Twisted Documentation
Release 16.2.0

Twisted Matrix Labs

May 18, 2016

Contents

Installing Twisted 3
1.1 Installing Optional Dependencies i v v i it i e e e e e e e e e 3
Twisted Core 5
2.1 Developer Guides e 5
2.2 Examples e e e e e e e e e e e e e e 304
2.3 Specifications e e e e e e e e e e e e e e e e 306
24 Developmentof Twisted e 310
Twisted Conch 351
3.1 Developer Guides oL e e e e e e e e e e e 351
3.2 Exampleso e e e e e e e e 359
Twisted Mail 361
4.1 Examples e e e e e e e e e e 361
4.2 Developer Guides L e e e 361
4.3 Twisted Mail Tutorial: Building an SMTP Client from Scratch 364
Twisted Names 375
5.1 Developer Guides 375
52 Exampleso e 384
Twisted Pair 387
6.1 Developer Guides e 387
6.2 Examples 389
Twisted Web 391
7.1 Developer Guides e 391
7.2 Exampleso e e e e e 458
Twisted Words 461
8.1 Developer Guides e e e e 461
8.2 Examples e e e 466
Historical Documents 467
9.1 2003 & . . e 467
0.2 Previously 468

Twisted Documentation, Release 16.2.0

Contents:

Contents 1

Twisted Documentation, Release 16.2.0

2 Contents

CHAPTER 1

Installing Twisted

1.1 Installing Optional Dependencies

This document describes the optional dependencies that Twisted supports. The dependencies are python packages that
Twisted’s developers have found useful either for developing Twisted itself or for developing Twisted applications.

The intended audience of this document is someone who is familiar with installing optional dependencies using pip.

If you are unfamiliar with the installation of optional dependencies, the python packaging tutorial can show you how.
For a deeper explanation of what optional dependencies are and how they are declared, please see the setuptools
documentation.

The following optional dependencies are supported:
¢ dev - packages that aid in the development of Twisted itself.
TwistedChecker

pyflakes

twisted-dev-tools

python-subunit

Sphinx
— pydoctor
* tls - packages that are needed to work with TLS.
— pyOpenSSL
— service_identity
— idna
* conch - packages for working with conch/SSH.
— gmpy
— pyasnl
— cryptography
* soap - the SOAPpy package to work with SOAP.
* serial - the pyserial package to work with serial data.

« all_non_platform - installs tls, conch, soap, and serial options.

https://pip.pypa.io/en/latest/quickstart.html
https://packaging.python.org/en/latest/installing.html#examples
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
https://pypi.python.org/pypi/TwistedChecker
https://pypi.python.org/pypi/pyflakes
https://pypi.python.org/pypi/twisted-dev-tools
https://pypi.python.org/pypi/python-subunit
https://pypi.python.org/pypi/Sphinx/1.3b1
https://pypi.python.org/pypi/pydoctor
https://pypi.python.org/pypi/pyOpenSSL
https://pypi.python.org/pypi/service_identity
https://pypi.python.org/pypi/idna
https://pypi.python.org/pypi/gmpy/1.17
https://pypi.python.org/pypi/pyasn1
https://pypi.python.org/pypi/cryptography
https://pypi.python.org/pypi/SOAPpy
https://pypi.python.org/pypi/pyserial

Twisted Documentation, Release 16.2.0

* osx_platform - all_non_platform options and pyobjc to work with Objective-C apis.
» windows_platform - all_non_platform options and pypiwin32 to work with Windows’s apis.

* Installing Optional Dependencies: documentation on how to install Twisted’s optional dependencies.

4 Chapter 1. Installing Twisted

https://pypi.python.org/pypi/pyobjc
https://pypi.python.org/pypi/pypiwin32

CHAPTER 2

Twisted Core

2.1 Developer Guides

2.1.1 The Vision For Twisted

Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While Python by itself is a very powerful language, there
are many facilities it lacks which other languages have spent great attention to adding. It can do this now; Twisted is
a good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it continues
to improve.

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through all proto-
cols. Failing that, all functionality should be configurable through at least one protocol, with a seamless and consistent
user-interface. The next phase of development will be focusing strongly on a configuration system which will unify
many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-programmer.

2.1.2 Writing Servers

Overview

This document explains how you can use Twisted to implement network protocol parsing and handling for TCP servers
(the same code can be reused for SSL and Unix socket servers). There is a separate document covering UDP.

Your protocol handling class will usually subclass twisted.internet.protocol.Protocol. Most protocol handlers inherit
either from this class or from one of its convenience children. An instance of the protocol class is instantiated per-
connection, on demand, and will go away when the connection is finished. This means that persistent configuration is
not saved in the Protocol.

The persistent configuration is kept in a Fact ory class, which usually inherits from twisted.internet.protocol.Factory.
The buildProtocol method of the Factory is used to create a Protocol for each new connection.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the
Factory does not listen to connections, and in fact does not know anything about the network. See the endpoints
documentation for more information, or IReactorTCP.listenTCP and the other IReactor*.listenx* APIs for the
lower level APIs that endpoints are based on.

This document will explain each step of the way.

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.IReactorTCP.listenTCP.html

Twisted Documentation, Release 16.2.0

Protocols

As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. The protocol responds to events as they arrive from the network and the
events arrive as calls to methods on the protocol.

Here is a simple example:

from twisted.internet.protocol import Protocol

class Echo (Protocol):

def dataReceived(self, data):
self.transport.write (data)

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all events.
Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol
class QOTD (Protocol) :
def connectionMade (self):

self.transport.write ("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection ()

This protocol responds to the initial connection with a well known quote, and then terminates the connection.

The connect ionMade event is usually where setup of the connection object happens, as well as any initial greetings
(as in the QOTD protocol above, which is actually based on RFC 865). The connectionLost event is where
tearing down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol
class Echo (Protocol) :

def _ init__ (self, factory):
self.factory = factory

def connectionMade (self):

self.factory.numProtocols = self.factory.numProtocols + 1
self.transport.write(
"Welcome! There are currently open connections.\n" %

(self.factory.numProtocols,))

def connectionLost (self, reason):
self.factory.numProtocols = self.factory.numProtocols — 1

def dataReceived(self, data):
self.transport.write (data)

Here connectionMade and connectionLost cooperate to keep a count of the active protocols in a shared
object, the factory. The factory must be passed to Echo.__init___ when creating a new instance. The factory is
used to share state that exists beyond the lifetime of any given connection. You will see why this object is called a
“factory” in the next section.

6 Chapter 2. Twisted Core

https://tools.ietf.org/html/rfc865.html

Twisted Documentation, Release 16.2.0

loseConnection() and abortConnection()

In the code above, 1oseConnection is called immediately after writing to the transport. The 1oseConnection
call will close the connection only when all the data has been written by Twisted out to the operating system, so it
is safe to use in this case without worrying about transport writes being lost. If a producer is being used with the
transport, loseConnect ion will only close the connection once the producer is unregistered.

In some cases, waiting until all the data is written out is not what we want. Due to network failures, or bugs or
maliciousness in the other side of the connection, data written to the transport may not be deliverable, and so even
though loseConnection was called the connection will not be lost. In these cases, abortConnection can
be used: it closes the connection immediately, regardless of buffered data that is still unwritten in the transport, or
producers that are still registered. Note that abortConnection is only available in Twisted 11.1 and newer.

Using the Protocol

In this section, you will learn how to run a server which uses your Protocol.

Here is code that will run the QOTD server discussed earlier:

from twisted.internet.protocol import Factory
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTDFactory (Factory) :
def buildProtocol (self, addr):
return QOTD ()

8007 is the port you want to run under. Choose something >1024
endpoint = TCP4ServerEndpoint (reactor, 8007)

endpoint.listen (QOTDFactory())

reactor.run ()

In this example, I create a protocol Factory. I want to tell this factory that its job is to build QOTD protocol
instances, so I set its buildProtocol method to return instances of the QOTD class. Then, I want to listen on a
TCP port, so I make a TCP4ServerEndpoint to identify the port that I want to bind to, and then pass the factory I just
created to its 1isten method.

endpoint.listen () tells the reactor to handle connections to the endpoint’s address using a particular protocol,
but the reactor needs to be running in order for it to do anything. reactor.run () starts the reactor and then waits
forever for connections to arrive on the port you’ve specified. You can stop the reactor by hitting Control-C in a
terminal or calling reactor.stop ().

For more information on different ways you can listen for incoming connections, see the documentation for the end-
points API. For more information on using the reactor, see the reactor overview.

Helper Protocols

Many protocols build upon similar lower-level abstractions.

For example, many popular internet protocols are line-based, containing text data terminated by line breaks (commonly
CR-LF), rather than containing straight raw data. However, quite a few protocols are mixed - they have line-based
sections and then raw data sections. Examples include HTTP/1.1 and the Freenet protocol.

For those cases, there is the LineReceiver protocol. This protocol dispatches to two different event handlers —
lineReceived and rawDataReceived. By default, only 1ineReceived will be called, once for each line.
However, if setRawMode is called, the protocol will call rawDataReceived until setLineMode is called,

2.1. Developer Guides 7

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.endpoints.TCP4ServerEndpoint.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.protocols.basic.LineReceiver.html

Twisted Documentation, Release 16.2.0

which returns it to using 1ineReceived. It also provides a method, sendLine, that writes data to the transport
along with the delimiter the class uses to split lines (by default, \ r\n).

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver
class Answer (LineReceilver) :
answers = {'How are you?': 'Fine', None: "I don't know what you mean"}

def lineReceived(self, line):
if self.answers.has_key(line):
self.sendLine (self.answers[line])
else:
self.sendLine (self.answers[None])

Note that the delimiter is not part of the line.

Several other helpers exist, such as a netstring based protocol and prefixed-message-length protocols.

State Machines

Many Twisted protocol handlers need to write a state machine to record the state they are at. Here are some pieces of
advice which help to write state machines:

* Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

* Don’t mix application-specific code with Protocol handling code. When the protocol handler has to make an
application-specific call, keep it as a method call.

Factories

Simpler Protocol Creation

For a factory which simply instantiates instances of a specific protocol class, there is a simpler way to implement the
factory. The default implementation of the buildProtocol method calls the protocol attribute of the factory to
create a Protocol instance, and then sets an attribute on it called factory which points to the factory itself. This
lets every Protocol access, and possibly modify, the persistent configuration. Here is an example that uses these
features instead of overriding buildProtocol:

from twisted.internet.protocol import Factory, Protocol
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTD (Protocol) :
def connectionMade (self):
self.factory was set by the factory's default buildProtocol:
self.transport.write(self.factory.quote + '\r\n'")
self.transport.loseConnection ()

class QOTDFactory (Factory) :

This will be used by the default buildProtocol to create new protocols:

8 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.protocols.basic.NetstringReceiver.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.protocols.basic.IntNStringReceiver.html

Twisted Documentation, Release 16.2.0

protocol = QOTD

def _ _init__ (self, gquote=None):
self.quote = quote or 'An apple a day keeps the doctor away'

endpoint = TCP4ServerEndpoint (reactor, 8007)
endpoint.listen (QOTDFactory ("configurable quote™))
reactor.run ()

If all you need is a simple factory that builds a protocol without any additional behavior, Twisted 13.1 added Fac-
tory.forProtocol, an even simpler approach.

Factory Startup and Shutdown

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is frequently
persisted, it is often not appropriate to do themin __init___ or__del__, and would frequently be too early or too
late).

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
class LoggingProtocol (LineReceiver) :
def lineReceived(self, line):
self.factory.fp.write(line + '\n'")
class LogfileFactory (Factory):
protocol = LoggingProtocol

def _ init_ (self, fileName):
self.file = fileName

def startFactory(self):
self.fp = open(self.file, 'a')

def stopFactory(self):
self.fp.close ()

Putting it All Together

As a final example, here’s a simple chat server that allows users to choose a username and then communicate with
other users. It demonstrates the use of shared state in the factory, a state machine for each individual protocol, and
communication between different protocols.

chat.py

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
from twisted.internet import reactor

class Chat (LineReceiver) :

2.1. Developer Guides 9

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Factory.forProtocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Factory.forProtocol.html

Twisted Documentation, Release 16.2.0

def _ init_ (self, users):
self.users = users
self.name = None
self.state = "GETNAME"

def connectionMade (self):
self.sendLine ("What's your name?")

def connectionLost (self, reason):
if self.name in self.users:
del self.users[self.name]

def lineReceived(self, line):
if self.state == "GETNAME":
self.handle_GETNAME (line)
else:
self.handle_CHAT (line)

def handle_GETNAME (self, name) :
if name in self.users:

self.sendLine ("Name taken, please choose another.")

return
self.sendLine ("Welcome, %s!" % (name,))
self.name = name
self.users[name] = self
self.state = "CHAT"

def handle_CHAT (self, message):

)

message = "<%s> 25" % (self.name, message)

for name, protocol in self.users.iteritems():

if protocol != self:
protocol.sendLine (message)

class ChatFactory (Factory):

def _ init_ (self):

self.users = {} # maps user names to Chat instances

def buildProtocol (self, addr):
return Chat (self.users)

reactor.listenTCP (8123, ChatFactory())
reactor.run ()

The only API you might not be familiar with is 11 stenTCP. listenTCP is the method which connects a Factory to

the network. This is the lower-level API that endpoints wraps for you.

Here’s a sample transcript of a chat session (emphasised text is entered by the user):

$ telnet 127.0.0.1 8123

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '*]'.

What's your name?

test

Name taken, please choose another.

10

Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.IReactorTCP.listenTCP.html

Twisted Documentation, Release 16.2.0

bob

Welcome, bob!

hello

<alice> hi bob

twisted makes writing servers so easy!
<alice> I couldn't agree more
<carrol> yeah, it's great

2.1.3 Writing Clients

Overview

Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets. UDP is covered in a different document .

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class. This
class will usually be descended from twisted.internet.protocol.Protocol . Most protocol handlers inherit either from
this class or from one of its convenience children. An instance of the protocol class will be instantiated when you
connect to the server and will go away when the connection is finished. This means that persistent configuration is not
saved in the Protocol .

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.Factory
(or twisted.internet.protocol.ClientFactory : see below). The default factory class just instantiates the Protocol
and then sets the protocol’s factory attribute to point to itself (the factory). This lets the Protocol access, and
possibly modify, the persistent configuration.

Protocol

As mentioned above, this and auxiliary classes and functions are where most of the code is. A Twisted protocol
handles data in an asynchronous manner. This means that the protocol never waits for an event, but rather responds to
events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout

class Echo (Protocol):
def dataReceived(self, data):
stdout .write (data)

This is one of the simplest protocols. It just writes whatever it reads from the connection to standard output. There are
many events it does not respond to. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class WelcomeMessage (Protocol):
def connectionMade (self) :
self.transport.write("Hello server, I am the client!\r\n")
self.transport.loseConnection ()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.

2.1. Developer Guides 11

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Factory.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.ClientFactory.html

Twisted Documentation, Release 16.2.0

The connectionMade event is usually where set up of the Protocol object happens, as well as any initial greet-
ings (as in the WelcomeMessage protocol above). Any tearing down of Protocol -specific objects is done in
connectionL.ost .

Simple, single-use clients

In many cases, the protocol only needs to connect to the server once, and the code just wants to get a connected
instance of the protocol. In those cases twisted.internet.endpoints provides the appropriate API, and in particular
connectProtocol which takes a protocol instance rather than a factory.

from twisted.internet import reactor
from twisted.internet.protocol import Protocol
from twisted.internet.endpoints import TCP4ClientEndpoint, connectProtocol

class Greeter (Protocol) :
def sendMessage (self, msqg):
self.transport.write ("MESSAGE \n" % msqg)

def gotProtocol (p):
p.sendMessage ("Hello™)
reactor.calllater(l, p.sendMessage, "This is sent in a second")
reactor.calllater (2, p.transport.loseConnection)

point = TCP4ClientEndpoint (reactor, "localhost", 1234)
d = connectProtocol (point, Greeter())

d.addCallback (gotProtocol)

reactor.run ()

Regardless of the type of client endpoint, the way to set up a new connection is simply pass it to connectProtocol along
with a protocol instance. This means it’s easy to change the mechanism you’re using to connect, without changing the
rest of your program. For example, to run the greeter example over SSL, the only change required is to instantiate an
SSLA4ClientEndpoint instead of a TCP4ClientEndpoint . To take advantage of this, functions and methods which
initiates a new connection should generally accept an endpoint as an argument and let the caller construct it, rather
than taking arguments like ‘host’ and ‘port’ and constructing its own.

For more information on different ways you can make outgoing connections to different types of endpoints, as well as
parsing strings into endpoints, see the documentation for the endpoints API .

You may come across code using ClientCreator , an older API which is not as flexible as the endpoint API. Rather
than calling connect on an endpoint, such code will look like this:

from twisted.internet.protocol import ClientCreator

creator = ClientCreator (reactor, Greeter)
d = creator.connectTCP ("localhost™, 1234)
d.addCallback (gotProtocol)

reactor.run ()

In general, the endpoint API should be preferred in new code, as it lets the caller select the method of connecting.

ClientFactory

Still, there’s plenty of code out there that uses lower-level APIs, and a few features (such as automatic reconnection)
have not been re-implemented with endpoints yet, so in some cases they may be more convenient to use.

12 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.BaseProtocol.connectionMade.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Protocol.connectionLost.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.endpoints.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.endpoints.connectProtocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.endpoints.SSL4ClientEndpoint.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.ClientCreator.html

Twisted Documentation, Release 16.2.0

To use the lower-level connection APIs, you will need to call one of the reactor.connect* methods directly. For these
cases, you need a ClientFactory . The ClientFactory is in charge of creating the Protocol and also receives
events relating to the connection state. This allows it to do things like reconnect in the event of a connection error.
Here is an example of a simple ClientFactory that uses the Echo protocol (above) and also prints what state the
connection is in.

from twisted.internet.protocol import Protocol, ClientFactory
from sys import stdout

class Echo (Protocol):
def dataReceived(self, data):
stdout .write (data)

class EchoClientFactory(ClientFactory) :
def startedConnecting(self, connector):
print 'Started to connect.'

def buildProtocol (self, addr):
print 'Connected.'
return Echo ()

def clientConnectionLost (self, connector, reason):
print 'Lost connection. Reason:', reason

def clientConnectionFailed(self, connector, reason):
print 'Connection failed. Reason:', reason

To connect this EchoClientFactory to a server, you could use this code:

from twisted.internet import reactor
reactor.connectTCP (host, port, EchoClientFactory())
reactor.run ()

Note that clientConnectionFailed is called when a connection could not be established, and that clientConnectionLost
is called when a connection was made and then disconnected.

