Twisted Documentation
Release 23.8.0

Twisted Matrix Labs

Aug 28, 2023

10

Installing Twisted

1.1 Installing Optional Dependencies

Twisted Core

2.1 Developer Guides
22 Examples oo
2.3 Specifications

Twisted Conch (SSH and Telnet)

3.1 Developer Guides
32 Examples

Twisted Mail (SMTP, POP, and IMAP)

41 Exampleso
4.2 Developer Guides
4.3 Twisted Mail Tutorial: Building an SMTP Client from Scratch

Twisted Names (DNS)

5.1 Developer Guides
52 Examples

6.1 Developer Guides
6.2 Examples e

7.1 Developer Guides
7.2 Examples e

8.1 Developer Guides
82 Examples

Twisted Pair

Twisted Web

Twisted Words (IRC and XMPP)
API Reference

Development of Twisted

10.1 Twisted Coding Standard
10.2 Development processo
10.3 CodeReview Process.
10.4 Twisted Release Process
10.5 Unit Testsin Twisted

CONTENTS

........................ 383

10.6 Twisted Writing Standard e e e e e 504
10.7 Twisted Compatibility Policy e 508
10.8 Naming Conventions i it ittt e e e e e e e e e 519
10.9 Philosophy 519
11 Report a security issue 521
12 Security Procedure for Developers 523
12.1 PGP key for email communication e e e e e 523
13 Security Audit 531
13.1 Badinput o e e e e e e e e e e e e 531
13.2 Resource Exhaustionand DoS 531
14 Twisted Community 533
141 Mail Lists o o e 533
142 Stack Overflow o e e 533
143 Real-Time Chat. e e e e e e e 533
14.4 Blogs o o e e 534
Index 535

Twisted Documentation, Release 23.8.0

Contents:

CONTENTS 1

Twisted Documentation, Release 23.8.0

2 CONTENTS

CHAPTER
ONE

INSTALLING TWISTED

1.1 Installing Optional Dependencies

This document describes the optional dependencies that Twisted supports. The dependencies are python packages that
Twisted’s developers have found useful either for developing Twisted itself or for developing Twisted applications.

The intended audience of this document is someone who is familiar with installing optional dependencies using pip.

If you are unfamiliar with the installation of optional dependencies, the python packaging tutorial can show you how.
For a deeper explanation of what optional dependencies are and how they are declared, please see the setuptools doc-
umentation.

The following optional dependencies are supported:
¢ dev - packages that aid in the development of Twisted itself.

— pyflakes

twisted-dev-tools

python-subunit

Sphinx

TwistedChecker, only available on python2
— pydoctor, only available on python2
« tls - packages that are needed to work with TLS.
— pyOpenSSL
— service_identity
— idna
* conch - packages for working with conch/SSH.
— cryptography
* soap - the SOAPpy package to work with SOAP.
« serial - the pyserial package to work with serial data.
« all-non-platform - installs tls, conch, soap, and serial options.
* macos-platform - all-non-platform options and pyobjc to work with Objective-C apis.
» windows-platform - all-non-platform options and pywin32 to work with Windows’s apis.
* http2 - packages needed for http2 support.
- h2

https://pip.pypa.io/en/latest/quickstart.html
https://packaging.python.org/en/latest/installing.html#examples
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
https://pypi.python.org/pypi/pyflakes
https://pypi.python.org/pypi/twisted-dev-tools
https://pypi.python.org/pypi/python-subunit
https://pypi.python.org/pypi/Sphinx/1.3b1
https://pypi.python.org/pypi/TwistedChecker
https://pypi.python.org/pypi/pydoctor
https://pypi.python.org/pypi/pyOpenSSL
https://pypi.python.org/pypi/service_identity
https://pypi.python.org/pypi/idna
https://pypi.python.org/pypi/cryptography
https://pypi.python.org/pypi/SOAPpy
https://pypi.python.org/pypi/pyserial
https://pypi.python.org/pypi/pyobjc
https://pypi.python.org/pypi/pywin32
https://pypi.python.org/pypi/h2

Twisted Documentation, Release 23.8.0

— priority
 contextvars - the contextvars backport package to provide contextvars support for Python versions before 3.7.

e Installing Optional Dependencies: documentation on how to install Twisted’s optional dependencies.

4 Chapter 1. Installing Twisted

https://pypi.python.org/pypi/priority
https://pypi.org/project/contextvars/

CHAPTER
TWO

TWISTED CORE

2.1 Developer Guides

2.1.1 The Vision For Twisted

Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While Python by itself is a very powerful language, there
are many facilities it lacks which other languages have spent great attention to adding. It can do this now; Twisted is a
good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it continues to
improve.

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through all proto-
cols. Failing that, all functionality should be configurable through at least one protocol, with a seamless and consistent
user-interface. The next phase of development will be focusing strongly on a configuration system which will unify
many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-programmer.

