6oj4osiWgAmjeb7BdrplwurpnlqHSNyjKgqvZB+gyrRwr6AGpp
8GkMUJB+LOUVmpXGSL4XSVmUc0GZ0csFjx9ET215u1BkwQdHt1ENDt93uppbDVSN
zGZrQik3v/gM+kehY0zBb4es7XoAkbwSFDRzZ+A+DsxYXlVQ2rJnIxJZcGqA4kLp
m44B39R6S0JTVECl8XQOJ7UkljjJgf+QMzaWbHeESFZWl1qVN6CoWAAZi8a+w5oO
HGoWTBGa3EpO/okCHAQQAQgABgUCUdog5AAKCRD1Ixxi54Q6jHITEACGl99cJv+g
wFbggc4x++C5m8//gLPl87U3Sz02RG9r5OuNDa42FJUxvmn5Jh1h1QOkb0gCsiB/
UuE5CltonLOhk1h8uVzYjiL6y+AUFOTxfpYr/4zEd/fTyKuFvZFyvf10ee+/+lSV
rHNtX28Xn7nxSZSXkyRbMKNoDyZyOhsROgwm1EpYQNpXjA+dlk7NzfAkknnzH0Ro
SPsXiW+z7hO6upuo7o+m8crkpdtQskbANMrvLrm2QYw46LHkDAz/IbwgWjiwaq58
zRc3C+EAMMtOH3GvJU1vWlRByJtRo+/Dl2bl7aaywxdWIEjzIBQCC3LRRu8o9XuK
zLxarJTZRiLhhoum1bdlYqdIBsGOI7o0KS2IR87dutESdw+mo1M4q4AUhU3MO6yS
N8hDB5Ua27ZyPWVRMuU9W2KkqjoPW3HkeQJgBOA5r7Euabxb8JdpNvnCI7LQ2r24
qrLPRePD6VOdOHr2iG8wFGE0iDlAU+MUq6HznN13N8bp0dBaziZyVc1IyfWGvcIk
o/uqTJnSbh7GFLCSPD0RCwUNpfD+evYUZzOfK/lecVQOin3vk2aSOTTxygraNDfu
XZ30H3ZDzvis1sYKbk6enhj8+A/8FaV5w03w4qGV2Hv5r7p8G85uKWJ1dWXMzthd
xxZDugSmcfsV1aKUHr/1XECwC8mJthx4pIkCIAQQAQIACgUCUdog5wMFAXgACgkQ
ZJU1ZxsPNDsfyhAA1/sYiEO1BO+CbD5KH3Z/ZloRK/iyq6y0J0JR2l0v9kWR/bFA
v6c0GmvoWSJ19sOOPru/SaP9ev6NKYvJ7VCvHJFB6J+2EM21N3a/MAMxlyrHfq/I
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Yir8aAGnLzMnFfEjHNuCfmD2ZURdxhwJX21bKD+hhOhhnsHHMBK8a5k6hQfLee6X
YIHOisccjeNGAlpqnjGND6rz/ff+s1Wbo89QH9oVm6vJR+u0Pf5NgIHuY/ZBASiY
FQsbHY3YfDWDRo05pf7SsSIQKgRDAXh9H2qJCvJSbkvdEOiOhRHI6lYTEN+sIjxg
j9JWRaDZHo1j+tzZmxI8O2/qEEZqZeQ+HqWwmYdmNHy+VKkHz5V7xPSDvilw1S0e
gXCXSfrTtUMNF0bgse5kkjRBHWIoH9m2kpUOgG+pzoyh4ygJEtR3/DfXIWZJcXrQ
CcTPuFFtkREZ425Fr0Lgmhr5QSdzco/ZiVO0fL3u3aC2CA4l6+gkNpUS900VYg0J
cn4x8XkLYNABskO9jr/Y8HTQrlVa8GHQmKj6zH0BDLMVSPj8usoGEC8El8PXJ1mJ
mwox4RFk8Q5FzcNQuh0D/VNSjSrEd7bmtqUMd2KGjnToUvtozfPbd0dffh9MJARc
wA76ZYDDCtnI33VnRTSYJeUrED9GQEHqAhEwoRxinDDPnm840rm8srAywKqJAjgE
EwECACIFAlFk6S0CGwMGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEBJfXGff
6UCEo9cP/RBku6yD3LA1TJ95rZ/OEWn8BTWMW0AJ588ccz0J+n8xa5JdSfzPo5UR
qg9ORjj2Fg7WH/HS26zfBJ5K+zHrWpB+9rCWG5/j6OZSRktdyb4cTxh69BlEdUXy
I5RHsZDMjxvW8C4sNlS5EzkdFICRIJqSpPqHxE70gxARzkIemnoiB2ADPEoUkKU/
oS8RMu48nXPZZVlNnRmInkrI2ob8i5X7t23VDCScCy4mQVVAYfnXr/+wgZOGn7oZ
TUter9tdkcjK6/ZDHX8aE8yZii+8XQLtNLBYofQPMohaLAlHT60MR8444ZIs08PF
ymByd6nwkeiP3MIUTIhNiwsg4kdnXS/q4LtIARX6tuE6/CNIaY6w2v6HJsDCybO4
GvB0SkzVMW6F5JcpmTEiSQUYFwbQkZdVJJiRb28vi+662pbdjv8sVgYENqRmPWIU
2TVe9hI8s24otI/UlWO6IOPcLa0ddH7StlWvsd+bn8gUUzM6WiPmx/78Zp1wROPK
XCxDbFQrWITSUscD48kPXVsgzq9F1MQdDFz6coEsPLSAP+omaNiCNnxP0mCuyYmA
cn7kMnA8xBEWn5MvBVfW44m6NHLzDL5WO5WKic+8JIMNAQp7H1oFSl1WmBSIhJni
r0lfVo57mFFpdUJEovhjLts3IPjfzgCeZyqseu9vp58aZR9rmruVuQINBFFGXnMB
EADA0JKfPQOHYc97KpOgStH91Iv3LXVG8N+NdADEBikzPF6Ahtb4emLtkutC+hHr
C9hntA4exRhhzD+OESDWI4T++2ClOBMgio2/MIs5wlLqXgA7DZq6K5/5D9gMLxZ9
RufouVknxtF4OsMSi73WViXKXiJq42EJA2PqHM2zD/P8pr8L+nbRcG6w1VZt+Hz/
Owl9bd+comCRQ1ySbP9xdIXxEmiX5pmdqZLNiW6JlQ/f6eJ0/xPwqKVTsq857bDq
XfvqL1c2pp96MkB371IxlHKP2ZiVpmYR6S2JPiFkmgMk5SBV9w9tJTXzG4uOhFnU
A0flJ1jxW9i4XPvcEaLqR4Cwe5G/eKvxqybJwa9NpfIBDQl24ZF+Rb5oy9iMITN2
gr75L65/LRZaU1uCePxjthrQn/OjMA+OIyL3/0NGiLfW3H0xzYkqOIkkVSaS/hML
wUeWwXfIKHtX1Wvmh5KSx3HYXuP2Vx7lYO4DCNE/81hKUVGf1ao+jXon/6gxxaJ/
dtaP1TPu3erltkl7GbtDyoh+C66ODec4DRGqbD5r5nuCx6nX5prfTnvyTdu3KgOe
N64bEjT8kpMmEW9lZfKZKp2Ba1iR9ERULYqIAeAQGWA1UVqqEhlyELShwlku2d7D
oLtJ7e76N4qys1gYviknoYQI6WFcKYqY9nfAdYDfXVnk7wARAQABiQIfBBgBAgAJ
BQJRRl5zAhsMAAoJEBJfXGff6UCE9U4P/R2uH1wqATqOlSlXT/2IemtHY9pgGSvF
8fqb438U9YmsP4fnKTtyycCUIV7kl/xWLhrNP3/kd2ZjGxBybJCCXca3cnHIv3Co
FD5fQT22bB5beWdpphJ/SrHPvFIUrw2+faD6ImddLkrsITN0SKpSuN4X6Wi5XCWc
0BU/1yLVsYoA8vgGnpyrTmlKKOvpN3mfAmw2aDSJGsQLaGEwpGaTs+TCHLsySfqm
Q2rl2yUnfY8q+fRzfMx2xQ3aP6ae9ZEkfl+rlynKDOSx6LTG61wk5nNCzQ0p1JCo
lNGyioYttaI4GAFHReMNRaBB35j3aEmW0GLPQdb3bpLjIRuVRC29WaeYj5o6q/V4
ISBAFyPISdVPYemh98stqB/pQSummPEjHkp6lg6G+HZ52NBlOCeKS3042TFh0kbc
UOzBv2LPMtaT45JRZoechdm2hpWe1oeyx1HmMmz+1BBPEoS6FvHNojtJgCwEYRyK
5PH10DbYP3/MxZaxeVKvzY+k15La88zTysd3sEUNzbDrvQsLIflqGrYBleN+MGIh
is3yx9kKiHCT2LpHsBPAxNP17ddGCazyvgxIz7q3r6jNdovoAYeWj2XQEzNCBajI
vTWYZq2vGlZsfNnqsBD6IpuFVCfXdP6R0mxMcMaM/Ni2N8pisPHXQ95TVdhB+/6l
2pOVp6XTYdUW
=HDSq
-----END PGP PUBLIC KEY BLOCK-----
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CHAPTER