Reactor Client APls

connectTCP [ReactorTCP.connectTCP provides support for IPv4 and IPv6 TCP clients. The host argument it
accepts can be either a hostname or an IP address literal. In the case of a hostname, the reactor will automatically
resolve the name to an IP address before attempting the connection. This means that for a hostname with multiple
address records, reconnection attempts may not always go to the same server (see below). It also means that there
is name resolution overhead for each connection attempt. If you are creating many short-lived connections (typically
around hundreds or thousands per second) then you may want to resolve the hostname to an address first and then pass
the address to connect TCP instead.

Reconnection

Often, the connection of a client will be lost unintentionally due to network problems. One way to reconnect after a
disconnection would be to call connector.connect () when the connection is lost:

from twisted.internet.protocol import ClientFactory

class EchoClientFactory(ClientFactory) :
def clientConnectionLost (self, connector, reason):
connector.connect ()

2.1. Developer Guides 13

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.ClientFactory.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.ClientFactory.clientConnectionFailed.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.ClientFactory.clientConnectionLost.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.IReactorTCP.connectTCP.html

Twisted Documentation, Release 16.2.0

The connector passed as the first argument is the interface between a connection and a protocol. When the connection
fails and the factory receives the clientConnectionLost event, the factory can call connector.connect ()
to start the connection over again from scratch.

However, most programs that want this functionality should implement ReconnectingClientFactory instead, which
tries to reconnect if a connection is lost or fails and which exponentially delays repeated reconnect attempts.

Here is the Echo protocol implemented with a ReconnectingClientFactory:

from twisted.internet.protocol import Protocol, ReconnectingClientFactory
from sys import stdout

class Echo (Protocol):
def dataReceived(self, data):
stdout .write (data)

class EchoClientFactory (ReconnectingClientFactory) :
def startedConnecting(self, connector):
print 'Started to connect.'

def buildProtocol (self, addr):
print 'Connected.'
print 'Resetting reconnection delay'
self.resetDelay ()
return Echo ()

def clientConnectionLost (self, connector, reason):
print 'Lost connection. Reason:', reason
ReconnectingClientFactory.clientConnectionLost (self, connector, reason)

def clientConnectionFailed(self, connector, reason):
print 'Connection failed. Reason:', reason
ReconnectingClientFactory.clientConnectionFailed(self, connector,
reason)

A Higher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted Words in the
doc/words/examples directory.

ircLogBot.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

mmwn

An example IRC log bot - logs a channel's events to a file.
If someone says the bot's name in the channel followed by a ':',
e.g.

<foo> logbot: hello!

the bot will reply:

14 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.ReconnectingClientFactory.html

Twisted Documentation, Release 16.2.0

<logbot> foo: I am a log bot

Run this script with two arguments, the channel name the bot should
connect to, and file to log to, e.g.:

S python ircLogBot.py test test.log
will log channel #test to the file 'test.log'.
To run the script:

S python ircLogBot.py <channel> <file>

mwn

twisted imports

from twisted.words.protocols import irc

from twisted.internet import reactor, protocol
from twisted.python import log

system imports
import time, sys

class Messagelogger:
An independent logger class (because separation of application
and protocol logic is a good thing).
def _ init_ (self, file):
self.file = file

def log(self, message):
"""Write a message to the file."""
timestamp = time.strftime (" [%H:%M:%S]", time.localtime (time.time()))

self.file.write('%s %s\n' % (timestamp, message))
self.file.flush ()

def close(self):
self.file.close ()

class LogBot (irc.IRCClient) :
"""A Jogging IRC bot."""

nickname = "twistedbot"

def connectionMade (self):
irc.IRCClient.connectionMade (self)
self.logger = Messagelogger (open(self.factory.filename, "a"))

self.logger.log (" [connected at 2s]" %
time.asctime (time.localtime (time.time())))

def connectionLost (self, reason):
irc.IRCClient.connectionLost (self, reason)
self.logger.log (" [disconnected at %s]" %
time.asctime (time.localtime (time.time())))
self.logger.close ()

2.1. Developer Guides

15

Twisted Documentation, Release 16.2.0

callbacks for events

def signedOn (self):
"""Called when bot has succesfully signed on to server."""
self.join(self.factory.channel)

def joined(self, channel):
"""This will get called when the bot joins the channel."""
self.logger.log("[I have joined %s]" % channel)

def privmsg(self, user, channel, msg):
"""This will get called when the bot receives a message."""
user = user.split('!', 1)I[0]

o3 o)

self.logger.log("<2s> %s" % (user, msg))

Check to see if they're sending me a private message

if channel == self.nickname:
msg = "It isn't nice to whisper! Play nice with the group."
self.msg(user, msqg)
return

Otherwise check to see if it is a message directed at me
if msg.startswith(self.nickname + ":"):

msg = "%s: I am a log bot" % user

self.msg(channel, msg)

self.logger.log("<%s> 2s" % (self.nickname, msg))

def action(self, user, channel, msqg):
"""This will get called when the bot sees someone do an action."""
user = user.split('!', 1)[0]

[

self.logger.log("* %s %s" % (user, msg))
irc callbacks

def irc_NICK(self, prefix, params):
"""Called when an IRC user changes their nickname."""
old_nick = prefix.split('!")[0]
new_nick = params[0]

o3

Zs"

self.logger.log("¢s is now known as % (old_nick, new_nick))

For fun, override the method that determines how a nickname is changed on
collisions. The default method appends an underscore.
def alterCollidedNick (self, nickname) :
mmomn
Generate an altered version of a nickname that caused a collision in an
effort to create an unused related name for subsequent registration.

mon

return nickname + '

class LogBotFactory (protocol.ClientFactory):
""r"aA factory for LogBots.

A new protocol instance will be created each time we connect to the server.

mmn

16 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def

def

def

def

if name == '_ _main

_ init_ (self, channel, filename):
self.channel = channel
self.filename = filename

buildProtocol (self, addr):
p = LogBot ()

p.factory = self

return p

clientConnectionLost (self, connector, reason):
"""Tf we get disconnected, reconnect to server."""
connector.connect ()

clientConnectionFailed(self, connector, reason):

print "connection failed:", reason
reactor.stop ()

initialize logging

log.

startLogging (sys.stdout)

create factory protocol and application

f =

LogBotFactory(sys.argv[l], sys.argv[2])

connect factory to this host and port
reactor.connectTCP ("irc.freenode.net", 6667, f)

run bot
reactor.run ()

ircLogBot . py connects to an IRC server, joins a channel, and logs all traffic on it to a file. It demonstrates some
of the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory .

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track
of data that should be persisted. In the case of the logging bot, it needs to know which channel it is logging, and where

to log it.

from twisted.words.protocols import irc
from twisted.internet import protocol

class LogBot (irc.IRCClient):

def

def

connectionMade (self) :
irc.IRCClient.connectionMade (self)

self.logger = Messagelogger (open (self.factory.filename, "a"))
self.logger.log (" [connected at m %

time.asctime (time.localtime (time.time())))

signedOn (self) :
self.join(self.factory.channel)

class LogBotFactory (protocol.ClientFactory):

2.1. Developer Guides

17

Twisted Documentation, Release 16.2.0

def _ init_ (self, channel, filename) :
self.channel = channel
self.filename = filename

def buildProtocol (self, addr):
p = LogBot ()
p.factory = self
return p

When the protocol is created, it gets a reference to the factory as self.factory . It can then access attributes of
the factory in its logic. In the case of LogBot , it opens the file and connects to the channel stored in the factory.

Factories have a default implementation of buildProtocol. It does the same thing the example above does using
the protocol attribute of the factory to create the protocol instance. In the example above, the factory could be
rewritten to look like this:

class LogBotFactory (protocol.ClientFactory):
protocol = LogBot

def _ init_ (self, channel, filename) :
self.channel = channel
self.filename = filename

Further Reading

The Protocol class used throughout this document is a base implementation of [Protocol used in most Twisted appli-
cations for convenience. To learn about the complete ITProtocol interface, see the API documentation for [Protocol

The transport attribute used in some examples in this document provides the ITCPTransport interface. To learn
about the complete interface, see the API documentation for ITCPTransport .

Interface classes are a way of specifying what methods and attributes an object has and how they behave. See the
Components: Interfaces and Adapters document for more information on using interfaces in Twisted.

2.1.4 Test-driven development with Twisted

Writing good code is hard, or at least it can be. A major challenge is to ensure that your code remains correct as you
add new functionality.

Unit testing is a modern, light-weight testing methodology in widespread use in many programming languages. De-
velopment that relies on unit tests is often referred to as Test-Driven Development (TDD). Most Twisted code is tested
using TDD.

To gain a solid understanding of unit testing in Python, you should read the unittest —Unit testing framework chapter
of the Python LibraryReference . There is a lot of information available online and in books.

Introductory example of Python unit testing

This document is principally a guide to Trial, Twisted’s unit testing framework. Trial is based on Python’s unit testing
framework. While we do not aim to give a comprehensive guide to general Python unit testing, it will be helpful
to consider a simple non-networked example before expanding to cover networking code that requires the special
capabilities of Trial. If you are already familiar with unit test in Python, jump straight to the section specific to testing
Twisted code .

18 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.protocol.Protocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.IProtocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.IProtocol.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.ITCPTransport.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.interfaces.ITCPTransport.html
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Test-driven_development
http://docs.python.org/library/unittest.html
http://docs.python.org/library/index.html

Twisted Documentation, Release 16.2.0

Note: In what follows we will make a series of refinements to some simple classes. In order to keep the examples and
source code links complete and to allow you to run Trial on the intermediate results at every stage, I add _N (where
the N are successive integers) to file names to keep them separate. This is a minor visual distraction that should be
ignored.

Creating an API and writing tests

We’ll create a library for arithmetic calculation. First, create a project structure with a directory called calculus
containing an empty __init__ .py file.

Then put the following simple class definition APl into calculus/base_l.py:

base_1.py

—+— test—case—-name: calculus.test.test_base 1 —*—

class Calculation (object):
def add(self, a, b):
pass

def subtract(self, a, b):
pass

def multiply(self, a, b):
pass

def divide (self, a, Db):
pass

(Ignore the test-case-name comment for now. You’ll see why that’s useful below .)

We’ve written the interface, but not the code. Now we’ll write a set of tests. At this point of development, we’ll be
expecting all tests to fail. Don’t worry, that’s part of the point. Once we have a test framework functioning, and we
have some decent tests written (and failing!), we’ll go and do the actual development of our calculation API. This is
the preferred way to work for many people using TDD - write tests first, make sure they fail, then do development.
Others are not so strict and write tests after doing the development.

Create a test directory beneath calculus , with an empty _ init__ .py file. In a
calculus/test/test_base_1.py, put the following:

test_base_1l.py

from calculus.base_1 import Calculation
from twisted.trial import unittest

class CalculationTestCase (unittest.TestCase) :
def test_add(self):
calc = Calculation()
result = calc.add(3, 8)
self.assertEqual (result, 11)

def test_subtract (self):
calc = Calculation()
result = calc.subtract (7, 3)
self.assertEqual (result, 4)

2.1. Developer Guides 19

Twisted Documentation, Release 16.2.0

def test_multiply(self):
calc = Calculation()
result = calc.multiply (12, 5)
self.assertEqual (result, 60)

def test_divide (self):
calc = Calculation()
result = calc.divide (12, 5)
self.assertEqual (result, 2)

You should now have the following 4 files:

calculus/__init__.py
calculus/base_1.py
calculus/test/__init___.py
calculus/test/test_base_1l.py

To run the tests, there are two things you must set up. Make sure you get both done - nothing below will work unless
you do.

First, make sure that the directory that contains your calculus directory is in your Python load path. If you’re using
the Bash shell on some form of unix (e.g., Linux, Mac OS X), run PYTHONPATH="$PYTHONPATH: ‘pwd/.."
at the command line in the calculus directory. Once you have your Python path set up correctly, you should be
able to run Python from the command line and import calculus without seeing an import error.

Second, make sure you can run the t rial command. That is, make sure the directory containing the trial program
on you system is in your shell’s PATH . The easiest way to check if you have this is to try running trial --help
at the command line. If you see a list of invocation options, you’re in business. If your shell reports something
like trial: command not found, make sure you have Twisted installed properly, and that the Twisted bin
directory is in your PATH . If you don’t know how to do this, get some local help, or figure it out by searching online
for information on setting and changing environment variables for you operating system.

With those (one-time) preliminary steps out of the way, let’s perform the tests. Run trial
calculus.test.test_base_1 from the command line when you are in the directory containing the calculus
directory.

You should see the following output (though your files are probably not in /tmp):

$ trial calculus.test.test_base_1
calculus.test.test_base_1
CalculationTestCase

test_add [FATIL]
test_divide [FAIL]
test_multiply ... [FATIL]
test_subtract [FAIL]

[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_l.py", line 8, in test_add
self.assertEqual (result, 11)
twisted.trial.unittest.FailTest: not equal:
a = None
b =11

calculus.test.test_base_1l.CalculationTestCase.test_add

20 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

Traceback (most recent call last):
File "/tmp/calculus/test/test_base_l.py", line 23, in test_divide
self.assertEqual (result, 2)
twisted.trial.unittest.FailTest: not equal:
a = None
b =2

calculus.test.test_base_1l.CalculationTestCase.test_divide

[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1l.py", line 18, in test_multiply
self.assertEqual (result, 60)
twisted.trial.unittest.FailTest: not equal:
a = None
b = 60

calculus.test.test_base_1l.CalculationTestCase.test_multiply

[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1l.py", line 13, in test_subtract
self.assertEqual (result, 4)
twisted.trial.unittest.FailTest: not equal:
a = None
b =4

calculus.test.test_base_l.CalculationTestCase.test_subtract

Ran 4 tests in 0.042s

FAILED (failures=4)

How to interpret this output? You get a list of the individual tests, each followed by its result. By default, failures are
printed at the end, but this can be changed with the —e (or ——rterrors) option.

One very useful thing in this output is the fully-qualified name of the failed tests. This ap-
pears at the bottom of each =-delimited area of the output. This allows you to copy and
paste it to just run a single test you’re interested in. In our example, you could run trial

calculus.test.test_base_1l.CalculationTestCase.test_subtract from the shell.

Note that trial can use different reporters to modify its output. Run trial --help-reporters to see a list of
reporters.

The tests can be run by trial in multiple ways:
* trial calculus : run all the tests for the calculus package.
e trial calculus.test : runusing Python’s import notation.

e trial calculus.test.test_base_1 : as above, for a specific test module. You can follow that logic
by putting your class name and even a method name to only run those specific tests.

e trial —--testmodule=calculus/base_1.py: usethe test-case—name comment in the first line
of calculus/base_1.py to find the tests.

* trial calculus/test : run all the tests in the test directory (not recommended).

2.1. Developer Guides 21

Twisted Documentation, Release 16.2.0

e trial calculus/test/test_base_1.py : run a specific test file (not recommended).

The first 3 versions using full qualified names are strongly encouraged: they are much more reliable and they allow
you to easily be more selective in your test runs.

You’ll notice that Trial creates a _trial_temp directory in the directory where you run the tests. This has a
file called test . 1og which contains the log output of the tests (created using log.msg or log.err functions).
Examine this file if you add logging to your tests.

Making the tests pass

Now that we have a working test framework in place, and our tests are failing (as expected) we can go and try to
implement the correct API. We’ll do that in a new version of the above base_1 module, calculus/base_2.py:

base_2.py

—+— test—case—-name: calculus.test.test_base 2 —*—

class Calculation (object):
def add(self, a, b):
return a + b

def subtract(self, a, b):
return a - b

def multiply(self, a, b):
return a » b

def divide(self, a, b):
return a / b

We’ll also create a new version of test_base 1 which imports and tests this new implementation, in
calculus/test_base_2.py:

test_base_2.py

from calculus.base_2 import Calculation
from twisted.trial import unittest

class CalculationTestCase (unittest.TestCase) :

def test_add(self):
calc = Calculation()
result = calc.add(3, 8)
self.assertEqual (result, 11)

def test_subtract (self):
calc = Calculation()
result = calc.subtract (7, 3)
self.assertEqual (result, 4)

def test_multiply(self):
calc = Calculation()
result = calc.multiply (12, 5)
self.assertEqual (result, 60)

22 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def test_divide(self):
calc = Calculation()
result = calc.divide (12, 5)
self.assertEqual (result, 2)

is a copy of test_base_1, but with the import changed. Run t rial again as above, and your tests should now pass:

$ trial calculus.test.test_base_2

Running 4 tests.
calculus.test.test_base
CalculationTestCase
test_add [
test_divide ... [
test_multiply [
test_subtract [

Ran 4 tests in 0.067s

PASSED (successes=4)

Factoring out common test logic

You’ll notice that our test file contains redundant code. Let’s get rid of that. Python’s unit testing framework allows
your test class to define a setUp method that is called before each test method in the class. This allows you to add
attributes to se 1 f that can be used in test methods. We’ll also add a parameterized test method to further simplify the
code.

Note that a test class may also provide the counterpart of setUp , named tearDown , which will be called after
each test (whether successful or not). tearDown is mainly used for post-test cleanup purposes. We will not use
tearDown until later.

Create calculus/test/test_base_2b.py as follows:

test_base_2b.py

from calculus.base 2 import Calculation
from twisted.trial import unittest

class CalculationTestCase (unittest.TestCase) :
def setUp(self):
self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual (result, expected)

def test_add(self):
self._test (self.calc.add, 3, 8, 11)

2.1. Developer Guides 23

Twisted Documentation, Release 16.2.0

def test_subtract (self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test (self.calc.divide, 12, 5, 2)

Much cleaner, isn’t it?

We’ll now add some additional error tests. Testing just for successful use of the API is generally not enough, especially
if you expect your code to be used by others. Let’s make sure the Calculation class raises exceptions if someone
tries to call its methods with arguments that cannot be converted to integers.