2.1.2 Writing Servers

Overview

This document explains how you can use Twisted to implement network protocol parsing and handling for TCP servers
(the same code can be reused for SSL and Unix socket servers). There is a separate document covering UDP.

Your protocol handling class will usually subclass twisted.internet.protocol.Protocol. Most protocol han-
dlers inherit either from this class or from one of its convenience children. An instance of the protocol class is in-
stantiated per-connection, on demand, and will go away when the connection is finished. This means that persistent
configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.
Factory. The buildProtocol method of the Factory is used to create a Protocol for each new connection.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the Factory
does not listen to connections, and in fact does not know anything about the network. See the endpoints documentation
for more information, or IReactorTCP.1istenTCP and the other IReactor*.listen* APIs for the lower level APIs
that endpoints are based on.

This document will explain each step of the way.

Twisted Documentation, Release 23.8.0

Protocols

As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. The protocol responds to events as they arrive from the network and the
events arrive as calls to methods on the protocol.

Here is a simple example:

from twisted.internet.protocol import Protocol
class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all events.
Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol
class QOTD(Protocol):
def connectionMade(self):

self.transport.write("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection()

This protocol responds to the initial connection with a well known quote, and then terminates the connection.

The connectionMade event is usually where setup of the connection object happens, as well as any initial greetings
(as in the QOTD protocol above, which is actually based on RFC 865). The connectionLost event is where tearing
down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol
class Echo(Protocol):

def __init__(self, factory):
self.factory = factory

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols + 1
self.transport.write(
"Welcome! There are currently open connections.\n" %
(self. factory.numProtocols,))

def connectionlLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols - 1

def dataReceived(self, data):
self.transport.write(data)

Here connectionMade and connectionLost cooperate to keep a count of the active protocols in a shared object, the
factory. The factory must be passed to Echo.__init__ when creating a new instance. The factory is used to share
state that exists beyond the lifetime of any given connection. You will see why this object is called a “factory” in the
next section.

6 Chapter 2. Twisted Core

https://datatracker.ietf.org/doc/html/rfc865.html

Twisted Documentation, Release 23.8.0

loseConnection() and abortConnection()

In the code above, loseConnection is called immediately after writing to the transport. The loseConnection call
will close the connection only when all the data has been written by Twisted out to the operating system, so it is safe
to use in this case without worrying about transport writes being lost. If a producer is being used with the transport,
loseConnection will only close the connection once the producer is unregistered.

In some cases, waiting until all the data is written out is not what we want. Due to network failures, or bugs or
maliciousness in the other side of the connection, data written to the transport may not be deliverable, and so even
though loseConnection was called the connection will not be lost. In these cases, abortConnection can be used:
it closes the connection immediately, regardless of buffered data that is still unwritten in the transport, or producers
that are still registered. Note that abortConnection is only available in Twisted 11.1 and newer.

Using the Protocol

In this section, you will learn how to run a server which uses your Protocol.

Here is code that will run the QOTD server discussed earlier:

from twisted.internet.protocol import Factory
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTDFactory(Factory):
def buildProtocol(self, addr):
return QOTD()

8007 is the port you want to run under. Choose something >1024
endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(QOTDFactory())

reactor.run()

In this example, I create a protocol Factory. I want to tell this factory that its job is to build QOTD protocol instances,
so I set its buildProtocol method to return instances of the QOTD class. Then, I want to listen on a TCP port, so I
make a TCP4ServerEndpoint to identify the port that I want to bind to, and then pass the factory I just created to its
listen method.

endpoint.listen() tells the reactor to handle connections to the endpoint’s address using a particular protocol, but
the reactor needs to be running in order for it to do anything. reactor.run() starts the reactor and then waits forever
for connections to arrive on the port you’ve specified. You can stop the reactor by hitting Control-C in a terminal or
calling reactor.stop().

For more information on different ways you can listen for incoming connections, see the documentation for the endpoints
API. For more information on using the reactor, see the reactor overview.

2.1. Developer Guides 7

Twisted Documentation, Release 23.8.0

Helper Protocols

Many protocols build upon similar lower-level abstractions.

For example, many popular internet protocols are line-based, containing text data terminated by line breaks (commonly
CR-LF), rather than containing straight raw data. However, quite a few protocols are mixed - they have line-based
sections and then raw data sections. Examples include HTTP/1.1 and the Freenet protocol.

For those cases, there is the LineReceiver protocol. This protocol dispatches to two different event handlers —
lineReceived and rawDataReceived. By default, only 1lineReceived will be called, once for each line. How-
ever, if setRawMode is called, the protocol will call rawDataReceived until setLineMode is called, which returns it
to using lineReceived. It also provides a method, sendLine, that writes data to the transport along with the delimiter
the class uses to split lines (by default, \r\n).

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver
class Answer(LineReceiver):
answers = {'How are you?': 'Fine', None: "I don't know what you mean"}

def lineReceived(self, line):
if line in self.answers:
self.sendLine(self.answers[line])
else:
self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.