THIRTEEN

SECURITY AUDIT

We need to do a full audit of Twisted, module by module. This document list the sort of things you want to look for
when doing this, or when writing your own code.

13.1 Bad input

Any place we receive untrusted data, we need to be careful. In some cases we are not careful enough. For example, in
HTTP there are many places where strings need to be converted to ints, so we use int() . The problem is that this will
accept negative or hexadecimal (0x123) numbers as well, whereas the protocol should only accept positive numbers.

13.2 Resource Exhaustion and DoS

Make sure we never allow users to create arbitrarily large strings or files. Some of the protocols still have issues like
this. Place a limit which allows reasonable use but will cut off huge requests, and allow changing of this limit.

Another operation to look out for are exceptions. They can fill up logs and take a lot of CPU time to render in web
pages.
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CHAPTER

FOURTEEN

TWISTED COMMUNITY

For interacting with the twisted community members, you have several options:

14.1 Mail Lists

If you want to participate in Twisted’s community or development, you probably want to join the main mailing list:

• twisted-python - the main Twisted discussion list

You can subscribe to the mailing list using the web interface linked above.

ML Archives:

• Current list archive

• Other archives

14.2 Stack Overflow

Stack Overflow is a programming Q & A site. You can find Twisted-related questions there, often with answers:

• https://stackoverflow.com/questions/tagged/twisted

14.3 Real-Time Chat

You can join the Twisted Gitter channel (or simply click the “Open Chat” button at the bottom-right of this screen).
Gitter is based on Matrix, which is itself built with Twisted !

Alternatively you can join the following IRC channel. There are gateways between the Gitter and IRC channels.

Server: irc.libera.chat (more about the Libera IRC network)

• #twisted - support for Twisted and its ecosystem
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14.4 Blogs

Read Planet Twisted.
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