We arrive at calculus/test/test_base_3.py:

test_base_3.py

from calculus.base_ 3 import Calculation
from twisted.trial import unittest

class CalculationTestCase (unittest.TestCase) :
def setUp(self):
self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual (result, expected)

def _test_error(self, operation):
self.assertRaises (TypeError, operation, "foo", 2)
self.assertRaises (TypeError, operation, "bar", "egg")
self.assertRaises (TypeError, operation, [3], [8, 2])
self.assertRaises (TypeError, operation, {"e": 3}, {"r": "t"})

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

def test_subtract (self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test (self.calc.divide, 12, 5, 2)

24 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def test_errorAdd(self):
self._test_error(self.calc.add)

def test_errorSubtract (self):
self._test_error(self.calc.subtract)

def test_errorMultiply(self):
self._test_error(self.calc.multiply)

def test_errorDivide (self):
self._test_error(self.calc.divide)

We’ve added four new tests and one general-purpose function, _test_error .

This function uses the

assertRaises method, which takes an exception class, a function to run and its arguments, and checks that calling
the function on the arguments does indeed raise the given exception.

If you run the above, you’ll see that not all tests fail. In Python it’s often valid to add and multiply objects of different
and even differing types, so the code in the add and multiply tests does not raise an exception and those tests therefore
fail. So let’s add explicit type conversion to our API class. This brings us to calculus/base_3.py:

base_3.py

—+— test—-case—-name: calculus.test.test_base 3 —*-—

class Calculation (object) :

def _make_ints(self, =xargs):

try:

return map (int, args)

except ValueError:

raise TypeError ("Couldn't coerce arguments to integers:

def add(self, a, b):

a, b = self._make_

return a + b

def subtract (self, a,

a, b = self._make_

return a - b

def multiply(self, a,

a, b = self._make_

return a ~ b

ints(a,

b) :
ints(a,

b) :
ints (a,

def divide (self, a, Db):

a, b = self._make_

return a / b

ints(a,

b)

b)

args)

Here the _make_ints helper function tries to convert a list into a list of equivalent integers, and raises a TypeError

in case the conversion goes wrong.

Note: The int conversion can also raise a TypeError if passed something of the wrong type, such as a list. We’ll
just let that exception go by, as TypeError is already what we want in case something goes wrong.

2.1. Developer Guides

25

Twisted Documentation, Release 16.2.0

Twisted specific testing

Up to this point we’ve been doing fairly standard Python unit testing. With only a few cosmetic changes (most
importantly, directly importing unittest instead of using Twisted’s unittest version) we could make the above tests
run using Python’s standard library unit testing framework.

Here we will assume a basic familiarity with Twisted’s network I/O, timing, and Deferred APIs. If you haven’t already
read them, you should read the documentation on Writing Servers , Writing Clients , and Deferreds .

Now we’ll get to the real point of this tutorial and take advantage of Trial to test Twisted code.

Testing a protocol

We’ll now create a custom protocol to invoke our class from a telnet-like session. We’ll remotely call commands with
arguments and read back the response. The goal will be to test our network code without creating sockets.

Creating and testing the server

First we’ll write the tests, and then explain what they do. The first version of the remote test code is:

test_remote_1.py

from calculus.remote 1 import RemoteCalculationFactory
from twisted.trial import unittest
from twisted.test import proto_helpers

class RemoteCalculationTestCase (unittest.TestCase) :
def setUp(self):
factory = RemoteCalculationFactory ()
self.proto = factory.buildProtocol (('127.0.0.1", 0))
self.tr = proto_helpers.StringTransport ()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived (' \r\n' % (operation, a, b))
self.assertEqual (int (self.tr.value()), expected)

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract (self):
return self._test ('subtract', 82, 78, 4)

def test_multiply(self):
return self._test('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

26 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.trial.unittest.html

Twisted Documentation, Release 16.2.0

To fully understand this client, it helps a lot to be comfortable with the Factory/Protocol/Transport pattern used in
Twisted.

We first create a protocol factory object. Note that we have yet to see the RemoteCalculationFactory
class. It is in calculus/remote_1.py below. We call buildProtocol to ask the factory to build us a
protocol object that knows how to talk to our server. We then make a fake network transport, an instance of
twisted.test.proto_helpers.StringTransport class (note that test packages are generally not part of
Twisted’s public API;‘‘twisted.test.proto_helpers‘ is an exception). This fake transport is the key to the communica-
tions. Itis used to emulate a network connection without a network. The address and port passed to buildProtocol
are typically used by the factory to choose to immediately deny remote connections; since we’re using a fake transport,
we can choose any value that will be acceptable to the factory. In this case the factory just ignores the address, so we
don’t need to pick anything in particular.

Testing protocols without the use of real network connections is both simple and recommended when testing Twisted
code. Even though there are many tests in Twisted that use the network, most good tests don’t. The problem with unit
tests and networking is that networks aren’t reliable. We cannot know that they will exhibit reasonable behavior all the
time. This creates intermittent test failures due to network vagaries. Right now we’re trying to test our Twisted code,
not network reliability. By setting up and using a fake transport, we can write 100% reliable tests. We can also test
network failures in a deterministic manner, another important part of your complete test suite.

The final key to understanding this client code is the _test method. The call to dataReceived simulates data
arriving on the network transport. But where does it arrive? It’s handed to the 1 ineReceived method of the protocol
instance (in calculus/remote_1.py below). So the client is essentially tricking the server into thinking it has
received the operation and the arguments over the network. The server (once again, see below) hands over the work
toits CalculationProxy object which in turn hands it to its Calculation instance. The result is written back
via sendLine (into the fake string transport object), and is then immediately available to the client, who fetches it
with tr.value () and checks that it has the expected value. So there’s quite a lot going on behind the scenes in the
two-line _test method above.

Finally , let’s see the implementation of this protocol. Put the following into calculus/remote_1.py:

remote_1.py

—+— test—case—-name: calculus.test.test_remote 1 —*-—

from twisted.protocols import basic
from twisted.internet import protocol
from calculus.base_ 3 import Calculation

class CalculationProxy (object) :
def _ init_ (self):

self.calc = Calculation()
for m in ['add', 'subtract', 'multiply', 'divide']:
setattr(self, 'remote_%s' % m, getattr(self.calc, m))

class RemoteCalculationProtocol (basic.LineReceiver) :
def _ init__ (self):
self.proxy = CalculationProxy ()

def lineReceived(self, line):

op, a, b = line.split ()

a = int (a)

b = int (b)

op = getattr(self.proxy, 'remote_2s' % (op,))

2.1. Developer Guides 27

Twisted Documentation, Release 16.2.0

result = op(a, b)
self.sendLine (str (result))

class RemoteCalculationFactory (protocol.Factory):
protocol = RemoteCalculationProtocol

def main () :
from twisted.internet import reactor
from twisted.python import log
import sys
log.startLogging(sys.stdout)
reactor.listenTCP (0, RemoteCalculationFactory())
reactor.run ()

",

if name == "_ _main

main ()

As mentioned, this server creates a protocol that inherits from basic.LineReceiver , and then a factory that uses it as pro-
tocol. The only trick is the CalculationProxy object, which calls Calculat ion methods through remote_
methods. This pattern is used frequently in Twisted, because it is very explicit about what methods you are making
accessible.

If you run this test (trial calculus.test.test_remote_1), everything should be fine. You can also run
a server to test it with a telnet client. To do that, call python calculus/remote_1.py . You should have the
following output:

2008-04-25 10:53:27+0200 [-] Log opened.
2008-04-25 10:53:27+0200 [-] __main__.RemoteCalculationFactory starting on 46194
2008-04-25 10:53:27+0200 [-] Starting factory <__main__.RemoteCalculationFactory instang

46194 is replaced by a random port. You can then call telnet on it:

$ telnet localhost 46194
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.
add 4123 9423

13546

It works!

Creating and testing the client

Of course, what we build is not particularly useful for now: we’ll now build a client for our server, to be able to use it
inside a Python program. And it will serve our next purpose.

Create calculus/test/test_client_1.py:

test_client_1.py

from calculus.client_1 import RemoteCalculationClient
from twisted.trial import unittest
from twisted.test import proto_helpers

28 Chapter 2. Twisted Core

e at 0x846a0:«

https://twistedmatrix.com/documents/16.2.0/api/twisted.protocols.basic.LineReceiver.html

Twisted Documentation, Release 16.2.0

class ClientCalculationTestCase (unittest.TestCase) :
def setUp(self):
self.tr = proto_helpers.StringTransport ()
self.proto = RemoteCalculationClient ()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation) (a, b)
self.assertEqual (self.tr.value(), ' \r\n' % (operation, a, b))
self.tr.clear ()
d.addCallback (self.assertEqual, expected)
self.proto.dataReceived (" 2d\r\n" % (expected,))
return d

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract (self):
return self._test ('subtract', 82, 78, 4)

def test_multiply(self):
return self._test ('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

It’s really symmetric to the server test cases. The only tricky part is that we don’t use a client factory. We’re lazy, and
it’s not very useful in the client part, so we instantiate the protocol directly.

Incidentally, we have introduced a very important concept here: the tests now return a Deferred object, and the
assertion is done in a callback. When a test returns a Deferred, the reactor is run until the Deferred fires and its
callbacks run. The important thing to do here is to not forget to return the Deferred . If you do, your tests will pass
even if nothing is asserted. That’s also why it’s important to make tests fail first: if your tests pass whereas you know
they shouldn’t, there is a problem in your tests.

We’ll now add the remote client class to produce calculus/client_1l.py:

client_1.py

—#+— test—-case—name: calculus.test.test_client_1 —*-—

from twisted.protocols import basic
from twisted.internet import defer

class RemoteCalculationClient (basic.LineReceiver) :
def _ init_ (self):
self.results = []

2.1. Developer Guides 29

Twisted Documentation, Release 16.2.0

def lineReceived(self, line):
d = self.results.pop(0)
d.callback (int (1ine))

def _sendOperation(self, op, a, b):
d = defer.Deferred()
self.results.append(d)

line = " " % (op, a, b)
self.sendLine (line)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract (self, a, b):
return self._sendOperation ("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, Db)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

More good practices

Testing scheduling

When testing code that involves the passage of time, waiting e.g. for a two hour timeout to occur in a test is not very
realistic. Twisted provides a solution to this, the Clock class that allows one to simulate the passage of time.

As an example we’ll test the code for client request timeout: since our client uses TCP it can hang for a long time
(firewall, connectivity problems, etc...). So generally we need to implement timeouts on the client side. Basically it’s
just that we send a request, don’t receive a response and expect a timeout error to be triggered after a certain duration.

test_client_2.py

from calculus.client_ 2 import RemoteCalculationClient, ClientTimeoutError

from twisted.internet import task
from twisted.trial import unittest
from twisted.test import proto_helpers

class ClientCalculationTestCase (unittest.TestCase) :
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection ()
self.clock = task.Clock()
self.proto = RemoteCalculationClient ()
self.tr.protocol = self.proto
self.proto.calllater = self.clock.calllater
self.proto.makeConnection(self.tr)

30 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.task.Clock.html

Twisted Documentation, Release 16.2.0

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation) (a, b)
self.assertEqual (self.tr.value(), '%s ¢d 2d\r\n' % (operation, a, b))
self.tr.clear ()
d.addCallback (self.assertEqual, expected)

self.proto.dataReceived ("%d\r\n" % (expected,))
return d

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract (self):
return self._test ('subtract', 82, 78, 4)

def test_multiply(self):
return self._test ('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

def test_timeout (self):
d = self.proto.add (9, 4)
self.assertEqual (self.tr.value(), 'add 9 4\r\n'")
self.clock.advance (self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

What happens here? We instantiate our protocol as usual, the only trick is to create the clock, and assign
proto.calllater to clock.callLater . Thus, every callLater call in the protocol will finish before
clock.advance () returns.

In the new test (test_timeout), we call clock.advance , that simulates an advance in time (logically it’s similar to
atime.sleep call). And we just have to verify that our Deferred got a timeout error.

Let’s implement that in our code.

client_2.py

—#— test—-case—-name: calculus.test.test_client_ 2 —x-—

from twisted.protocols import basic
from twisted.internet import defer, reactor

class ClientTimeoutError (Exception):
pass

class RemoteCalculationClient (basic.LineReceiver) :

calllater = reactor.calllater
timeOut = 60

2.1. Developer Guides 31

Twisted Documentation, Release 16.2.0

def _ init_ (self):
self.results = []

def lineReceived(self, line):
d, callID = self.results.pop(0)
callID.cancel ()
d.callback (int (1ine))

def _cancel (self, d):
d.errback (ClientTimeoutError ())

def _sendOperation(self, op, a, b):
d = defer.Deferred()
callID = self.calllater(self.timeOut, self._cancel,
self.results.append((d, callID))
line = " " % (op, a, b)
self.sendLine (line)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation("subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation("divide", a, b)

d)

If everything completed successfully, it is important to remember to cancel the DelayedCall returned by

calllater.

Cleaning up after tests

This chapter is mainly intended for people who want to have sockets or processes created in their tests. If it’s still not
obvious, you must try to avoid using them, because it ends up with a lot of problems, one of them being intermittent

failures. And intermittent failures are the plague of automated tests.
To actually test that, we’ll launch a server with our protocol.

test_remote_2.py

from calculus.remote 1 import RemoteCalculationFactory
from calculus.client_2 import RemoteCalculationClient

from twisted.trial import unittest
from twisted.internet import reactor, protocol

32

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class RemoteRunCalculationTestCase (unittest.TestCase) :

def setUp(self):
factory = RemoteCalculationFactory ()
self.port = reactor.listenTCP (0, factory, interface="127.0.0.1")
self.client = None

def tearDown (self):
if self.client is not None:
self.client.transport.loseConnection ()
return self.port.stopListening()

def _test(self, op, a, b, expected):

creator = protocol.ClientCreator (reactor, RemoteCalculationClient)
def cb(client):

self.client = client

return getattr(self.client, op) (a, b

) .addCallback (self.assertEqual, expected)

return creator.connectTCP('127.0.0.1", self.port.getHost () .port

) .addCallback (cb)

def test_add(self):
return self._test ("add", 5, 9, 14)

def test_subtract (self):
return self._test ("subtract", 47, 13, 34)

def test_multiply(self):
return self._test ("multiply", 7, 3, 21)

def test_divide(self):
return self._test("divide", 84, 10, 8)

Recent versions of trial will fail loudly if you remove the stopListening call, which is good.

Also, you should be aware that tearDown will be called in any case, after success or failure. So don’t expect every

object you created in the test method to be present, because your tests may have failed in the middle.

Trial also has a addC1leanup method, which makes these kind of cleanups easy and removes the need for tearDown

. For example, you could remove the code in _test this way:

def setUp(self):
factory = RemoteCalculationFactory ()
self.port = reactor.listenTCP (0, factory, interface="127.0.0.1")
self.addCleanup(self.port.stoplListening)

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator (reactor, RemoteCalculationClient)
def cb(client):
self.addCleanup(self.client.transport.loseConnection)
return getattr (client, op) (a, b).addCallback (self.assertEqual, expected)
return creator.connectTCP('127.0.0.1"', self.port.getHost () .port).addCallback (cb)

2.1. Developer Guides

Twisted Documentation, Release 16.2.0

This removes the need of a tearDown method, and you don’t have to check for the value of self.client: you only call

addCleanup when the client is created.

Handling logged errors

Currently, if you send an invalid command or invalid arguments to our server, it logs an exception and closes the
connection. This is a perfectly valid behavior, but for the sake of this tutorial, we want to return an error to the user if

they send invalid operators, and log any errors on server side. So we’ll want a test like this:

def test_invalidParameters (self):
self.proto.dataReceived('add foo bar\r\n'")
self.assertEqual (self.tr.value(), "error\r\n")

remote_2.py

—+— test—-case—-name: calculus.test.test_remote 1 —+*-—

from twisted.protocols import basic
from twisted.internet import protocol
from twisted.python import log

from calculus.base_3 import Calculation

class CalculationProxy (object) :
def _ init_ (self):
self.calc = Calculation()
for m in ['add', 'subtract', 'multiply', 'divide']:
setattr(self, 'remote_%s' % m, getattr(self.calc, m))

class RemoteCalculationProtocol (basic.LineReceiver) :
def _ _init__ (self):
self.proxy = CalculationProxy ()

def lineReceived(self, line):
op, a, b = line.split()
op = getattr(self.proxy, 'remote_2s' % (op,))
try:
result = op(a, b)
except TypeError:
log.err ()
self.sendLine ("error")
else:
self.sendLine (str (result))

class RemoteCalculationFactory (protocol.Factory) :
protocol = RemoteCalculationProtocol

def main() :

34 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

from twisted.internet import reactor

from twisted.python import log

import sys

log.startLogging (sys.stdout)
reactor.listenTCP (0, RemoteCalculationFactory())
reactor.run ()

LU

if name == "_ _main_
main ()

If you try something like that, it will not work. Here is the output you should have:

trial calculus.test.test_remote_3.RemoteCalculationTestCase.test_invalidParameters
calculus.test.test_remote_3
RemoteCalculationTestCase
test_invalidParameters ... [ERROR]

[ERROR] : calculus.test.test_remote_3.RemoteCalculationTestCase.test_invalidParameters

Traceback (most recent call last):
File "/tmp/calculus/remote_2.py", line 27, in lineReceived

result = op(a, Db)
File "/tmp/calculus/base_3.py", line 11, in add
a, b = self._make_ints(a, b)

File "/tmp/calculus/base_3.py", line 8, in _make_ints
raise TypeError
exceptions.TypeError:

Ran 1 tests in 0.004s

FAILED (errors=1)

At first, you could think there is a problem, because you catch this exception. But in fact trial doesn’t let you
do that without controlling it: you must expect logged errors and clean them. To do that, you have to use the
flushLoggedErrors method. You call it with the exception you expect, and it returns the list of exceptions
logged since the start of the test. Generally, you’ll want to check that this list has the expected length, or possibly that
each exception has an expected message. We do the former in our test:

test_remote_3.py

from calculus.remote_ 2 import RemoteCalculationFactory
from twisted.trial import unittest
from twisted.test import proto_helpers

class RemoteCalculationTestCase (unittest.TestCase) :
def setUp(self):
factory = RemoteCalculationFactory ()
self.proto = factory.buildProtocol (('127.0.0.1", 0))
self.tr = proto_helpers.StringTransport ()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived('%s ¢d 2d\r\n' % (operation, a, b))
self.assertEqual (int (self.tr.value()), expected)

2.1. Developer Guides 35

Twisted Documentation, Release 16.2.0

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract (self):
return self._test ('subtract', 82, 78, 4)

def test_multiply(self):
return self._test ('multiply', 2, 8, 16)

def test_divide(self):
return self._test('divide', 14, 3, 4)

def test_invalidParameters (self):
self.proto.dataReceived('add foo bar\r\n'")
self.assertEqual (self.tr.value(), "error\r\n")
errors = self.flushLoggedErrors (TypeError)
self.assertEqual (len(errors), 1)

Resolve a bug

A bug was left over during the development of the timeout (probably several bugs, but that’s not the point), concerning
the reuse of the protocol when you got a timeout: the connection is not dropped, so you can get timeout forever.
Generally a user will come to you saying “I have this strange problem on my crappy network. It seems you could
solve it with doing XXX at YYY.”