Several other helpers exist, such as a netstring based protocol and prefixed-message-length protocols.

State Machines

Many Twisted protocol handlers need to write a state machine to record the state they are at. Here are some pieces of
advice which help to write state machines:

* Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

e Don’t mix application-specific code with Protocol handling code. When the protocol handler has to make an
application-specific call, keep it as a method call.

Factories

Simpler Protocol Creation

For a factory which simply instantiates instances of a specific protocol class, there is a simpler way to implement the
factory. The default implementation of the buildProtocol method calls the protocol attribute of the factory to
create a Protocol instance, and then sets an attribute on it called factory which points to the factory itself. This lets
every Protocol access, and possibly modify, the persistent configuration. Here is an example that uses these features
instead of overriding buildProtocol:

8 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

from twisted.internet.protocol import Factory, Protocol
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.factory was set by the factory's default buildProtocol:
self.transport.write(self.factory.quote + '\r\n')
self.transport.loseConnection()

class QOTDFactory(Factory):

This will be used by the default buildProtocol to create new protocols:
protocol = QOTD

def __init__(self, quote=None):
self.quote = quote or 'An apple a day keeps the doctor away'

endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(QOTDFactory(''configurable quote"))
reactor.run()

If all you need is a simple factory that builds a protocol without any additional behavior, Twisted 13.1 added Factory.
forProtocol, an even simpler approach.

Factory Startup and Shutdown

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is frequently
persisted, it is often not appropriate to do them in __init__ or __del__, and would frequently be too early or too
late).

—_

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
class LoggingProtocol (LineReceiver):
def lineReceived(self, line):
self.factory.fp.write(line + '\n')
class LogfileFactory(Factory):
protocol = LoggingProtocol

def __init__(self, fileName):
self.file = fileName

(continues on next page)

2.1. Developer Guides 9

Twisted Documentation, Release 23.8.0

(continued from previous page)

def startFactory(self):
self.fp = open(self.file, 'a')

def stopFactory(self):
self.fp.close()

Putting it All Together

As a final example, here’s a simple chat server that allows users to choose a username and then communicate with
other users. It demonstrates the use of shared state in the factory, a state machine for each individual protocol, and
communication between different protocols.

chat.py

from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class Chat(LineReceiver):
def __init__(self, users):
self.users = users
self.name = None
self.state = "GETNAME"

def connectionMade(self):
self.sendLine("What's your name?")

def connectionLost(self, reason):
if self.name in self.users:
del self.users[self.name]

def lineReceived(self, line):
if self.state == "GETNAME":
self.handle_GETNAME (1line)
else:
self.handle_CHAT(line)

def handle_GETNAME(self, name):

if name in self.users:
self.sendLine("Name taken, please choose another.")
return

self.sendLine(f"Welcome, {name/!")

self.name = name

self.users[name] = self

self.state = "CHAT"

def handle_CHAT(self, message):
message = f''<{self.name}/> {message
for name, protocol in self.users.iteritems():
if protocol != self:

(continues on next page)

10 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

protocol.sendLine (message)

class ChatFactory(Factory):
def __init__(self):
self.users = {} # maps user names to Chat instances

def buildProtocol(self, addr):

return Chat(self.users)

reactor.listenTCP(8123, ChatFactory())
reactor.run()

The only API you might not be familiar with is 1istenTCP. 1istenTCP is the method which connects a Factory to
the network. This is the lower-level API that endpoints wraps for you.

Here’s a sample transcript of a chat session (emphasised text is entered by the user):

$ telnet 127.0.0.1 8123
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is 'A]'.
What's your name?

test

Name taken, please choose another.
bob

Welcome, bob!

hello

<alice> hi bob

twisted makes writing servers so easy!
<alice> I couldn't agree more
<carrol> yeah, it's great

2.1.3 Writing Clients

Overview

Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets. UDP is covered in a different document .

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class. This
class will usually be descended from twisted.internet.protocol.Protocol . Most protocol handlers inherit
either from this class or from one of its convenience children. An instance of the protocol class will be instantiated when
you connect to the server and will go away when the connection is finished. This means that persistent configuration
is not saved in the Protocol .

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.protocol.
Factory (or twisted.internet.protocol.ClientFactory : see below). The default factory class just instanti-
ates the Protocol and then sets the protocol’s factory attribute to point to itself (the factory). This lets the Protocol
access, and possibly modify, the persistent configuration.

2.1. Developer Guides 11

Twisted Documentation, Release 23.8.0

Protocol

As mentioned above, this and auxiliary classes and functions are where most of the code is. A Twisted protocol handles
data in an asynchronous manner. This means that the protocol never waits for an event, but rather responds to events
as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):
stdout.write(data)

This is one of the simplest protocols. It just writes whatever it reads from the connection to standard output. There are
many events it does not respond to. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class WelcomeMessage (Protocol):
def connectionMade(self):
self.transport.write("Hello server, I am the client!\r\n")
self.transport.loseConnection()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.