Actually, this bug can be corrected several ways. But if you correct it without adding tests, one day you’ll face a big
problem: regression. So the first step is adding a failing test.

test_client_3.py

from calculus.client_ 3 import RemoteCalculationClient, ClientTimeoutError

from twisted.internet import task
from twisted.trial import unittest
from twisted.test import proto_helpers

class ClientCalculationTestCase (unittest.TestCase) :
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection ()
self.clock = task.Clock ()
self.proto = RemoteCalculationClient ()
self.tr.protocol = self.proto
self.proto.calllater = self.clock.calllater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation) (a, b)
self.assertEqual (self.tr.value(), ' \r\n' % (operation, a, b))
self.tr.clear ()

36 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

d.addCallback (self.assertEqual, expected)
self.proto.dataReceived (" ¢d\r\n" % (expected,))
return d

def test_add(self):
return self._test('add', 7, 6, 13)

def test_subtract (self):
return self._test ('subtract', 82, 78, 4)

def test_multiply(self):
return self._test ('multiply', 2, 8, 16)

def test_divide (self):
return self._test('divide', 14, 3, 4)

def test_timeout (self):
d = self.proto.add (9, 4)
self.assertEqual (self.tr.value(), 'add 9 4\r\n'")
self.clock.advance (self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

def test_timeoutConnectionLost (self):
called = []
def lost (argqg):
called.append(True)
self.proto.connectionLost = lost

d = self.proto.add (9, 4)
self.assertEqual (self.tr.value(), 'add 9 4\r\n'")
self.clock.advance (self.proto.timeOut)

def check (ignore) :
self.assertEqual (called, [True])
return self.assertFailure(d, ClientTimeoutError) .addCallback (check)

What have we done here ?

* We switched to StringTransportWithDisconnection. This transport manages LoseConnection and forwards
it to its protocol.

* We assign the protocol to the transport via the protocol attribute.
¢ We check that after a timeout our connection has closed.

For doing that, we then use the TimeoutMixin class, that does almost everything we want. The great thing is that it
almost changes nothing to our class.

client_3.py

—+— test—case—name: calculus.test.test_client —*-—

from twisted.protocols import basic, policies
from twisted.internet import defer

2.1. Developer Guides 37

Twisted Documentation, Release 16.2.0

class ClientTimeoutError (Exception) :
pass

class RemoteCalculationClient (object, basic.LineReceiver, policies.TimeoutMixin) :

def _ init_ (self):
self.results = []
self._timeOut = 60

def lineReceived(self, line):
self.setTimeout (None)
d = self.results.pop(0)
d.callback (int (1ine))

def timeoutConnection(self) :
for d in self.results:
d.errback (ClientTimeoutError ())
self.transport.loseConnection ()

def _sendOperation(self, op, a, b):
d = defer.Deferred()
self.results.append(d)
line = " " % (op, a, b)
self.sendLine (line)
self.setTimeout (self._timeOut)

return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):
return self._sendOperation ("subtract", a, Db)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide (self, a, b):
return self._sendOperation("divide", a, b)

Testing Deferreds without the reactor

Above we learned about returning Deferreds from test methods in order to make assertions about their results, or
side-effects that only happen after they fire. This can be useful, but we don’t actually need the feature in this example.
Because we were careful to use Clock , we don’t need the global reactor to run in our tests. Instead of returning
the Deferred with a callback attached to it which performs the necessary assertions, we can use a testing helper,
successResultOf (and the corresponding error-case helper failureResultOf), to extract its result and make assertions

38 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.trial.unittest.SynchronousTestCase.successResultOf.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.trial.unittest.SynchronousTestCase.failureResultOf.html

Twisted Documentation, Release 16.2.0

against it directly. Compared to returning a Deferred, this avoids the problem of forgetting to return the Deferred,
improves the stack trace reported when the assertion fails, and avoids the complexity of using global reactor (which,

for example, may then require cleanup).

test_client_4.py

from calculus.client_ 3 import RemoteCalculationClient, ClientTimeoutError

from twisted.internet import task
from twisted.trial import unittest
from twisted.test import proto_helpers

class ClientCalculationTestCase (unittest.TestCase) :
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection ()

self.clock = task.Clock ()

self.proto = RemoteCalculationClient ()
self.tr.protocol = self.proto
self.proto.calllater = self.clock.calllater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation) (a, b)

self.assertEqual (self.tr.value(), '%¢s ¢d 2d\r\n' %
self.tr.clear ()
self.proto.dataReceived (" 2d\r\n" % (expected,))

self.assertEqual (expected, self.successResultOf (d))

def test_add(self):
self._test('add', 7, 6, 13)

def test_subtract (self):
self._test ('subtract', 82, 78, 4)

def test_multiply(self):
self._test ('multiply', 2, 8, 16)

def test_divide(self):
self._test ('divide', 14, 3, 4)

def test_timeout (self):
d = self.proto.add (9, 4)
self.assertEqual (self.tr.value(), 'add 9 4\r\n')
self.clock.advance (self.proto.timeOut)
self.failureResultOf (d) .trap(ClientTimeoutError)

def test_timeoutConnectionlLost (self):
called = []
def lost (argqg):
called.append(True)

(operation,

ay

b))

2.1. Developer Guides

39

Twisted Documentation, Release 16.2.0

self.proto.connectionLost = lost

d = self.proto.add (9, 4)
self.assertEqual (self.tr.value(), 'add 9 4\r\n'")
self.clock.advance (self.proto.timeOut)

def check (ignore) :

self.assertEqual (called, [True])
self.failureResultOf (d) .trap(ClientTimeoutError)
self.assertEqual (called, [Truel])

This version of the code makes the same assertions, but no longer returns any Deferreds from any test meth-
ods. Instead of making assertions about the result of the Deferred in a callback, it makes the assertions as
soon as it knows the Deferred is supposed to have a result (in the _test method and in test_timeout and
test_timeoutConnectionLost). The possibility of knowing exactly when a Deferred is supposed to have a
test is what makes successResultOf useful in unit testing, but prevents it from being applicable to non-testing
purposes.

successResultOf will raise an exception (failing the test) if the De ferred passed to it does not have a result, or
has a failure result. Similarly, failureResultOf will raise an exception (also failing the test) if the Deferred
passed to it does not have a result, or has a success result. There is a third helper method for testing the final case,
assertNoResult , which only raises an exception (failing the test) if the Deferred passed to it has a result (either
success or failure).

Dropping into a debugger

In the course of writing and running your tests, it is often helpful to employ the use of a debugger. This can be
particularly helpful in tracking down where the source of a troublesome bug is in your code. Python’s standard library
includes a debugger in the form of the pdb module. Running your tests with pdb is as simple as invoking twisted with
the ——debug option, which will start pdb at the beginning of the execution of your test suite.

Trial also provides a ——debugger option which can run your test suite using another debugger instead. To specify a
debugger other than pdb , pass in the fully-qualified name of an object that provides the same interface as pdb . Most
third-party debuggers tend to implement an interface similar to pdb , or at least provide a wrapper object that does.
For example, invoking trial with the line trial --debug —--debugger pudb will open the PuDB debugger
instead, provided it is properly installed.

Code coverage

Code coverage is one of the aspects of software testing that shows how much your tests cross (cover) the code of your
program. There are different kinds of measures: path coverage, condition coverage, statement coverage... We’ll only
consider statement coverage here, whether a line has been executed or not.

Trial has an option to generate the statement coverage of your tests. This option is —coverage. It creates a coverage
directory in _trial_temp, with a file .cover for every module used during the tests. The ones interesting for us are
calculus.base.cover and calculus.remote.cover. Each line starts with a counter showing how many times the line was
executed during the tests, or the marker ‘>>>>>> if the line was not covered. If you went through the whole tutorial
to this point, you should have complete coverage :).

Again, this is only another useful pointer, but it doesn’t mean your code is perfect: your tests should consider every
possible input and output, to get full coverage (condition, path, etc.) as well .

Conclusion

So what did you learn in this document?

40 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.trial.unittest.SynchronousTestCase.assertNoResult.html
http://docs.python.org/library/pdb.html
http://pypi.python.org/pypi/pudb

Twisted Documentation, Release 16.2.0

* How to use the trial command-line tool to run your tests

» How to use string transports to test individual clients and servers without creating sockets

* If you really want to create sockets, how to cleanly do it so that it doesn’t have bad side effects
* And some small tips you can’t live without.

If one of the topics still looks cloudy to you, please give us your feedback! You can file tickets to improve this
document - learn how to contribute on the Twisted web site.

2.1.5 Twisted from Scratch, or The Evolution of Finger

The Evolution of Finger: building a simple finger service

Introduction

This is the first part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

If you’re not familiar with ‘finger’ it’s probably because it’s not used as much nowadays as it used to be. Basically, if
yourun finger nail or finger nail@example.com the target computer spits out some information about
the user named nail . For instance:

Login: nail Name: Nail Sharp
Directory: /home/nail Shell: /usr/bin/sh
Last login Wed Mar 31 18:32 2004 (PST)
New mail received Thu Apr 1 10:50 2004 (PST)

Unread since Thu Apr 1 10:50 2004 (PST)
No Plan.

If the target computer does not have the £ingerd daemon running you’ll get a “Connection Refused” error. Paranoid
sysadmins keep fingerd off or limit the output to hinder crackers and harassers. The above format is the standard
fingerd default, but an alternate implementation can output anything it wants, such as automated responsibility
status for everyone in an organization. You can also define pseudo “users”, which are essentially keywords.

This portion of the tutorial makes use of factories and protocols as introduced in the Writing a TCP Server howto
and deferreds as introduced in Using Deferreds and Generating Deferreds . Services and applications are discussed in
Using the Twisted Application Framework .

By the end of this section of the tutorial, our finger server will answer TCP finger requests on port 1079, and will read
data from the web.

Refuse Connections

finger0l.py

from twisted.internet import reactor
reactor.run ()

This example only runs the reactor. It will consume almost no CPU resources. As it is not listening on any port, it
can’t respond to network requests — nothing at all will happen until we interrupt the program. At this point if you run
finger nailortelnet localhost 1079, you’ll geta “Connection refused” error since there’s no daemon
running to respond. Not very useful, perhaps — but this is the skeleton inside which the Twisted program will grow.

As implied above, at various points in this tutorial you’ll want to observe the behavior of the server being developed.
Unless you have a finger program which can use an alternate port, the easiest way to do this is with a telnet client.
telnet localhost 1079 will connect to the local host on port 1079, where a finger server will eventually be
listening.

2.1. Developer Guides 4

http://twistedmatrix.com/trac/wiki/TwistedDevelopment/

Twisted Documentation, Release 16.2.0

The Reactor You don’t call Twisted, Twisted calls you. The reactor is Twisted’s main event loop, similar to the
main loop in other toolkits available in Python (Qt, wx, and Gtk). There is exactly one reactor in any running Twisted
application. Once started it loops over and over again, responding to network events and making scheduled calls to
code.

Note that there are actually several different reactors to choose from; from twisted.internet import
reactor returns the current reactor. If you haven’t chosen a reactor class yet, it automatically chooses the default.
See the Reactor Basics HOWTO for more information.

Do Nothing

finger02.py

from twisted.internet import protocol, reactor

class FingerProtocol (protocol.Protocol) :
pass

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

reactor.listenTCP (1079, FingerFactory())
reactor.run ()

Here, reactor.listenTCP opens port 1079. (The number 1079 is a reminder that eventually we want to run on
port 79, the standard port for finger servers.) The specified factory, FingerFactory , is used to handle incoming
requests on that port. Specifically, for each request, the reactor calls the factory’s buildProtocol method, which
in this case causes FingerProtocol to be instantiated. Since the protocol defined here does not actually respond
to any events, connections to 1079 will be accepted, but the input ignored.

A Factory is the proper place for data that you want to make available to the protocol instances, since the protocol
instances are garbage collected when the connection is closed.

Drop Connections

finger03.py

from twisted.internet import protocol, reactor

class FingerProtocol (protocol.Protocol) :
def connectionMade (self):
self.transport.loseConnection ()

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

reactor.listenTCP (1079, FingerFactory())
reactor.run ()

Here we add to the protocol the ability to respond to the event of beginning a connection — by terminating it. Perhaps
not an interesting behavior, but it is already close to behaving according to the letter of the standard finger protocol.
After all, there is no requirement to send any data to the remote connection in the standard. The only problem, as far
as the standard is concerned, is that we terminate the connection too soon. A client which is slow enough will see his
send () of the username result in an error.

42 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.internet.reactor.html

Twisted Documentation, Release 16.2.0

Read Username, Drop Connections

finger04.py

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
self.transport.loseConnection ()

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

reactor.listenTCP (1079, FingerFactory())
reactor.run ()

Here we make FingerProtocol inherit from LineReceiver , so that we get data-based events on a line-by-line
basis. We respond to the event of receiving the line with shutting down the connection.

If you use a telnet client to interact with this server, the result will look something like this:

$ telnet localhost 1079

Trying 127.0.0.1...

Connected to localhost.localdomain.
alice

Connection closed by foreign host.

Congratulations, this is the first standard-compliant version of the code. However, usually people actually expect some
data about users to be transmitted.

Read Username, Output Error, Drop Connections

finger05.py

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
self.transport.write ("No such user\r\n")
self.transport.loseConnection ()

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

reactor.listenTCP (1079, FingerFactory())
reactor.run ()

Finally, a useful version. Granted, the usefulness is somewhat limited by the fact that this version only prints out a
“No such user” message. It could be used for devastating effect in honey-pots (decoy servers), of course.

Output From Empty Factory

finger06.py

2.1. Developer Guides 43

https://twistedmatrix.com/documents/16.2.0/api/twisted.protocols.basic.LineReceiver.html

Twisted Documentation, Release 16.2.0

Read username, output from empty factory, drop connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
self.transport.write (self.factory.getUser (user)+"\r\n")
self.transport.loseConnection ()

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

def getUser(self, user):
return "No such user"

reactor.listenTCP (1079, FingerFactory())
reactor.run ()

The same behavior, but finally we see what usefulness the factory has: as something that does not get constructed for
every connection, it can be in charge of the user database. In particular, we won’t have to change the protocol if the
user database back-end changes.

Output from Non-empty Factory

finger07.py

Read username, output from non—-empty factory, drop connections

from twisted.internet import protocol, reactor
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
self.transport.write(self.factory.getUser (user)+"\r\n")
self.transport.loseConnection ()

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

def __init__ (self, xxkwargs):
self.users = kwargs

def getUser (self, user):
return self.users.get (user, "No such user")

reactor.listenTCP (1079, FingerFactory (moshez="Happy and well'))
reactor.run ()

Finally, a really useful finger database. While it does not supply information about logged in users, it could be used to
distribute things like office locations and internal office numbers. As hinted above, the factory is in charge of keeping
the user database: note that the protocol instance has not changed. This is starting to look good: we really won’t have
to keep tweaking our protocol.

44 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

Use Deferreds

finger08.py

Read username, output from non-empty factory, drop connections
Use deferreds, to minimize synchronicity assumptions

from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

def _ _init__ (self, xxkwargs):
self.users = kwargs

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

reactor.listenTCP (1079, FingerFactory (moshez="Happy and well'))
reactor.run ()

But, here we tweak it just for the hell of it. Yes, while the previous version worked, it did assume the result of getUser
is always immediately available. But what if instead of an in-memory database, we would have to fetch the result
from a remote Oracle server? By allowing getUser to return a Deferred, we make it easier for the data to be retrieved
asynchronously so that the CPU can be used for other tasks in the meanwhile.

As described in the Deferred HOWTO , Deferreds allow a program to be driven by events. For instance, if one task
in a program is waiting on data, rather than have the CPU (and the program!) idly waiting for that data (a process
normally called ‘blocking’), the program can perform other operations in the meantime, and waits for some signal that
data is ready to be processed before returning to that process.

In brief, the code in FingerFactory above creates a Deferred, to which we start to attach callbacks . The de-
ferred action in FingerFactory is actually a fast-running expression consisting of one dictionary method, get .
Since this action can execute without delay, FingerFactory.getUser uses defer.succeed to create a De-
ferred which already has a result, meaning its return value will be passed immediately to the first callback function,
which turns out to be FingerProtocol.writeResponse . We’ve also defined an errback (appropriately named
FingerProtocol.onError) that will be called instead of writeResponse if something goes wrong

Run ‘finger’ Locally

finger09.py

2.1. Developer Guides 45

Twisted Documentation, Release 16.2.0

Read username, output from factory interfacing to 0S, drop connections

from twisted.internet import protocol, reactor, defer, utils
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

def getUser (self, user):
return utils.getProcessOutput ("finger", [user])

reactor.listenTCP (1079, FingerFactory())
reactor.run ()

This example also makes use of a Deferred. twisted.internet.utils.getProcessOutput is a non-
blocking version of Python’s commands.getoutput : it runs a shell command (finger , in this case) and
captures its standard output. However, getProcessOutput returns a Deferred instead of the output itself. Since
FingerProtocol.lineReceived is already expecting a Deferred to be returned by getUser , it doesn’t need
to be changed, and it returns the standard output as the finger result.

Note that in this case the shell’s built-in finger command is simply run with whatever arguments it is given. This is
probably insecure, so you probably don’t want a real server to do this without a lot more validation of the user input.
This will do exactly what the standard version of the finger server does.

Read Status from the Web

The web. That invention which has infiltrated homes around the world finally gets through to our invention. In this case
we use the built-in Twisted web client via twisted.web.client .getPage, anon-blocking version of Python’s
urllib2.urlopen (URL) .read . Like getProcessOutput it returns a Deferred which will be called back
with a string, and can thus be used as a drop-in replacement.

Thus, we have examples of three different database back-ends, none of which change the protocol class. In fact, we
will not have to change the protocol again until the end of this tutorial: we have achieved, here, one truly usable class.

fingerl0.py

Read username, output from factory interfacing to web, drop connections

from twisted.internet import protocol, reactor, defer, utils
from twisted.protocols import basic
from twisted.web import client

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):

46 Chapter 2. Twisted Core

http://docs.python.org/2.7/library/urllib2.html#urllib2.urlopen

Twisted Documentation, Release 16.2.0

d = self.factory.getUser (user)

def onError (err):
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerFactory (protocol.ServerFactory):
protocol = FingerProtocol

def _ init__ (self, prefix):
self.prefix=prefix

def getUser (self, user):
return client.getPage (self.prefix+user)

reactor.listenTCP (1079, FingerFactory (prefix="http://livejournal.com/~"))
reactor.run ()

Use Application

Up until now, we faked. We kept using port 1079, because really, who wants to run a finger server with root privileges?
Well, the common solution is “privilege shedding” : after binding to the network, become a different, less privileged
user. We could have done it ourselves, but Twisted has a built-in way to do it. We will create a snippet as above, but
now we will define an application object. That object will have uid and gid attributes. When running it (later we
will see how) it will bind to ports, shed privileges and then run.

Read on to find out how to run this code using the twistd utility.

twistd

This is how to run “Twisted Applications” — files which define an ‘application’. A daemon is expected to adhere to
certain behavioral standards so that standard tools can stop/start/query them. If a Twisted application is run via twistd,
the TWISTed Daemonizer, all this behavioral stuff will be handled for you. twistd does everything a daemon can be
expected to — shuts down stdin/stdout/stderr, disconnects from the terminal and can even change runtime directory, or
even the root filesystems. In short, it does everything so the Twisted application developer can concentrate on writing
his networking code.

root% twistd -ny fingerll.tac # just like before

root% twistd -y fingerll.tac # daemonize, keep pid in twistd.pid

root% twistd -y fingerll.tac —--pidfile=finger.pid

root% twistd -y fingerll.tac —--rundir=/

root% twistd -y fingerll.tac —--chroot=/var

root% twistd -y fingerll.tac -1 /var/log/finger.log

root% twistd -y fingerll.tac --syslog # just log to syslog

root% twistd -y fingerll.tac —--syslog —-prefix=twistedfinger # use given prefix

There are several ways to tell twistd where your application is; here we show how it is done using the application
global variable in a Python source file (a Twisted Application Configuration file).

fingerll.tac

2.1. Developer Guides 47

Twisted Documentation, Release 16.2.0

Read username, output from non—-empty factory, drop connections
Use deferreds, to minimize synchronicity assumptions
Write application. Save in 'finger.tpy'

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerFactory (protocol.ServerFactory) :
protocol = FingerProtocol

def _ init_ (self, =xxkwargs):
self.users = kwargs

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

application = service.Application('finger', uid=1, gid=1)

factory = FingerFactory (moshez="Happy and well')

internet .TCPServer (79, factory) .setServiceParent (
service.IServiceCollection (application))

Instead of using reactor.listenTCP as in the above examples, here we are using its application-aware counter-
part, internet .TCPServer . Notice that when it is instantiated, the application object itself does not reference
either the protocol or the factory. Any services (such as TCPServer) which have the application as their parent will
be started when the application is started by twistd. The application object is more useful for returning an object that
supports the I[Service , [ServiceCollection , [Process , and sob.IPersistable interfaces with the given parameters; we’ll
be seeing these in the next part of the tutorial. As the parent of the TCPServer we opened, the application lets us
manage the TCPServer.

With the daemon running on the standard finger port, you can test it with the standard finger command: finger
moshez .

The Evolution of Finger: adding features to the finger service

Introduction

This is the second part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, our finger server will continue to sprout features: the ability for users to set finger
announces, and using our finger service to send those announcements on the web, on IRC and over XML-RPC.
Resources and XML-RPC are introduced in the Web Applications portion of the Twisted Web howto . More examples
using twisted.words.protocols.irc can be found in Writing a TCP Client and the Twisted Words examples .

48 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.IService.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.IServiceCollection.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.IProcess.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.persisted.sob.IPersistable.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.words.protocols.irc.html

Twisted Documentation, Release 16.2.0

Setting Message By Local Users

Now that port 1079 is free, maybe we can use it with a different server, one which will let people set their messages.
It does no access control, so anyone who can login to the machine can set any message. We assume this is the desired
behavior in our case. Testing it can be done by simply:

% nc localhost 1079 # or telnet localhost 1079
moshez

Giving a tutorial now, sorry!

~D

fingerl2.tac

But let's try and fix setting away messages, shall we?
from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err):
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerFactory (protocol.ServerFactory):
protocol = FingerProtocol

def _ _init__ (self, xxkwargs):
self.users = kwargs

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade (self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
user = self.lines[0]
status = self.lines([1]
self.factory.setUser (user, status)

class FingerSetterFactory (protocol.ServerFactory) :
protocol = FingerSetterProtocol

def _ _init__ (self, fingerFactory):
self.fingerFactory = fingerFactory

def setUser(self, user, status):

2.1. Developer Guides 49

Twisted Documentation, Release 16.2.0

self.fingerFactory.users[user] = status

ff = FingerFactory (moshez="'Happy and well')
fsf = FingerSetterFactory (ff)

application = service.Application('finger', uid=1l, gid=1l)
serviceCollection = service.IServiceCollection (application)
internet .TCPServer (79, ff) .setServiceParent (serviceCollection)
internet.TCPServer (1079, fsf) .setServiceParent (serviceCollection)

This program has two protocol-factory-TCPServer pairs, which are both child services of the application. Specifically,
the setServiceParent method is used to define the two TCPServer services as children of application , which
implements IServiceCollection . Both services are thus started with the application.

Use Services to Make Dependencies Sane

The previous version had the setter poke at the innards of the finger factory. This strategy is usually not a good idea:
this version makes both factories symmetric by making them both look at a single object. Services are useful for when
an object is needed which is not related to a specific network server. Here, we define a common service class with
methods that will create factories on the fly. The service also contains methods the factories will depend on.

The factory-creation methods, getFingerFactory and getFingerSetterFactory , follow this pattern:
1. Instantiate a generic server factory, twisted.internet.protocol.ServerFactory.
2. Set the protocol class, just like our factory class would have.

3. Copy a service method to the factory as a function attribute. The function won’t have access to the factory’s
self , but that’s OK because as a bound method it has access to the service’s self , which is what it needs.
For getUser , a custom method defined in the service gets copied. For setUser , a standard method of the
users dictionary is copied.

Thus, we stopped subclassing: the service simply puts useful methods and attributes inside the factories. We are
getting better at protocol design: none of our protocol classes had to be changed, and neither will have to change until
the end of the tutorial.

As an application service, this new finger service implements the [Service interface and can be started and stopped in
a standardized manner. We’ll make use of this in the next example.

fingerl3.tac

Fix asymmetry

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

50 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.Service.setServiceParent.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.IServiceCollection.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.IService.html

Twisted Documentation, Release 16.2.0

class FingerSetterProtocol (basic.LineReceiver) :
def connectionMade (self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser (user, status)

class FingerService (service.Service):
def _ _init__ (self, xxkwargs):
self.users = kwargs

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def setUser(self, user, status):
self.users[user] = status

def getFingerFactory(self):
f = protocol.ServerFactory ()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getFingerSetterFactory (self):

f = protocol.ServerFactory ()

f.protocol = FingerSetterProtocol

f.setUser = self.setUser

return f
application = service.Application('finger', uid=1, gid=1l)
f = FingerService (moshez="'Happy and well')
serviceCollection = service.IServiceCollection (application)

internet.TCPServer (79, f.getFingerFactory ()

) .setServiceParent (serviceCollection)
internet.TCPServer (1079, f.getFingerSetterFactory ()

) .setServiceParent (serviceCollection)

Most application services will want to use the Service base class, which implements all the generic IService
behavior.

Read Status File

This version shows how, instead of just letting users set their messages, we can read those from a centrally managed
file. We cache results, and every 30 seconds we refresh it. Services are useful for such scheduled tasks.

listings/finger/etc.users

fingerld.tac

Read from file

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

2.1. Developer Guides 51

https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.Service.html

Twisted Documentation, Release 16.2.0

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerService (service.Service):

def _ init_ (self, filename):
self.users = {}
self.filename = filename

def _read(self):
for line in file(self.filename) :

user, status = line.split(':', 1)
user = user.strip()
status = status.strip/()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getFingerFactory (self):
f = protocol.ServerFactory ()
f.protocol = FingerProtocol
f.getUser = self.getUser

return f
application = service.Application('finger', uid=1, gid=1l)
f = FingerService('/etc/users')
finger = internet.TCPServer (79, f.getFingerFactory())

finger.setServiceParent (service.IServiceCollection (application))
f.setServiceParent (service.IServiceCollection (application))

Since this version is reading data from a file (and refreshing the data every 30 seconds), there is no
FingerSetterFactory and thus nothing listening on port 1079.

Here we override the standard startService and stopService hooks in the Finger service, which is set up as a child
service of the application in the last line of the code. startService calls _read , the function responsible for
reading the data; reactor.calllater is then used to schedule it to run again after thirty seconds every time it is

52 Chapter 2. Twisted Core

https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.Service.startService.html
https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.Service.stopService.html

Twisted Documentation, Release 16.2.0

called. reactor.calllater returns an object that lets us cancel the scheduled run in stopService using its
cancel method.

Announce on Web, Too

The same kind of service can also produce things useful for other protocols. For example, in twisted.web, the factory
itself (Site) is almost never subclassed — instead, it is given a resource, which represents the tree of resources
available via URLs. That hierarchy is navigated by Site and overriding it dynamically is possible with getChild.

To integrate this into the Finger application (just because we can), we set up a new TCPServer that calls the Site
factory and retrieves resources via a new function of FingerService named getResource . This function
specifically returns a Resource object with an overridden get Child method.

fingerlb5.tac

Read from file, announce on the web!

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.protocols import basic

from twisted.web import resource, server, static
import cgi

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class FingerResource (resource.Resource) :

def _ init_ (self, users):
self.users = users
resource.Resource.__init__ (self)

we treat the path as the username
def getChild(self, username, request):
mmmn
'username' is a string.
'request' is a 'twisted.web.server.Request'.

mon

messagevalue = self.users.get (username)
username = cgi.escape (username)
if messagevalue is not None:
messagevalue = cgi.escape (messagevalue)
text = '<hl>%s</hl><p>2s</p>' % (username,messagevalue)
else:
text = '<hl>%s</hl><p>No such user</p>' % username

return static.Data (text, 'text/html')

2.1. Developer Guides 53

Twisted Documentation, Release 16.2.0

class FingerService (service.Service):

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':'"', 1)
user = user.strip/()
status = status.strip()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getFingerFactory (self):
f = protocol.ServerFactory ()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = FingerResource (self.users)
return r

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)
internet.TCPServer (79, f.getFingerFactory ()

) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site(f.getResource())

) .setServiceParent (serviceCollection)

Announce on IRC, Too

This is the first time there is client code. IRC clients often act a lot like servers: responding to events from the
network. The reconnecting client factory will make sure that severed links will get re-established, with intelligent
tweaked exponential back-off algorithms. The IRC client itself is simple: the only real hack is getting the nickname
from the factory in connectionMade .

fingerl6.tac

Read from file, announce on the web, irc
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer

54 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.web import resource,

server, static

import cgi
class FingerProtocol (basic.LineReceiver) :

def lineReceived(self,
d = self.factory.getUser (user)

user) :

def onError (err):
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message):
self.transport.write (message +
self.transport.loseConnection ()

d.addCallback (writeResponse)

"\r\n")

class IRCReplyBot (irc.IRCClient):
def connectionMade (self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)
def privmsg(self, user,

channel, msqg):

user = user.split('!')[0]

if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
def onError (err):

return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
irc.IRCClient.msg(self,
d.addCallback (writeResponse)

user, msg+t':

class FingerService (service.Service):
def _ init_ (self, filename):
self.filename = filename
self.users = {}
def read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':', 1)
user = user.strip/()
status = status.strip()

self.users[user] = status

self.call = reactor.callLater (30,
def getUser(self, user):
return defer.succeed(self.users.get (user,

def getFingerFactory (self):
f = protocol.ServerFactory ()

'+message)

self._read)

"No such user"))

2.1. Developer Guides

55

Twisted Documentation, Release 16.2.0

f.protocol = FingerProtocol
f.getUser = self.getUser
return £

def getResource (self):

r = resource.Resource ()

r.getChild = (lambda path, request:
static.Data ('<hl>%s</hl><p>%s</p>' %
tuple (map (cgi.escape,
[path, self.users.get (path,
"No such user <p/> usage: site/user")])),
'"text/html'"))

return r

def getIRCBot (self, nickname) :
f = protocol.ReconnectingClientFactory ()
f.protocol = IRCReplyBot

f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)

internet.TCPServer (79, f.getFingerFactory ()
) .setServiceParent (serviceCollection)

internet .TCPServer (8000, server.Site(f.getResource())
) .setServiceParent (serviceCollection)

internet .TCPClient ('irc.freenode.org', 6667, f.getIRCBot ('fingerbot')
) .setServiceParent (serviceCollection)

FingerService now has another new function, getIRCbot s which returns the
ReconnectingClientFactory . This factory in turn will instantiate the TRCReplyBot protocol. The
IRCBot is configured in the last line to connect to irc. freenode.org with a nickname of fingerbot .

By overriding irc.IRCClient.connectionMade , IRCReplyBot can access the nickname attribute of the
factory that instantiated it.

Add XML-RPC Support

In Twisted, XML-RPC support is handled just as though it was another resource. That resource will still support GET
calls normally through render(), but that is usually left unimplemented. Note that it is possible to return deferreds from
XML-RPC methods. The client, of course, will not get the answer until the deferred is triggered.

fingerl7.tac

56 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

Read from file, announce on the web, irc, xml-rpc
from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer

from twisted.words.protocols import irc
from twisted.protocols import basic

from twisted.web import resource, server, static, xmlrpc

import cgi

class FingerProtocol (basic.LineReceiver) :
def lineReceived(self, user):
d = self.factory.getUser (user)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :
self.transport.write (message + '\r\n')
self.transport.loseConnection ()
d.addCallback (writeResponse)

class IRCReplyBot (irc.IRCClient):
def connectionMade (self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msg):
user = user.split('!"') [0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)

def onError (err) :
return 'Internal error in server'
d.addErrback (onError)

def writeResponse (message) :

irc.IRCClient.msg(self, user, msg+':
d.addCallback (writeResponse)

class FingerService (service.Service):

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':'"', 1)
user = user.strip/()
status = status.strip/()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):

'+tmessage)

return defer.succeed(self.users.get (user, "No such user"))

2.1. Developer Guides

57

Twisted Documentation, Release 16.2.0

def getFingerFactory (self):
f = protocol.ServerFactory ()
f.protocol = FingerProtocol
f.getUser = self.getUser
return £

def getResource (self):
r = resource.Resource ()
r.getChild = (lambda path, request:
static.Data ('<hl>%s</hl><p>%s</p>' %
tuple (map (cgi.escape,
[path, self.users.get (path, "No such user")])),

'"text/html'"))
x = xmlrpc.XMLRPC ()
x.xmlrpc_getUser = self.getUser

r.putChild ('RPC2', x)
return r

def getIRCBot (self, nickname):
f = protocol.ReconnectingClientFactory ()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1l, gid=1l)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)

internet.TCPServer (79, f.getFingerFactory ()
) .setServiceParent (serviceCollection)

internet .TCPServer (8000, server.Site(f.getResource())
) .setServiceParent (serviceCollection)

internet .TCPClient ('irc.freenode.org', 6667, f.getIRCBot ('fingerbot")
) .setServiceParent (serviceCollection)

Instead of a web browser, we can test the XMLRPC finger using a simple client based on Python’s built-in
xmlrpclib , which will access the resource we’ve made available at 1ocalhost /RPC2 .

fingerXRclient.py

testing xmlrpc finger

import xmlrpclib
server = xmlrpclib.Server ('http://127.0.0.1:8000/RPC2")
print server.getUser ('moshez')

58 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

The Evolution of Finger: cleaning up the finger code

Introduction

This is the third part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, we’ll clean up our code so that it is closer to a readable and extensible style.