The connectionlMade event is usually where set up of the Protocol object happens, as well as any initial greet-
ings (as in the WelcomeMessage protocol above). Any tearing down of Protocol -specific objects is done in
connectionLost .

Simple, single-use clients

In many cases, the protocol only needs to connect to the server once, and the code just wants to get a connected in-
stance of the protocol. In those cases twisted.internet.endpoints provides the appropriate API, and in particular
connectProtocol which takes a protocol instance rather than a factory.

from twisted.internet import reactor
from twisted.internet.protocol import Protocol
from twisted.internet.endpoints import TCP4ClientEndpoint, connectProtocol

class Greeter(Protocol):
def sendMessage(self, msg):
self.transport.write("MESSAGE %s\n" % msg)

def gotProtocol(p):
p.sendMessage(''Hello")
reactor.calllLater(l, p.sendMessage, "This is sent in a second")
reactor.calllLater(2, p.transport.loseConnection)

point = TCP4ClientEndpoint(reactor, "localhost", 1234)
d = connectProtocol(point, Greeter())
d.addCallback(gotProtocol)

reactor.run()

12 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Regardless of the type of client endpoint, the way to set up a new connection is simply pass it to connectProtocol
along with a protocol instance. This means it’s easy to change the mechanism you’re using to connect, without changing
the rest of your program. For example, to run the greeter example over SSL, the only change required is to instantiate an
SSL4ClientEndpoint instead of a TCP4ClientEndpoint . To take advantage of this, functions and methods which
initiates a new connection should generally accept an endpoint as an argument and let the caller construct it, rather than
taking arguments like ‘host’ and ‘port’ and constructing its own.

For more information on different ways you can make outgoing connections to different types of endpoints, as well as
parsing strings into endpoints, see the documentation for the endpoints API .

You may come across code using ClientCreator , an older API which is not as flexible as the endpoint API. Rather
than calling connect on an endpoint, such code will look like this:

from twisted.internet.protocol import ClientCreator

creator = ClientCreator(reactor, Greeter)
d = creator.connectTCP("localhost", 1234)
d.addCallback(gotProtocol)

reactor.run()

In general, the endpoint API should be preferred in new code, as it lets the caller select the method of connecting.

ClientFactory

Still, there’s plenty of code out there that uses lower-level APIs, and a few features (such as automatic reconnection)
have not been re-implemented with endpoints yet, so in some cases they may be more convenient to use.

To use the lower-level connection APIs, you will need to call one of the reactor.connect* methods directly. For these
cases, you need a ClientFactory . The ClientFactory is in charge of creating the Protocol and also receives
events relating to the connection state. This allows it to do things like reconnect in the event of a connection error.
Here is an example of a simple ClientFactory that uses the Echo protocol (above) and also prints what state the
connection is in.

from twisted.internet.protocol import Protocol, ClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):
stdout.write(data)

class EchoClientFactory(ClientFactory):
def startedConnecting(self, connector):
print('Started to connect.')

def buildProtocol(self, addr):
print('Connected. ")
return Echo()

def clientConnectionLost(self, connector, reason):
print('Lost connection. Reason:', reason)

def clientConnectionFailed(self, connector, reason):
print('Connection failed. Reason:', reason)

2.1. Developer Guides 13

Twisted Documentation, Release 23.8.0

To connect this EchoClientFactory to a server, you could use this code:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

Note that clientConnectionFailed is called when a connection could not be established, and that
clientConnectionLost is called when a connection was made and then disconnected.

Reactor Client APIs
connectTCP

IReactorTCP.connectTCP provides support for IPv4 and IPv6 TCP clients. The host argument it accepts can be
either a hostname or an IP address literal. In the case of a hostname, the reactor will automatically resolve the name
to an IP address before attempting the connection. This means that for a hostname with multiple address records,
reconnection attempts may not always go to the same server (see below). It also means that there is name resolution
overhead for each connection attempt. If you are creating many short-lived connections (typically around hundreds
or thousands per second) then you may want to resolve the hostname to an address first and then pass the address to
connectTCP instead.

Reconnection

Often, the connection of a client will be lost unintentionally due to network problems. One way to reconnect after a
disconnection would be to call connector.connect () when the connection is lost:

from twisted.internet.protocol import ClientFactory

class EchoClientFactory(ClientFactory):
def clientConnectionLost(self, connector, reason):
connector.connect()

The connector passed as the first argument is the interface between a connection and a protocol. When the connection
fails and the factory receives the clientConnectionLost event, the factory can call connector.connect () to start
the connection over again from scratch.

However, most programs that want this functionality should implement ReconnectingClientFactory instead, which
tries to reconnect if a connection is lost or fails and which exponentially delays repeated reconnect attempts.