Write Readable Code

The last version of the application had a lot of hacks. We avoided sub-classing, didn’t support things like user listings
over the web, and removed all blank lines — all in the interest of code which is shorter. Here we take a step back,
subclass what is more naturally a subclass, make things which should take multiple lines take them, etc. This shows a
much better style of developing Twisted applications, though the hacks in the previous stages are sometimes used in
throw-away prototypes.

fingerl8.tac

Do everything properly

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.web import resource, server, static, xmlrpc
import cgi

def catchError (err):
return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value+'\r\n")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self) :
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msg):
user = user.split('!") [0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class UserStatusTree (resource.Resource) :

2.1. Developer Guides 59

Twisted Documentation, Release 16.2.0

def init (self, service):
resource.Resource._ _init (self)
self.service = service

def render_ GET (self, request):
d = self.service.getUsers()
def formatUsers (users) :

1 = ['%s</1i>"'" % (user, user)
for user in users]
return ''+''.join(l)+'"'

d.addCallback (formatUsers)

d.addCallback (request.write)
d.addCallback (lambda _: request.finish{())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree (self.service)
else:
return UserStatus (path, self.service)

class UserStatus (resource.Resource) :

def _ init_ (self, user, service):
resource.Resource._ _init_ (self)
self.user = user
self.service = service

def render_ GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (cgi.escape)
d.addCallback (lambda m:
'<hl>%s</hl>"%self.user+'<p>%s</p>'%m)
d.addCallback (request.write)
d.addCallback (lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser (user)

class FingerService (service.Service):

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

60

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

user, status = line.split(':', 1)
user = user.strip/()
status = status.strip()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def getFingerFactory (self):
f = protocol.ServerFactory ()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource (self):
r = UserStatusTree (self)
x = UserStatusXR(self)
r.putChild ('RPC2"', x)
return r

def getIRCBot (self, nickname):
f = protocol.ReconnectingClientFactory ()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1l, gid=1l)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)

internet.TCPServer (79, f.getFingerFactory ()
) .setServiceParent (serviceCollection)

internet .TCPServer (8000, server.Site(f.getResource())
) .setServiceParent (serviceCollection)

internet .TCPClient ('irc.freenode.org', 6667, f.getIRCBot ('fingerbot")
) .setServiceParent (serviceCollection)

The Evolution of Finger: moving to a component based architecture

Introduction

This is the fourth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

2.1. Developer Guides

61

Twisted Documentation, Release 16.2.0

In this section of the tutorial, we’ll move our code to a component architecture so that adding new features is trivial.
See Interfaces and Adapters for a more complete discussion of components.

Write Maintainable Code

In the last version, the service class was three times longer than any other class, and was hard to understand. This was
because it turned out to have multiple responsibilities. It had to know how to access user information, by rereading
the file every half minute, but also how to display itself in a myriad of protocols. Here, we used the component-based
architecture that Twisted provides to achieve a separation of concerns. All the service is responsible for, now, is
supporting getUser /getUsers . It declares its support via a call to zope . interface.implements . Then,
adapters are used to make this service look like an appropriate class for various things: for supplying a finger factory to
TCPServer, for supplying a resource to site’s constructor, and to provide an IRC client factory for TCPClient . All
the adapters use are the methods in FingerService they are declared to use:getUser /getUsers . We could,
of course, skip the interfaces and let the configuration code use things like FingerFactoryFromService (f)

directly. However, using interfaces provides the same flexibility inheritance gives: future subclasses can override the
adapters.

fingerl9.tac

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements

import cgi

class IFingerService (Interface):

def getUser (user) :

mmn

Return a deferred returning a string.
mrmn

def getUsers():

mmn

Return a deferred returning a list of strings.
mmn
class IFingerSetterService (Interface):
def setUser (user, status):

mon

Set the user's status to something.

mn

def catchError (err) :
return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):

62 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

d = self.factory.getUser (user)

d.addErrback (catchError)

def writeValue (value) :
self.transport.write(value+'\r\n'")
self.transport.loseConnection ()

d.addCallback (writeValue)

class IFingerFactory(Interface):

def getUser (user):

mon

Return a deferred returning a string.

mnn

def buildProtocol (addr) :

mnn

Return a protocol returning a string.

mon

class FingerFactoryFromService (protocol.ServerFactory) :
implements (IFingerFactory)
protocol = FingerProtocol

def _ init_ (self, service):
self.service

service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver) :

def connectionMade (self) :
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) ==
self.factory.setUser (xself.lines)

class IFingerSetterFactory (Interface):
def setUser (user, status):
mmomn

Return a deferred returning a string.

moon

2.1. Developer Guides 63

Twisted Documentation, Release 16.2.0

def buildProtocol (addr) :

mon

Return a protocol returning a string.
mirnm

class FingerSetterFactoryFromService (protocol.ServerFactory) :

implements (IFingerSetterFactory)

protocol = FingerSetterProtocol

def init (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msqg):
user user.split ('!") [0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))

°

d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

mmn

@ivar nickname

mmn

def getUser (user) :

mon

Return a deferred returning a string.

mon

def buildProtocol (addr) :

mon

Return a protocol.

mon

class IRCClientFactoryFromService (protocol.ClientFactory):

implements (IIRCClientFactory)

64

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

protocol = IRCReplyBot

nickname = None
def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :
implements (resource.IResource)

def _ init_ (self, service):
resource.Resource.__init__ (self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_ GET (self, request):
d = self.service.getUsers()
def formatUsers (users) :

1 = ['%s5</1i>' % (user, user)
for user in users]
return ''+''.join(1l)+'"'

d.addCallback (formatUsers)

d.addCallback (request.write)
d.addCallback (lambda _: request.finish{())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree (self.service)
else:
return UserStatus (path, self.service)

components.registerAdapter (UserStatusTree, IFingerService,
resource.IResource)

class UserStatus (resource.Resource) :

def _ init_ (self, user, service):
resource.Resource.__init__ (self)
self.user = user
self.service = service

def render_GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (cgi.escape)
d.addCallback (lambda m:
'<h1>%s</hl>"%$self.user+'<p>%s</p>"'%m)
d.addCallback (request.write)
d.addCallback (lambda _: request.finish{())

2.1. Developer Guides

65

Twisted Documentation, Release 16.2.0

return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser (self, user):
return self.service.getUser (user)

class FingerService (service.Service):

implements (IFingerService)

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':', 1)
user = user.strip/()
status = status.strip()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers (self):
return defer.succeed(self.users.keys())

def startService (self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)
internet.TCPServer (79, IFingerFactory (f)
) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site (resource.IResource (f))
) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet.TCPClient ('irc.freenode.org', 6667, i
) .setServiceParent (serviceCollection)

66 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

Advantages of Latest Version

* Readable — each class is short

* Maintainable — each class knows only about interfaces
* Dependencies between code parts are minimized

* Example: writing anew IFingerService is easy

fingerl9a_changes.py

class IFingerSetterService (Interface):

def setUser (user, status):
"""Set the user's status to something"""

Advantages of latest version
class MemoryFingerService (service.Service):
implements ([IFingerService, IFingerSetterService])

def _ _init__ (self, xxkwargs):
self.users = kwargs

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):
self.users[user] = status

f = MemoryFingerService (moshez="Happy and well')

serviceCollection = service.IServiceCollection (application)

internet .TCPServer (1079, IFingerSetterFactory(f), interface='127.0.0.1"
) .setServiceParent (serviceCollection)

Full source code here:

fingerl9a.tac

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements

import cgi

class IFingerService (Interface):

def getUser (user):
"""Return a deferred returning a string"""

2.1. Developer Guides 67

Twisted Documentation, Release 16.2.0

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerSetterService (Interface):

def setUser (user, status):
""rset the user's status to something”"""

def catchError (err):
return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value+'\r\n'")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory(Interface):

def getUser (user):
"""Return a deferred returning a string"""

def buildProtocol (addr) :
"""Return a protocol returning a string"""
class FingerFactoryFromService (protocol.ServerFactory):
implements (IFingerFactory)
protocol = FingerProtocol

def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver) :

def connectionMade (self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) == 2:
self.factory.setUser (xself.lines)

68

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class IFingerSetterFactory(Interface):

def setUser (user, status):
"""Return a deferred returning a string"""

def buildProtocol (addr) :
"""Return a protocol returning a string"""

class FingerSetterFactoryFromService (protocol.ServerFactory):
implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def init (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msqg):
user = user.split('!')[0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of %s: 2s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

mmn

@ivar nickname
mmwn

def getUser (user):
"""Return a deferred returning a string"""

def buildProtocol (addr) :
"""Return a protocol"""
class IRCClientFactoryFromService (protocol.ClientFactory):

implements (IIRCClientFactory)

2.1. Developer Guides

69

Twisted Documentation, Release 16.2.0

protocol = IRCReplyBot

nickname = None
def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :
implements (resource.IResource)

def _ init_ (self, service):
resource.Resource._ _init_ (self)
self.service = service
self.putChild ('RPC2', UserStatusXR(self.service))

def render_ GET (self, request):
d = self.service.getUsers ()
def formatUsers (users) :

1 = ['%s</1i>"'" % (user, user)
for user in users]
return ''+''_.join(l)+'"'

d.addCallback (formatUsers)

d.addCallback (request.write)
d.addCallback (lambda _: request.finish{())
return server .NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree (self.service)
else:
return UserStatus (path, self.service)

components.registerAdapter (UserStatusTree, IFingerService,
resource.IResource)

class UserStatus (resource.Resource) :

def _ init_ (self, user, service):
resource.Resource._ _init_ (self)
self.user = user
self.service = service

def render_ GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (cgi.escape)
d.addCallback (lambda m:
'<hl>%s</hl>"%self.user+'<p>%s</p>'%m)
d.addCallback (request.write)
d.addCallback (lambda _: request.finish())
return server.NOT_DONE_YET

70

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser (user)

class MemoryFingerService (service.Service):
implements ([IFingerService, IFingerSetterService])

def _ _init__ (self, xxkwargs):
self.users = kwargs

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def setUser(self, user, status):

self.users[user] = status
application = service.Application('finger', uid=1, gid=1)
f = MemoryFingerService (moshez="Happy and well')
serviceCollection = service.IServiceCollection (application)

internet.TCPServer (79, IFingerFactory(f)
) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site (resource.IResource (f))
) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet.TCPClient ('irc.freenode.org', 6667, i
) .setServiceParent (serviceCollection)
internet .TCPServer (1079, IFingerSetterFactory(f), interface="'127.0.0.1"
) .setServiceParent (serviceCollection)

Aspect-Oriented Programming

At last, an example of aspect-oriented programming that isn’t about logging or timing. This code is actually useful!
Watch how aspect-oriented programming helps you write less code and have fewer dependencies!

The Evolution of Finger: pluggable backends

Introduction

This is the fifth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part we will add new several new backends to our finger service using the component-based architecture
developed in The Evolution of Finger: moving to a component based architecture . This will show just how convenient
it is to implement new back-ends when we move to a component based architecture. Note that here we also use an

2.1. Developer Guides 4

Twisted Documentation, Release 16.2.0

interface we previously wrote, FingerSetterFactory, by supporting one single method. We manage to preserve

the service’s ignorance of the network.

Another Back-end

fingerl9b_changes.py

from twisted.internet import protocol, reactor, defer, utils
import pwd

Another back-end
class LocalFingerService (service.Service):
implements (IFingerService)
def getUser (self, user):
need a local finger daemon running for this to work
return utils.getProcessOutput ("finger", [user])
def getUsers(self):

return defer.succeed([])

f = LocalFingerService ()

Full source code here:

fingerl9b.tac

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer, utils
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements

import cgi

import pwd

class IFingerService (Interface):

def getUser (user) :

mon

Return a deferred returning a string.
mirnm

def getUsers():

mon

Return a deferred returning a list of strings.
mmn
class IFingerSetterService (Interface):

def setUser (user, status):
mmn

72

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

Set the user's status to something.
mmwmn
class IFingerSetterService (Interface):

def setUser (user,

mon

status) :

Set the user's status to something.
mirnm

def catchError (err):

return "Internal error in server"

class FingerProtocol (basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value+'\r\n'")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory(Interface):
def getUser (user) :
mmn
Return a deferred returning a string.

mnn

def buildProtocol (addr) :

mnn

Return a protocol returning a string.

mon

implements (IFingerFactory)
protocol = FingerProtocol

def _ _init__ (self,

service) :
self.service = service
def getUser (self, user):

return self.service.getUser (user)
components.registerAdapter (FingerFactoryFromService,

IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):

class FingerFactoryFromService (protocol.ServerFactory):

2.1. Developer Guides

73

Twisted Documentation, Release 16.2.0

def connectionMade (self) :
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) ==
self.factory.setUser (xself.lines)

class IFingerSetterFactory (Interface):

def setUser (user, status):
mmwn

Return a deferred returning a string.

mn

def buildProtocol (addr) :

mnn

Return a protocol returning a string.

mon

class FingerSetterFactoryFromService (protocol.ServerFactory) :
implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def _ init_ (self, service):

self.service = service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msg):
user = user.split('!") [0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

74 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

mon

@ivar nickname
mmn

def getUser (user) :

mn

Return a deferred returning a string.

mmn

def buildProtocol (addr) :

mnn

Return a protocol.
mmwmn
class IRCClientFactoryFromService (protocol.ClientFactory):
implements (IIRCClientFactory)

protocol = IRCReplyBot

nickname = None
def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :
implements (resource.IResource)

def _ init_ (self, service):
resource.Resource.__init__ (self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_GET (self, request):
d = self.service.getUsers()
def formatUsers (users) :

1 = ['%s</1i>"'" % (user, user)
for user in users]
return ''+''.join(l)+'"'

d.addCallback (formatUsers)

d.addCallback (request.write)
d.addCallback (lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree (self.service)
else:
return UserStatus (path, self.service)

2.1. Developer Guides 75

Twisted Documentation, Release 16.2.0

components.registerAdapter (UserStatusTree, IFingerService,
resource.IResource)

class UserStatus (resource.Resource) :

def _ init_ (self, user, service):
resource.Resource._ _init__ (self)
self.user = user
self.service = service

def render_ GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (cgi.escape)
d.addCallback (lambda m:
'<hl>%s</hl>"%self.user+'<p>%s</p>'%m)
d.addCallback (request.write)
d.addCallback (lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser (user)

class FingerService (service.Service):

implements (IFingerService)

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':'"', 1)
user = user.strip/()
status = status.strip/()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService (self)

76 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()
Another back-end
class LocalFingerService (service.Service):
implements (IFingerService)
def getUser (self, user):
need a local finger daemon running for this to work

return utils.getProcessOutput ("finger", [user])

def getUsers(self):
return defer.succeed([])

application = service.Application('finger', uid=1, gid=1l)
f = LocalFingerService ()
serviceCollection = service.IServiceCollection (application)

internet .TCPServer (79, IFingerFactory (f)
) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site (resource.IResource (f))
) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet.TCPClient ('irc.freenode.org', 6667, 1
) .setServiceParent (serviceCollection)

We’ve already written this, but now we get more for less work: the network code is completely separate from the

back-end.

Yet Another Back-end: Doing the Standard Thing

fingerl1l9c_changes.py

from twisted.internet import protocol, reactor, defer, utils
import pwd
import os

Yet another back-end
class LocalFingerService (service.Service):
implements (IFingerService)

def getUser(self, user):
user = user.strip()
try:
entry = pwd.getpwnam(user)
except KeyError:
return defer.succeed("No such user™)
try:
f = file(os.path.join(entry[5],'.plan'))

2.1. Developer Guides

77

Twisted Documentation, Release 16.2.0

except (IOError, OSError):
return defer.succeed("No such user™)
data = f.read()
data = data.strip()
f.close()
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

f = LocalFingerService ()

Full source code here:

fingerl9c.tac

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer, utils
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from zope.interface import Interface, implements

import cgi

import pwd

import os

class IFingerService (Interface):

def getUser (user) :

mon

Return a deferred returning a string.

mn

def getUsers():

moon

Return a deferred returning a list of strings.
mmn

class IFingerSetterService (Interface):

def setUser (user, status):
mmrn

Set the user's status to something.

mn

class IFingerSetterService (Interface):

def setUser (user, status):

mmnn

Set the user's status to something.

mon

78

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def catchError (err) :
return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value+'\r\n'")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory(Interface):

def getUser (user):

mon

Return a deferred returning a string.
mmn

def buildProtocol (addr) :

mn

Return a protocol returning a string.
mimumn

class FingerFactoryFromService (protocol.ServerFactory) :

implements (IFingerFactory)

protocol = FingerProtocol
def _ init_ (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):

def connectionMade (self) :
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) ==
self.factory.setUser (xself.lines)

2.1. Developer Guides 79

Twisted Documentation, Release 16.2.0

class IFingerSetterFactory (Interface):

def setUser (user, status):

mon

Return a deferred returning a string.

mn

def buildProtocol (addr) :

mon

Return a protocol returning a string.

mnn

class FingerSetterFactoryFromService (protocol.ServerFactory) :

implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def init (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,

IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade () :
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

mmon

@ivar nickname

mon

def getUser (user):

mon

Return a deferred returning a string.

mnn

def buildProtocol (addr) :

80

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

mmon

Return a protocol.
mmn
class IRCClientFactoryFromService (protocol.ClientFactory):
implements (IIRCClientFactory)

protocol = IRCReplyBot

nickname = None
def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :
implements (resource.IResource)

def _ init_ (self, service):
resource.Resource._ _init_ (self)
self.service = service
self.putChild('RPC2', UserStatusXR(self.service))

def render_ GET (self, request):
d = self.service.getUsers()
def formatUsers (users) :

1 = ['%s</1i>"'" % (user, user)
for user in users]
return ''+''.join(l)+'"'

d.addCallback (formatUsers)

d.addCallback (request.write)
d.addCallback (lambda _: request.finish{())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path=="":
return UserStatusTree (self.service)
else:
return UserStatus (path, self.service)

components.registerAdapter (UserStatusTree, IFingerService,
resource.IResource)

class UserStatus (resource.Resource) :

def init (self, user, service):
resource.Resource. init (self)
self.user = user

2.1. Developer Guides 81

Twisted Documentation, Release 16.2.0

self.service = service

def render_ GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (cgi.escape)
d.addCallback (lambda m:
'<h1>%s</hl>"%$self.user+'<p>%s</p>"'%m)
d.addCallback (request.write)
d.addCallback (lambda _: request.finish{())
return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init__ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser (self, user):
return self.service.getUser (user)

class FingerService (service.Service):

implements (IFingerService)

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':', 1)
user = user.strip()
status = status.strip/()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService (self)
def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

Yet another back-end

class LocalFingerService (service.Service):

82 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

implements (IFingerService)

def getUser (self, user):
user = user.strip/()
try:
entry = pwd.getpwnam(user)
except KeyError:
return defer.succeed("No such user™)
try:
f = file(os.path.join(entry[5],"'.plan'))
except (IOError, OSError):
return defer.succeed("No such user")
data = f.read()
data = data.strip()
f.close()
return defer.succeed (data)

def getUsers (self):
return defer.succeed([])

application = service.Application('finger', uid=1, gid=1)
f = LocalFingerService ()
serviceCollection = service.IServiceCollection (application)

internet.TCPServer (79, IFingerFactory(f)
) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site (resource.IResource (f))
) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet.TCPClient ('irc.freenode.org', 6667, i
) .setServiceParent (serviceCollection)

Not much to say except that now we can be churn out backends like crazy. Feel like doing a back-end for Advogato ,
for example? Dig out the XML-RPC client support Twisted has, and get to work!

The Evolution of Finger: a web frontend

Introduction

This is the sixth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we demonstrate adding a web frontend using simple twisted.web.resource.Resource objects:
UserStatusTree , which will produce a listing of all users at the base URL (/) of our site; UserStatus ,
which gives the status of each user at the location /username ; and UserStatusXR , which exposes an XMLRPC
interface to getUser and getUsers functions at the URL /RPC2 .

In this example we construct HTML segments manually. If the web interface was less trivial, we would want to use
more sophisticated web templating and design our system so that HTML rendering and logic were clearly separated.

finger20.tac

Do everything properly, and componentize

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

2.1. Developer Guides 83

http://www.advogato.org/
https://twistedmatrix.com/documents/16.2.0/api/twisted.web.resource.Resource.html

Twisted Documentation, Release 16.2.0

from twisted.python import components
from twisted.web import resource, server, static, xmlrpc

from zope.interface import Interface, implements
import cgi

class IFingerService (Interface):

def getUser (user):

mon

Return a deferred returning a string.

mon

def getUsers():

mon

Return a deferred returning a list of strings.
mirnm

class IFingerSetterService (Interface):

def setUser (user, status):
mmn

Set the user's status to something.
mmn

def catchError (err):

return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write(value+'\r\n")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory (Interface):

def getUser (user) :

mon

Return a deferred returning a string.

mon

def buildProtocol (addr) :

mmnn

Return a protocol returning a string.

mon

class FingerFactoryFromService (protocol.ServerFactory) :

implements (IFingerFactory)

84

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

protocol = FingerProtocol

def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):

def connectionMade (self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) ==
self.factory.setUser (xself.lines)

class IFingerSetterFactory (Interface):

def setUser (user, status):
mmrn

Return a deferred returning a string.
mimun

def buildProtocol (addr) :

mon

Return a protocol returning a string.

mon

implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def init (self, service):
self.service = service

def setUser (self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

class FingerSetterFactoryFromService (protocol.ServerFactory) :

2.1. Developer Guides

85

Twisted Documentation, Release 16.2.0

def connectionMade (self) :
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msqg):
user = user.split('!')[0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

mmn

@ivar nickname

mmn

def getUser (user):

mon

Return a deferred returning a string.

mnn

def buildProtocol (addr) :

mnn

Return a protocol.
class IRCClientFactoryFromService (protocol.ClientFactory):
implements (IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :
def _ init_ (self, service):
resource.Resource._ _init_ (self)

self.service=service

add a specific child for the path "RPC2"
self.putChild ("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site

86 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

self.putChild("", self)

def _cb_render_ GET(self, users, request):
userOutput = ''.join(["%s</11i>" % (user, user)
for user in users])
request.write ("""
<html><head><title>Users</title></head><body>

<hl1>Users</hl>

</body></html>""" % userOutput)

request.finish ()

def render_ GET (self, request):
d = self.service.getUsers ()
d.addCallback (self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus (user=path, service=self.service)

components.registerAdapter (UserStatusTree, IFingerService, resource.IResource)

class UserStatus (resource.Resource) :

def _ init_ (self, user, service):
resource.Resource.__init__ (self)
self.user = user
self.service = service

def _cb_render_ GET (self, status, request):

request.write ("""<html><head><title>%s</title></head>
<body><hl>$%s</hl>

<p>$&s</p>

</body></html>""" & (self.user, self.user, status))

request.finish ()

def render_ GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser (self, user):
return self.service.getUser (user)

def xmlrpc_getUsers(self):

2.1. Developer Guides 87

Twisted Documentation, Release 16.2.0

return self.service.getUsers ()

class FingerService (service.Service):

implements (IFingerService)

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':'"', 1)
user = user.strip/()
status = status.strip()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers (self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)
internet.TCPServer (79, IFingerFactory (f)
) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site (resource.IResource (f))
) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet.TCPClient ('irc.freenode.org', 6667, 1
) .setServiceParent (serviceCollection)

The Evolution of Finger: Twisted client support using Perspective Broker

Introduction

This is the seventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add a Perspective Broker service to the finger application so that Twisted clients can access the finger
server. Perspective Broker is introduced in depth in its own section of the core howto index.

88 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

Use Perspective Broker

We add support for perspective broker, Twisted’s native remote object protocol. Now, Twisted clients will not have to
go through XML-RPCish contortions to get information about users.

finger2l.tac

Do everything properly, and componentize

from twisted.application import internet, service

from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from twisted.spread import pb

from zope.interface import Interface, implements

import cgi

class IFingerService (Interface):

def getUser (user):
mmn

Return a deferred returning a string.
mmn

def getUsers():

mon

Return a deferred returning a list of strings.

mon

class IFingerSetterService (Interface):

def setUser (user, status):

mon

Set the user's status to something.
mmnm

def catchError (err):
return "Internal error in server"

class FingerProtocol (basic.LineReceiver):

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value+'\r\n'")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory(Interface):
def getUser (user):

mon

Return a deferred returning a string.

2.1. Developer Guides 89

Twisted Documentation, Release 16.2.0

mmon

def buildProtocol (addr) :

mmn

Return a protocol returning a string.
mmn
class FingerFactoryFromService (protocol.ServerFactory) :

implements (IFingerFactory)

protocol FingerProtocol
def _ init_ (self, service):
self.service = service

def getUser(self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):

def connectionMade (self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) ==
self.factory.setUser (xself.lines)

class IFingerSetterFactory (Interface):

def setUser (user, status):
mmn

Return a deferred returning a string.

mon

def buildProtocol (addr) :

mnn

Return a protocol returning a string.

mon

implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def _ init_ (self, service):

class FingerSetterFactoryFromService (protocol.ServerFactory) :

90

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

self.service = service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self) :
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msqg):
user = user.split('!"')[0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2%s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

mmn

@ivar nickname

mmon

def getUser (user):

mon

Return a deferred returning a string.
mmn

def buildProtocol (addr) :

mon

Return a protocol.

mnn

class IRCClientFactoryFromService (protocol.ClientFactory):

implements (IIRCClientFactory)

protocol = IRCReplyBot

nickname = None
def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,

2.1. Developer Guides

91

Twisted Documentation, Release 16.2.0

IIRCClientFactory)

class UserStatusTree (resource.Resource) :

def init (self, service):
resource.Resource. init (self)
self.service=service

add a specific child for the path "RPC2"
self.putChild ("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_ GET (self, users, request):
userOutput = '"'.join(["%s</1i>"
for user in users])
request.write ("""
<html><head><title>Users</title></head><body>
<hl>Users</hl>

</body></html>""" % userOutput)
request.finish ()

def render_ GET (self, request):
d = self.service.getUsers ()
d.addCallback (self._cb_render_ GET, request)

signal that the rendering 1is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus (user=path, service=self.service)

°

% (user, user)

components.registerAdapter (UserStatusTree, IFingerService, resource.IResource)

class UserStatus (resource.Resource) :

def _ init__ (self, user, service):
resource.Resource._ _init__ (self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):

request.write ("""<html><head><title>$%s</title></head>
<body><hl1>%s</hl>

<p>%s</p>

</body></html>""" & (self.user, self.user, status))

request.finish{()
def render_ GET (self, request):
d = self.service.getUser (self.user)

d.addCallback (self._cb_render_ GET, request)

signal that the rendering is not complete

92

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser (self, user):
return self.service.getUser (user)

def xmlrpc_getUsers (self):
return self.service.getUsers()

class IPerspectiveFinger (Interface):

def remote_getUser (username) :

mon

Return a user's status.
mmrn

def remote_getUsers():

mnn

Return a user's status.
mmn
class PerspectiveFingerFromService (pb.Root) :
implements (IPerspectiveFinger)

def init (self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser (username)

def remote_getUsers(self):
return self.service.getUsers /()

components.registerAdapter (PerspectiveFingerFromService,

IFingerService,
IPerspectiveFinger)

class FingerService (service.Service):

implements (IFingerService)

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

2.1. Developer Guides

93

Twisted Documentation, Release 16.2.0

user, status = line.split(':', 1)
user = user.strip/()
status = status.strip()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)
internet .TCPServer (79, IFingerFactory (f)
) .setServiceParent (serviceCollection)
internet .TCPServer (8000, server.Site (resource.IResource (f))
) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet .TCPClient ('irc.freenode.org', 6667, 1
) .setServiceParent (serviceCollection)
internet.TCPServer (8889, pb.PBServerFactory (IPerspectiveFinger (f))
) .setServiceParent (serviceCollection)

A simple client to test the perspective broker finger:

fingerPBclient.py

test the PB finger on port 8889
this code is essentially the same as
the first example in howto/pb-usage

from twisted.spread import pb
from twisted.internet import reactor

def gotObject (object) :
print "got object:", object
object.callRemote ("getUser", "moshez") .addCallback (gotData)
or
object.callRemote ("getUsers") .addCallback (gotData)

def gotData (data) :
print 'server sent:', data
reactor.stop ()

def gotNoObject (reason) :
print "no object:",reason

94 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

reactor.stop ()

factory = pb.PBClientFactory ()

reactor.connectTCP ("127.0.0.1",8889, factory)
factory.getRootObject () .addCallbacks (gotObject, gotNoObject)
reactor.run ()

The Evolution of Finger: using a single factory for multiple protocols

Introduction

This is the eighth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add HTTPS support to our web frontend, showing how to have a single factory listen on multiple ports.
More information on using SSL in Twisted can be found in the SSL howto .

Support HTTPS

All we need to do to code an HTTPS site is just write a context factory (in this case, which loads the certificate from a
certain file) and then use the twisted.application.internet.SSLServer method. Note that one factory (in this case, a site)
can listen on multiple ports with multiple protocols.

finger22.py

Do everything properly, and componentize

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc
from twisted.spread import pb

from zope.interface import Interface, implements

from OpenSSL import SSL

import cgi

class IFingerService (Interface):

def getUser (user):

mmon

Return a deferred returning a string.
mmn

def getUsers():

mmn

Return a deferred returning a list of strings.

mnn

class IFingerSetterService (Interface):

def setUser (user, status):

mmn

Set the user's status to something.

mon

2.1. Developer Guides 95

Twisted Documentation, Release 16.2.0

def catchError (err):
return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write(value+'\r\n'")
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory(Interface):

def getUser (user) :

mnn

Return a deferred returning a string.

mmn

def buildProtocol (addr) :

mmn

Return a protocol returning a string.
mirnm

implements (IFingerFactory)
protocol = FingerProtocol

def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver) :

def connectionMade (self) :
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) == 2:
self.factory.setUser (xself.lines)

class FingerFactoryFromService (protocol.ServerFactory) :

96

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class IFingerSetterFactory (Interface):

def setUser (user, status):

mon

Return a deferred returning a string.
mimnm

def buildProtocol (addr) :

mon

Return a protocol returning a string.

mmn

class FingerSetterFactoryFromService (protocol.ServerFactory) :
implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def init (self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self) :
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msqg):
user = user.split('!')[0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

mmn

@ivar nickname

mon

def getUser (user):

mon

Return a deferred returning a string.
mmn

def buildProtocol (addr) :

2.1. Developer Guides 97

Twisted Documentation, Release 16.2.0

mmon

Return a protocol.
mmn
class IRCClientFactoryFromService (protocol.ClientFactory):
implements (IIRCClientFactory)

protocol = IRCReplyBot

nickname = None
def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :

def init (self, service):
resource.Resource. init (self)
self.service=service

add a specific child for the path "RPC2"
self.putChild ("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_ GET (self, users, request):
userOutput = ''.join(["%s</1i>" % (user, user)
for user in users])
request.write ("""
<html><head><title>Users</title></head><body>

<hl>Users</hl>

</body></html>""" % userOutput)

request.finish ()
def render_ GET (self, request):
d = self.service.getUsers ()

d.addCallback (self._cb_render_GET, request)

signal that the rendering 1s not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus (user=path, service=self.service)

components.registerAdapter (UserStatusTree, IFingerService, resource.IResource)

98 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class UserStatus (resource.Resource) :

def

def

def

__init_ (self, user, service):
resource.Resource._ _init_ (self)

self.user = user

self.service = service

_cb_render_GET (self, status, request):

request.write ("""<html><head><title>$%s</title></head>
<body><h1l>%s</hl>

<p>%s</p>

</body></html>""" & (self.user, self.user, status))

request.finish ()

render_GET (self, request):
d = self.service.getUser (self.user)
d.addCallback (self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def

def

def

_ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

xmlrpc_getUser (self, user):
return self.service.getUser (user)

xmlrpc_getUsers (self) :
return self.service.getUsers|()

class IPerspectiveFinger (Interface):

def

def

remote_getUser (username) :
mmn

Return a user's status.
mmrn

remote_getUsers() :
mmrn

Return a user's status.

mmn

class PerspectiveFingerFromService (pb.Root) :

implements (IPerspectiveFinger)

def

def

def

init (self, service):
self.service = service

remote_getUser (self, username):
return self.service.getUser (username)

remote_getUsers (self) :

2.1. Developer Guides 99

Twisted Documentation, Release 16.2.0

return self.service.getUsers ()
components.registerAdapter (PerspectiveFingerFromService,
IFingerService,
IPerspectiveFinger)

class FingerService (service.Service):

implements (IFingerService)

def _ init_ (self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear ()
for line in file(self.filename) :

user, status = line.split(':', 1)
user = user.strip()
status = status.strip/()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

def getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService (self)

def stopService(self):
service.Service.stopService (self)
self.call.cancel ()

class ServerContextFactory:

def getContext (self):

mon

Create an SSL context.

This is a sample Implementation that loads a certificate from a file
called 'server.pem'.

mmmn

ctx = SSL.Context (SSL.SSLv23_METHOD)
ctx.use_certificate_file('server.pem')

ctx.use_privatekey_ file('server.pem')

return ctx

application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

f.setServiceParent (serviceCollection)

100 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

internet.TCPServer (79, IFingerFactory(f)

) .setServiceParent (serviceCollection)
site = server.Site (resource.IResource (f))
internet.TCPServer (8000, site

) .setServiceParent (serviceCollection)
internet.SSLServer (443, site, ServerContextFactory ()

) .setServiceParent (serviceCollection)
i = IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet.TCPClient ('irc.freenode.org', 6667, i

) .setServiceParent (serviceCollection)
internet .TCPServer (8889, pb.PBServerFactory (IPerspectiveFinger (f))

) .setServiceParent (serviceCollection)

The Evolution of Finger: a Twisted finger client

Introduction

This is the ninth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we develop a client for the finger server: a proxy finger server which forwards requests to another finger
server.

Finger Proxy

Writing new clients with Twisted is much like writing new servers. We implement the protocol, which just gathers up
all the data, and give it to the factory. The factory keeps a deferred which is triggered if the connection either fails or
succeeds. When we use the client, we first make sure the deferred will never fail, by producing a message in that case.
Implementing a wrapper around client which just returns the deferred is a common pattern. While less flexible than
using the factory directly, it’s also more convenient.

fingerproxy.tac

finger proxy

from twisted.application import internet, service
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

from twisted.python import components

from zope.interface import Interface, implements

def catchError (err) :
return "Internal error in server"
class IFingerService (Interface):

def getUser (user):
"""Return a deferred returning a string"""

def getUsers():
"""Return a deferred returning a list of strings"""

class IFingerFactory(Interface):

2.1. Developer Guides 101

Twisted Documentation, Release 16.2.0

def getUser (user) :
"""Return a deferred returning a string"""

def buildProtocol (addr) :
"""Return a protocol returning a string"""

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value)
self.transport.loseConnection ()
d.addCallback (writeValue)

class FingerFactoryFromService (protocol.ClientFactory) :

implements (IFingerFactory)
protocol = FingerProtocol

def init (self, service):
self.service = service

def getUser (self, user):

return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerClient (protocol.Protocol) :
def connectionMade (self) :
self.transport.write(self.factory.user+"\r\n")

self.buf = []

def dataReceived(self, data):
self.buf.append(data)

def connectionLost (self, reason):
self.factory.gotData(''.join(self.buf))

class FingerClientFactory (protocol.ClientFactory) :
protocol = FingerClient
def _ init_ (self, user):
self.user = user

self.d = defer.Deferred()

def clientConnectionFailed(self, _, reason):
self.d.errback (reason)

102

Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def gotData(self, data):
self.d.callback (data)

def finger (user, host, port=79):
f = FingerClientFactory (user)
reactor.connectTCP (host, port, f)
return f.d

class ProxyFingerService (service.Service):
implements (IFingerService)

def getUser(self, user):

try:
user, host = user.split('@', 1)
except:
user = user.strip/()
host = '127.0.0.1"
ret = finger (user, host)
ret.addErrback (lambda _: "Could not connect to remote host")

return ret

def getUsers (self):
return defer.succeed([])

application = service.Application('finger', uid=1, gid=1)
f = ProxyFingerService ()
internet .TCPServer (7779, IFingerFactory(f)) .setServiceParent (

service.IServiceCollection (application))

The Evolution of Finger: making a finger library

Introduction

This is the tenth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we separate the application code that launches a finger service from the library code which defines a finger
service, placing the application in a Twisted Application Configuration (.tac) file. We also move configuration (such
as HTML templates) into separate files. Configuration and deployment with .tac and twistd are introduced in Using
the Twisted Application Framework .

Organization

Now this code, while quite modular and well-designed, isn’t properly organized. Everything above the
application= belongs in a module, and the HTML templates all belong in separate files.