Here is the Echo protocol implemented with a ReconnectingClientFactory :

from twisted.internet.protocol import Protocol, ReconnectingClientFactory
from sys import stdout

class Echo(Protocol):
def dataReceived(self, data):
stdout.write(data)

class EchoClientFactory(ReconnectingClientFactory):
def startedConnecting(self, connector):

print('Started to connect.')

(continues on next page)

14 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
def buildProtocol(self, addr):
print('Connected. ")
print('Resetting reconnection delay')
self.resetDelay()
return Echo()

def clientConnectionLost(self, connector, reason):
print('Lost connection. Reason:', reason)
ReconnectingClientFactory.clientConnectionLost(self, connector, reason)

def clientConnectionFailed(self, connector, reason):
print('Connection failed. Reason:', reason)
ReconnectingClientFactory.clientConnectionFailed(self, connector,
reason)

A Higher-Level Example: ircLogBot

Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted Words in the doc/words/
examples directory.

ircLogBot.py

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

i

An example IRC log bot - logs a channel's events to a file.

()

If someone says the bot's name in the channel followed by a ':',
e.g.

<foo> logbot: hello!
the bot will reply:
<logbot> foo: I am a log bot

Run this script with two arguments, the channel name the bot should
connect to, and file to log to, e.g.:

$ python ircLogBot.py test test.log
will log channel #test to the file 'test.log'.
To run the script:

$ python ircLogBot.py <channel> <file>

i

(continues on next page)

2.1. Developer Guides 15

Twisted Documentation, Release 23.8.0

(continued from previous page)

import sys

system imports
import time

from twisted.internet import protocol, reactor
from twisted.python import log

twisted imports
from twisted.words.protocols import irc

class Messagelogger:

e

An independent logger class (because separation of application
and protocol logic is a good thing).

e

def

def

def

__init__(self, file):
self.file = file

log(self, message):

"""Write a message to the file.
timestamp = time.strftime("[%H:%M:%S]", time.localtime(time.time()))
self.file.write(f"{timestamp} {message}/\n")

self.file.flush(Q)

i

close(self):
self.file.close()

class LogBot(irc.IRCClient):
"""A logging IRC bot."""

nickname = "twistedbot"

def

def

connectionMade(self):

irc.IRCClient.connectionMade(self)

self.logger = MessagelLogger(open(self.factory.filename, "a"))
self.logger.log("[connected at %s]" % time.asctime(time.localtime(time.time())))

connectionlLost(self, reason):
irc.IRCClient.connectionLost(self, reason)
self.logger.log(
"[disconnected at %s]" % time.asctime(time.localtime(time.time()))
)
self.logger.close()

callbacks for events

(continues on next page)

16

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def signedOn(self):
"""Called when bot has successfully signed on to server.
self.join(self. factory.channel)

i

def joined(self, channel):
"""This will get called when the bot joins the channel."""
self.logger.log("[I have joined %s]" % channel)

def privmsg(self, user, channel, msg):
"""This will get called when the bot receives a message.
user = user.split("!", 1)[0]
self.logger.log(f"<{user}> {msg'")

mirn

Check to see if they're sending me a private message

if channel == self.nickname:
msg = "It isn't nice to whisper! Play nice with the group."
self.msg(user, msg)
return

Otherwise check to see if it is a message directed at me

if msg.startswith(self.nickname + ":"):
msg = "%s: I am a log bot" % user

self.msg(channel, msg)
self.logger.log(f"<{self.nickname}> {msg}")

def action(self, user, channel, msg):
"""This will get called when the bot sees someone do an action.
user = user.split("!", 1)[0]
self.logger.log(f"* {user} {msg'")

i

irc callbacks

def irc_NICK(self, prefix, params):
"""Called when an IRC user changes their nickname.
old_nick = prefix.split("!")[0]
new_nick = params[0]
self.logger.log(f"{old_nick} is now known as {new_nick}")

i

For fun, override the method that determines how a nickname is changed on
collisions. The default method appends an underscore.
def alterCollidedNick(self, nickname):
Generate an altered version of a nickname that caused a collision in an
effort to create an unused related name for subsequent registration.

o

return nickname + "A"

class LogBotFactory(protocol.ClientFactory):
"""A factory for LogBots.

A new protocol instance will be created each time we connect to the server.

(continues on next page)

2.1. Developer Guides

17

Twisted Documentation, Release 23.8.0

(continued from previous page)

o

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def buildProtocol(self, addr):
p = LogBot()
p.factory = self
return p

def clientConnectionLost(self, connector, reason):
"""Tf we get disconnected, reconnect to server.
connector.connect()

mirn

def clientConnectionFailed(self, connector, reason):
print("connection failed:", reason)
reactor.stop()

if __name__ == "__main__":
initialize logging
log.startLogging(sys.stdout)

create factory protocol and application
f = LogBotFactory(sys.argv[1l], sys.argv[2])

connect factory to this host and port
reactor.connectTCP("irc. freenode.net", 6667, f)

run bot
reactor.run()

ircLogBot.py connects to an IRC server, joins a channel, and logs all traffic on it to a file. It demonstrates some of
the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory .

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track of
data that should be persisted. In the case of the logging bot, it needs to know which channel it is logging, and where to
log it.

from twisted.words.protocols import irc
from twisted.internet import protocol

class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.logger = MessagelLogger(open(self.factory.filename, "a"))
self.logger.log("[connected at 1" %

(continues on next page)

18 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self. factory.channel)

class LogBotFactory(protocol.ClientFactory):

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

def buildProtocol(self, addr):
p = LogBot()
p.factory = self
return p

When the protocol is created, it gets a reference to the factory as self.factory . It can then access attributes of the
factory in its logic. In the case of LogBot , it opens the file and connects to the channel stored in the factory.

Factories have a default implementation of buildProtocol. It does the same thing the example above does using the
protocol attribute of the factory to create the protocol instance. In the example above, the factory could be rewritten
to look like this:

class LogBotFactory(protocol.ClientFactory):
protocol = LogBot

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

Further Reading

The Protocol class used throughout this document is a base implementation of IProtocol used in most Twisted appli-
cations for convenience. To learn about the complete IProtocol interface, see the API documentation for IProtocol

The transport attribute used in some examples in this document provides the ITCPTransport interface. To learn
about the complete interface, see the API documentation for ITCPTransport .

Interface classes are a way of specifying what methods and attributes an object has and how they behave. See the
Components: Interfaces and Adapters document for more information on using interfaces in Twisted.

2.1. Developer Guides 19

Twisted Documentation, Release 23.8.0

2.1.4 Test-driven development with Twisted

Writing good code is hard, or at least it can be. A major challenge is to ensure that your code remains correct as you
add new functionality.

Unit testing is a modern, light-weight testing methodology in widespread use in many programming languages. De-
velopment that relies on unit tests is often referred to as Test-Driven Development (TDD). Most Twisted code is tested
using TDD.

To gain a solid understanding of unit testing in Python, you shouldread theunittest -- Unit testing framework
chapter of the Python Library Reference. There is a lot of information available online and in books.

Introductory example of Python unit testing

This document is principally a guide to Trial, Twisted’s unit testing framework. Trial is based on Python’s unit testing
framework. While we do not aim to give a comprehensive guide to general Python unit testing, it will be helpful to
consider a simple non-networked example before expanding to cover networking code that requires the special capabil-
ities of Trial. If you are already familiar with unit test in Python, jump straight to the section specific to festing Twisted
code.

Note: In what follows we will make a series of refinements to some simple classes. In order to keep the examples and
source code links complete and to allow you to run Trial on the intermediate results at every stage, I add _N (where the
N are successive integers) to file names to keep them separate. This is a minor visual distraction that should be ignored.

Creating an API and writing tests

We'll create a library for arithmetic calculation. First, create a project structure with a directory called calculus
containing an empty __init__.py file.

Then put the following simple class definition API into calculus/base_1.py :

base_1.py

-*- test-case-name: calculus.test.test_base_1 -*-

class Calculation:
def add(self, a, b):
pass

def subtract(self, a, b):
pass

def multiply(self, a, b):
pass

def divide(self, a, b):
pass

(Ignore the test-case-name comment for now. You’ll see why that’s useful below .)

We’ve written the interface, but not the code. Now we’ll write a set of tests. At this point of development, we’ll be
expecting all tests to fail. Don’t worry, that’s part of the point. Once we have a test framework functioning, and we
have some decent tests written (and failing!), we’ll go and do the actual development of our calculation API. This is the

20 Chapter 2. Twisted Core

https://en.wikipedia.org/wiki/Unit_test
https://en.wikipedia.org/wiki/Test-driven_development
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/

Twisted Documentation, Release 23.8.0

preferred way to work for many people using TDD - write tests first, make sure they fail, then do development. Others
are not so strict and write tests after doing the development.

Create a test directory beneath calculus, with anempty __init__.py file. Ina calculus/test/test_base_1.
py, put the following:

test_base_1.py

from calculus.base_1 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def test_add(self):
calc = Calculation()
result = calc.add(3, 8)
self.assertEqual (result, 11)

def test_subtract(self):
calc = Calculation()
result = calc.subtract(7, 3)
self.assertEqual (result, 4)

def test_multiply(self):
calc = Calculation()
result = calc.multiply(12, 5)
self.assertEqual (result, 60)

def test_divide(self):
calc = Calculation()
result = calc.divide(12, 5)
self.assertEqual (result, 2)

You should now have the following 4 files:

calculus/__init__.py
calculus/base_1.py
calculus/test/__init__.py
calculus/test/test_base_1.py

To run the tests, you must ensure you are able to load them. Make sure you are in the directory that the calculus
folder is in, if you run 1s or dir you should see the folder. You can test that you can import the calculus package by
running python -c import calculus. If it reports an error (“No module named calculus™), double check you are
in the correct directory.