We can use the templateFile and templateDirectory attributes to indicate what HTML template file to use
for each Page, and where to look for it.

organized-finger.tac

organized-finger.tac
eg: twistd —-ny organized-finger.tac

import finger

2.1. Developer Guides 103

Twisted Documentation, Release 16.2.0

from twisted.internet import protocol, reactor, defer

from twisted.spread import pb

from twisted.web import resource, server

from twisted.application import internet, service, strports
from twisted.python import log

application = service.Application('finger', uid=1, gid=1)
f = finger.FingerService('/etc/users')
serviceCollection = service.IServiceCollection (application)

internet.TCPServer (79, finger.IFingerFactory (f)
) .setServiceParent (serviceCollection)

site = server.Site (resource.IResource (f))
internet .TCPServer (8000, site
) .setServiceParent (serviceCollection)

internet.SSLServer (443, site, finger.ServerContextFactory ()
) .setServiceParent (serviceCollection)

i = finger.IIRCClientFactory (f)
i.nickname = 'fingerbot'
internet .TCPClient ('irc.freenode.org', 6667, i
) .setServiceParent (serviceCollection)

internet .TCPServer (8889, pb.PBServerFactory (finger.IPerspectiveFinger (f))
) .setServiceParent (serviceCollection)

Note that our program is now quite separated. We have:
¢ Code (in the module)
» Configuration (file above)
* Presentation (templates)
e Content (/etc/users)
* Deployment (twistd)

Prototypes don’t need this level of separation, so our earlier examples all bunched together. However, real applications
do. Thankfully, if we write our code correctly, it is easy to achieve a good separation of parts.

Easy Configuration

We can also supply easy configuration for common cases with a makeService method that will also help build .tap
files later:

finger_config.py

Easy configuration
makeService from finger module

def makeService (config):
finger on port 79
s = service.MultiService ()
f = FingerService (config['file'])
h = internet.TCPServer (79, IFingerFactory(f))
h.setServiceParent (s)

104 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

website on port 8000

r = resource.IResource (f)
r.templateDirectory = config['templates']
site = server.Site (r)

j = internet.TCPServer (8000, site)
j.setServiceParent (s)

ssl on port 443

if config.get('ssl'):
k = internet.SSLServer (443, site, ServerContextFactory())
k.setServiceParent (s)

irc fingerbot
if '"ircnick' in config:
i = IIRCClientFactory (f)

i.nickname = config['ircnick']
ircserver = config['ircserver']
b = internet.TCPClient (ircserver, 6667, 1)

b.setServiceParent (s)

Pespective Broker on port 8889
if 'pbport' in config:
m = internet.TCPServer (
int (config['pbport']),
pb.PBServerFactory (IPerspectiveFinger (£f)))
m.setServiceParent (s)

return s

And we can write simpler files now:

simple—finger.tac

simple-finger.tac
eg: twistd -ny simple-finger.tac

from twisted.application import service
import finger

options = { 'file': '/etc/users',
'templates': '/usr/share/finger/templates',
'ircnick': 'fingerbot',
'ircserver': 'irc.freenode.net',
'pbport': 8889,
'ssl': 'ssl=0" }

ser = finger.makeService (options)
application = service.Application('finger', uid=1l, gid=1l)
ser.setServiceParent (service.IServiceCollection (application))

% twistd -ny simple-finger.tac

Note: the finger user still has ultimate power: they can use makeService, or they can use the lower-level interface
if they have specific needs (maybe an IRC server on some other port? Maybe we want the non-SSL webserver to listen
only locally? etc. etc.). This is an important design principle: never force a layer of abstraction; allow usage of layers
of abstractions instead.

The pasta theory of design:

2.1. Developer Guides 105

Twisted Documentation, Release 16.2.0

Spaghetti Each piece of code interacts with every other piece of code (can be implemented with GOTO, functions,
objects).

Lasagna Code has carefully designed layers. Each layer is, in theory independent. However low-level layers usually
cannot be used easily, and high-level layers depend on low-level layers.

Ravioli Each part of the code is useful by itself. There is a thin layer of interfaces between various parts (the sauce).
Each part can be usefully be used elsewhere.

...but sometimes, the user just wants to order ‘“Ravioli”, so one coarse-grain easily definable layer of abstraction on top
of it all can be useful.

The Evolution of Finger: configuration and packaging of the finger service

Introduction

This is the eleventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we make it easier for non-programmers to configure a finger server and show how to package it in the .deb
and RPM package formats. Plugins are discussed further in the Twisted Plugin System howto. Writing twistd plugins
is covered in Writing a twistd Plugin , and .tac applications are covered in Using the Twisted Application Framework .

Plugins

So far, the user had to be somewhat of a programmer to be able to configure stuff. Maybe we can eliminate even that?
Move old code to finger/__init__ .py and...

Full source code for finger module here:

finger.py

finger.py module
from zope.interface import Interface, implements

from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc

from twisted.protocols import basic

from twisted.python import components, log

from twisted.web import resource, server, xmlrpc

from twisted.spread import pb

from OpenSSL import SSL
class IFingerService (Interface):
def getUser (user):

mnn

Return a deferred returning a string.

mn

def getUsers():

mnn

Return a deferred returning a list of strings.

mon

106 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class IFingerSetterService (Interface):

def setUser (user, status):

mon

Set the user's status to something.
mimnm

def catchError (err):
return "Internal error in server"

class FingerProtocol (basic.LineReceiver) :

def lineReceived(self, user):
d = self.factory.getUser (user)
d.addErrback (catchError)
def writeValue (value) :
self.transport.write (value+'\n')
self.transport.loseConnection ()
d.addCallback (writeValue)

class IFingerFactory(Interface):

def getUser (user):

mon

Return a deferred returning a string.
mmn

def buildProtocol (addr) :

mn

Return a protocol returning a string.

moon

implements (IFingerFactory)
protocol = FingerProtocol

def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (FingerFactoryFromService,
IFingerService,
IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver) :

def connectionMade (self) :
self.lines = []

def lineReceived(self, line):

class FingerFactoryFromService (protocol.ServerFactory) :

2.1. Developer Guides

107

Twisted Documentation, Release 16.2.0

self.lines.append(line)

def connectionLost (self, reason):
if len(self.lines) ==
self.factory.setUser (xself.lines)

class IFingerSetterFactory (Interface):

def setUser (user, status):

mnn

Return a deferred returning a string.

moon

def buildProtocol (addr) :

mmon

Return a protocol returning a string.
mmn

class FingerSetterFactoryFromService (protocol.ServerFactory) :
implements (IFingerSetterFactory)
protocol = FingerSetterProtocol

def _ init_ (self, service):
self.service

service

def setUser(self, user, status):
self.service.setUser (user, status)

components.registerAdapter (FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)

class IRCReplyBot (irc.IRCClient):

def connectionMade (self) :
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade (self)

def privmsg(self, user, channel, msg):
user = user.split('!")[0]
if self.nickname.lower () == channel.lower () :
d = self.factory.getUser (msqg)
d.addErrback (catchError)
d.addCallback (lambda m: "Status of 2s: %s" % (msg, m))
d.addCallback (lambda m: self.msg(user, m))

class IIRCClientFactory (Interface):

mmn

@ivar nickname
mmwmn

108 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

def getUser (user) :

mmn

Return a deferred returning a string.

mon

def buildProtocol (addr) :

mon

Return a protocol.
mmnm
class IRCClientFactoryFromService (protocol.ClientFactory):
implements (IIRCClientFactory)

protocol = IRCReplyBot
nickname = None

def init (self, service):
self.service = service

def getUser (self, user):
return self.service.getUser (user)

components.registerAdapter (IRCClientFactoryFromService,

IFingerService,
IIRCClientFactory)

class UserStatusTree (resource.Resource) :

template = """<html><head><title>Users</title></head><body>

<hl>Users</hl>

S (users) s

</body>

</html>"""

def _ init_ (self, service):
resource.Resource.__init__ (self)
self.service = service

def getChild(self, path, request):
if path == "':
return self
elif path == 'RPC2':
return UserStatusXR (self.service)
else:
return UserStatus (path, self.service)

def render_ GET (self, request):

users = self.service.getUsers ()
def cbUsers (users) :
request . .write(self.template % {'users': ''.join ([
Name should be quoted properly these uses.
'%s</1i>"'" % (name, name)

for name in users]) })

2.1. Developer Guides 109

Twisted Documentation, Release 16.2.0

request.finish ()

users.addCallback (cbUsers)

def ebUsers (err):
log.err(err, "UserStatusTree failed")
request.finish ()

users.addErrback (ebUsers)

return server.NOT_DONE_YET

components.registerAdapter (UserStatusTree, IFingerService, resource.IResource)

class UserStatus (resource.Resource) :

template="'"'"'<html><head><title>$% (title)s</title></head>
<body><hl>% (name) s</hl><p>% (status)s</p></body></html>"""

def _ init_ (self, user, service):
resource.Resource.__init__ (self)
self.user

user
self.service = service

def render_ GET (self, request):
status = self.service.getUser (self.user)
def cbStatus (status):
request.write (self.template % {

'title': self.user,
'name': self.user,
'status': status})

request.finish ()
status.addCallback (cbStatus)
def ebStatus (err):
log.err (err, "UserStatus failed")
request.finish()
status.addErrback (ebStatus)
return server.NOT_DONE_YET

class UserStatusXR (xmlrpc.XMLRPC) :

def _ init_ (self, service):
xmlrpc.XMLRPC.__init__ (self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser (user)

def xmlrpc_getUsers(self):
return self.service.getUsers ()
class IPerspectiveFinger (Interface):
def remote_getUser (username) :

moon

Return a user's status.

mmn

def remote_getUsers():

110 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

mmon

Return a user's status.
mmn

class PerspectiveFingerFromService (pb.Root):

implements (IPerspectiveFinger)

def

def

def

__init_ (self, service):

self.service = service

remote_getUser (self, username):
return self.service.getUser (username)

remote_getUsers (self) :
return self.service.getUsers()

components.registerAdapter (PerspectiveFingerFromService,

IFingerService,
IPerspectiveFinger)

class FingerService (service.Service):

implements (IFingerService)

def

def

def

def

def

def

_ init_ (self, filename):

self.filename = filename

_read(self):

self.users = {}
for line in file(self.filename) :
user, status = line.split(':', 1)
user = user.strip()
status = status.strip/()
self.users[user] = status
self.call = reactor.calllLater (30, self._read)

getUser (self, user):
return defer.succeed(self.users.get (user, "No such user"))

getUsers (self) :
return defer.succeed(self.users.keys())

startService (self) :
self._read()
service.Service.startService (self)

stopService (self):
service.Service.stopService (self)
self.call.cancel ()

class ServerContextFactory:

def

getContext (self) :

mmn

2.1. Developer Guides

111

Twisted Documentation, Release 16.2.0

Create an SSL context.

This is a sample Implementation that loads a certificate from a file
called 'server.pem'.

mmn

ctx = SSL.Context (SSL.SSLv23_METHOD)
ctx.use_certificate_file('server.pem')
ctx.use_privatekey_file('server.pem')

return ctx

Easy configuration

def makeService (configqg):
finger on port 79
= service.MultiService ()
= FingerService (config['file'])
= internet.TCPServer (1079, IFingerFactory(f))
.setServiceParent (s)

Do Hh»

website on port 8000

r = resource.IResource (f)
r.templateDirectory = config['templates']
site = server.Site (r)

j = internet.TCPServer (8000, site)
j.setServiceParent (s)

ssl on port 443
if config.get ('ssl'):
k = internet.SSLServer (443, site, ServerContextFactory())
k.setServiceParent (s)

HH I

irc fingerbot
if '"ircnick' in config:
i = IIRCClientFactory (f)
i.nickname = config['ircnick']
ircserver = config['ircserver']
b = internet.TCPClient (ircserver, 6667, 1)
b.setServiceParent (s)

Pespective Broker on port 8889
if 'pbport' in config:
m = internet.TCPServer (
int (config('pbport']),
pb.PBServerFactory (IPerspectiveFinger (f)))
m.setServiceParent (s)

return s

tap.py

finger/tap.py

from twisted.application import internet, service
from twisted.internet import interfaces

from twisted.python import usage

import finger

112 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

class Options (usage.Options) :

optParameters = [
['file', 'f', '/etc/users'],
['templates', 't', '/usr/share/finger/templates'],
['"ircnick', 'n', 'fingerbot'],
['"ircserver', None, 'irc.freenode.net'],
['pbport', 'p', 8889],
1

optFlags = [['ssl', 's']]

def makeService (config):
return finger.makeService (config)

And register it all:

finger_tutorial.py

from twisted.application.service import ServiceMaker

finger = ServiceMaker (
'finger', 'finger.tap', 'Run a finger service', 'finger')

Note that the second argument to ServiceMaker ,‘‘finger.tap‘‘ , is a reference to a module (finger/tap.py), not
to a filename.

And now, the following works

[)

% sudo twistd -n finger --file=/etc/users --ircnick=fingerbot

For more details about this, see the twistd plugin documentation .

OS Integration

If we already have the “finger” package installed in PYTHONPATH (e.g. we added it to site-packages), we can
achieve easy integration:

Debian
% tap2deb —--unsigned -m "Foo <foolexample.com>" —--type=python finger.tac
% sudo dpkg -i .build/*.deb

Red Hat / Mandrake

% tap2rpm —--type=python finger.tac
% sudo rpm -i *.rpm

These packages will properly install and register init . d scripts, etc. for the given file.

If it doesn’t work on your favorite OS: patches accepted!

Introduction

Twisted is a big system. People are often daunted when they approach it. It’s hard to know where to start looking.

2.1. Developer Guides 113

https://twistedmatrix.com/documents/16.2.0/api/twisted.application.service.ServiceMaker.html

Twisted Documentation, Release 16.2.0

This guide builds a full-fledged Twisted application from the ground up, using most of the important bits of the
framework. There is a lot of code, but don’t be afraid.

The application we are looking at is a “finger” service, along the lines of the familiar service traditionally provided by
UNIX™ servers. We will extend this service slightly beyond the standard, in order to demonstrate some of Twisted’s
higher-level features.

Each section of the tutorial dives straight into applications for various Twisted topics. These topics have their own
introductory howtos listed in the core howto index and in the documentation for other Twisted projects like Twisted
Web and Twisted Words. There are at least three ways to use this tutorial: you may find it useful to read through the
rest of the topics listed in the core howto index before working through the finger tutorial, work through the finger
tutorial and then go back and hit the introductory material that is relevant to the Twisted project you’re working on, or
read the introductory material one piece at a time as it comes up in the finger tutorial.

Contents

This tutorial is split into eleven parts:
1. The Evolution of Finger: building a simple finger service
The Evolution of Finger: adding features to the finger service
The Evolution of Finger: cleaning up the finger code
The Evolution of Finger: moving to a component based architecture
The Evolution of Finger: pluggable backends
The Evolution of Finger: a web frontend
The Evolution of Finger: Twisted client support using Perspective Broker

The Evolution of Finger: using a single factory for multiple protocols

Y ® Nk w N

The Evolution of Finger: a Twisted finger client

._
e

The Evolution of Finger: making a finger library

[
—

. The Evolution of Finger: configuration and packaging of the finger service

2.1.6 Setting up the TwistedQuotes application

Goal

This document describes how to set up the TwistedQuotes application used in a number of other documents, such as
designing Twisted applications .

Setting up the TwistedQuotes project directory

In order to run the Twisted Quotes example, you will need to do the following:
1. Make a TwistedQuotes directory on your system
2. Place the following files in the TwistedQuotes directory:

e _ init_ .py

mmwn

Twisted Quotes

mwn

114 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

(this file marks it as a package, see this section of the Python tutorial for more on packages)

* quoters.py

from random import choice
from zope.interface import implements

from TwistedQuotes import quoteproto

class StaticQuoter:

mmn

Return a static quote.
mrman

implements (quoteproto.IQuoter)

def _ _init__ (self, quote):
self.quote = quote

def getQuote (self):
return self.quote

class FortuneQuoter:
mmn

Load quotes from a fortune-format file.

mmn

implements (quoteproto.IQuoter)

def _ init_ (self, filenames):
self.filenames = filenames

def getQuote (self):
quoteFile = file(choice(self.filenames))
quotes = quoteFile.read() .split ('\n%\n")
quoteFile.close ()
return choice (quotes)

* quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter (Interface):

mmn

An object that returns quotes.

mon

def getQuote():

mon

Return a quote.
mmmn

2.1. Developer Guides

115

http://docs.python.org/tutorial/modules.html#packages

Twisted Documentation, Release 16.2.0

class QOTD (Protocol) :
def connectionMade (self) :
self.transport.write (self.factory.quoter.getQuote()+'\r\n'")
self.transport.loseConnection ()

class QOTDFactory (Factory) :

mmn

A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by
the L{QOTD} protocol to get quotes to emit.

mmn

protocol = QOTD

def _ _init__ (self, quoter):
self.quoter = quoter

3. Add the TwistedQuotes directory’s parent to your Python path. For example, if the TwistedQuotes direc-
tory’s path is /mystuff/TwistedQuotes or c:\mystuff\TwistedQuotes add /mystuff to your
Python path. On UNIX this would be export PYTHONPATH=/mystuff:$PYTHONPATH , on Microsoft
Windows change the PYTHONPATH variable through the Systems Properties dialog by adding ; c: \mystuff
at the end.

4. Test your package by trying to import it in the Python interpreter:

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "copyright", "credits" or "license" for more information.
>>> import TwistedQuotes

>>> # No traceback means you're fine.

2.1.7 Designing Twisted Applications

Goals

This document describes how a good Twisted application is structured. It should be useful for beginning Twisted
developers who want to structure their code in a clean, maintainable way that reflects current best practices.

Readers will want to be familiar with writing servers and clients using Twisted.

Example of a modular design: TwistedQuotes

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality — Quote of the Day — which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Day protocol, and more.

Set up the project directory

See the description of setting up the TwistedQuotes example .

116 Chapter 2. Twisted Core

Twisted Documentation, Release 16.2.0

A Look at the Heart of the Application

quoters.py

from random import choice
from zope.interface import implements

from TwistedQuotes import quoteproto

class StaticQuoter:

mmn

Return a static quote.

mmon

implements (quoteproto.IQuoter)

def _ _init__ (self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
mmwn

Load quotes from a fortune-format file.

mmn

implements (quoteproto.IQuoter)

def _ init_ (self, filenames):
self.filenames = filenames

def getQuote(self):
quoteFile = file(choice(self.filenames))
quotes = quoteFile.read() .split('\n%\n")
quoteFile.close ()
return choice (quotes)

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking to
the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the day”

Note that this module does not import any Twisted functionality at all! The reaso