Run python -m twisted.trial calculus.test.test_base_1 from the command line when you are in the di-
rectory containing the calculus directory.

You should see the following output (though your files are probably not in /tmp):

$ python -m twisted.trial calculus.test.test_base_1
calculus.test.test_base_1

CalculationTestCase
test_add ... [FAIL]
test_divide ... [FAIL]

(continues on next page)

2.1. Developer Guides 21

Twisted Documentation, Release 23.8.0

(continued from previous page)

test_multiply ... [FAIL]
test_subtract ... [FAIL]
[FAIL]

Traceback (most recent call last):
File "/tmp/calculus/test/test_base_l.py", line 8, in test_add
self.assertEqual (result, 11)
twisted.trial.unittest.FailTest: not equal:
a = None
b =11

calculus.test.test_base_1.CalculationTestCase.test_add

[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1l.py", line 23, in test_divide
self.assertEqual (result, 2)
twisted.trial.unittest.FailTest: not equal:
a = None
b =2

calculus.test.test_base_1.CalculationTestCase.test_divide

[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1l.py", line 18, in test_multiply
self.assertEqual (result, 60)
twisted.trial.unittest.FailTest: not equal:
a = None
b = 60

calculus.test.test_base_1l.CalculationTestCase.test_multiply

[FAIL]
Traceback (most recent call last):
File "/tmp/calculus/test/test_base_1.py", line 13, in test_subtract
self.assertEqual (result, 4)
twisted.trial.unittest.FailTest: not equal:
a = None
b =4

calculus.test.test_base_1.CalculationTestCase.test_subtract

Ran 4 tests in 0.042s

FAILED (failures=4)

How to interpret this output? You get a list of the individual tests, each followed by its result. By default, failures are

22 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

printed at the end, but this can be changed with the -e (or --rterrors) option.

One very useful thing in this output is the fully-qualified name of the failed tests. This appears at the bottom of each
=-delimited area of the output. This allows you to copy and paste it to just run a single test you're interested in. In our
example, you could run python -m twisted.trial calculus.test.test_base_l.CalculationTestCase.
test_subtract from the shell.

Note that trial can use different reporters to modify its output. Run python -m twisted.trial --help-reporters
to see a list of reporters.

The tests can be run by Trial in multiple ways:
e python -m twisted.trial calculus: run all the tests for the calculus package.
e python -m twisted.trial calculus.test: run using Python’s import notation.

e python -m twisted.trial calculus.test.test_base_1: as above, for a specific test module. You can
follow that logic by putting your class name and even a method name to only run those specific tests.

e python -m twisted.trial --testmodule=calculus/base_1.py: use the test-case-name comment
in the first line of calculus/base_1.py to find the tests.

e python -m twisted.trial calculus/test: run all the tests in the test directory (not recommended).
e python -m twisted.trial calculus/test/test_base_1.py: run a specific test file (not recommended).

The first 3 versions using full qualified names are strongly encouraged: they are much more reliable and they allow you
to easily be more selective in your test runs.

You’ll notice that Trial creates a _trial_temp directory in the directory where you run the tests. This has a file called
test.log which contains the log output of the tests (created using log.msg or 1log.err functions). Examine this file
if you add logging to your tests.

Making the tests pass

Now that we have a working test framework in place, and our tests are failing (as expected) we can go and try to
implement the correct API. We’ll do that in a new version of the above base_1 module, calculus/base_2.py :

base_2.py

-*- test-case-name: calculus.test.test_base_2 -%*-

class Calculation:
def add(self, a, b):
return a + b

def subtract(self, a, b):
return a - b

def multiply(self, a, b):
return a * b

def divide(self, a, b):
return a // b

We'll also create a new version of test_base_1 which imports and test this new implementation, in calculus/
test_base_2.py:

test_base_2.py

2.1. Developer Guides 23

Twisted Documentation, Release 23.8.0

from calculus.base_2 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def test_add(self):
calc = Calculation()
result = calc.add(3, 8)
self.assertEqual (result, 11)

def test_subtract(self):
calc = Calculation()
result = calc.subtract(7, 3)
self.assertEqual (result, 4)

def test_multiply(self):
calc = Calculation()
result = calc.multiply(12, 5)
self.assertEqual (result, 60)

def test_divide(self):
calc = Calculation()
result = calc.divide(12, 5)
self.assertEqual (result, 2)

is a copy of test_base_1, but with the import changed. Run Trial again as above, and your tests should now pass:

$ python -m twisted.trial calculus.test.test_base_2

Running 4 tests.
calculus.test.test_base

CalculationTestCase
test_add ... [OK]
test_divide ... [OK]
test_multiply ... [OK]
test_subtract ... [OK]

Ran 4 tests in 0.067s

PASSED (successes=4)

24 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Factoring out common test logic

You’ll notice that our test file contains redundant code. Let’s get rid of that. Python’s unit testing framework allows
your test class to define a setUp method that is called before each test method in the class. This allows you to add
attributes to self that can be used in test methods. We’ll also add a parameterized test method to further simplify the
code.

Note that a test class may also provide the counterpart of setUp , named tearDown , which will be called after each
test (whether successful or not). tearDown is mainly used for post-test cleanup purposes. We will not use tearDown
until later.

Create calculus/test/test_base_2b.py as follows:

test_base_2b.py

from calculus.base_2 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):
def setUp(self):
self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual (result, expected)

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

def test_subtract(self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test(self.calc.divide, 12, 5, 2)

Much cleaner, isn’t it?

We’ll now add some additional error tests. Testing just for successful use of the API is generally not enough, especially
if you expect your code to be used by others. Let’s make sure the Calculation class raises exceptions if someone
tries to call its methods with arguments that cannot be converted to integers.

We arrive at calculus/test/test_base_3.py:

test_base_3.py

from calculus.base_3 import Calculation

from twisted.trial import unittest

class CalculationTestCase(unittest.TestCase):

(continues on next page)

2.1. Developer Guides 25

Twisted Documentation, Release 23.8.0

(continued from previous page)

def setUp(self):
self.calc = Calculation()

def _test(self, operation, a, b, expected):
result = operation(a, b)
self.assertEqual (result, expected)

def _test_error(self, operation):
self.assertRaises(TypeError, operation, "foo", 2)

self.assertRaises(TypeError, operation, "bar", "egg")
self.assertRaises(TypeError, operation, [3], [8, 2])
self.assertRaises(TypeError, operation, {"e": 3}, {"r": "t"})

def test_add(self):
self._test(self.calc.add, 3, 8, 11)

def test_subtract(self):
self._test(self.calc.subtract, 7, 3, 4)

def test_multiply(self):
self._test(self.calc.multiply, 6, 9, 54)

def test_divide(self):
self._test(self.calc.divide, 12, 5, 2)

def test_errorAdd(self):
self._test_error(self.calc.add)

def test_errorSubtract(self):
self._test_error(self.calc.subtract)

def test_errorMultiply(self):
self._test_error(self.calc.multiply)

def test_errorDivide(self):
self._test_error(self.calc.divide)

We’ve added four new tests and one general-purpose function, _test_error . This function uses the assertRaises
method, which takes an exception class, a function to run and its arguments, and checks that calling the function on the
arguments does indeed raise the given exception.

If you run the above, you’ll see that not all tests fail. In Python it’s often valid to add and multiply objects of different
and even differing types, so the code in the add and multiply tests does not raise an exception and those tests therefore
fail. So let’s add explicit type conversion to our API class. This brings us to calculus/base_3.py :

base_3.py

-*- test-case-name: calculus.test.test_base_3 -%*-

class Calculation:
def _make_ints(self, *args):
try:

(continues on next page)

26 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
return [int(arg) for arg in args]
except ValueError:
raise TypeError("Couldn't coerce arguments to integers: ".format(*args))

def add(self, a, b):
a, b = self._make_ints(a, b)
return a + b

def subtract(self, a, b):
a, b = self._make_ints(a, b)
return a - b

def multiply(self, a, b):
a, b = self._make_ints(a, b)
return a * b

def divide(self, a, b):
a, b = self._make_ints(a, b)
return a // b

Here the _make_ints helper function tries to convert a list into a list of equivalent integers, and raises a TypeError
in case the conversion goes wrong.

Note: The int conversion can also raise a TypeError if passed something of the wrong type, such as a list. We’ll
just let that exception go by, as TypeError is already what we want in case something goes wrong.

Twisted specific testing

Up to this point we’ve been doing fairly standard Python unit testing. With only a few cosmetic changes (most impor-
tantly, directly importing unittest instead of using Twisted’s unittest version) we could make the above tests run
using Python’s standard library unit testing framework.

Here we will assume a basic familiarity with Twisted’s network I/O, timing, and Deferred APIs. If you haven’t already
read them, you should read the documentation on Writing Servers , Writing Clients , and Deferreds .

Now we’ll get to the real point of this tutorial and take advantage of Trial to test Twisted code.

2.1. Developer Guides 27

Twisted Documentation, Release 23.8.0

Testing a protocol

We’ll now create a custom protocol to invoke our class from a telnet-like session. We’ll remotely call commands with
arguments and read back the response. The goal will be to test our network code without creating sockets.

Creating and testing the server

First we’ll write the tests, and then explain what they do. The first version of the remote test code is:

test_remote_l.py

from calculus.remote_1 import RemoteCalculationFactory

from twisted.test import proto_helpers
from twisted.trial import unittest

class RemoteCalculationTestCase(unittest.TestCase):
def setUp(self):
factory = RemoteCalculationFactory()
self.proto = factory.buildProtocol(("127.0.0.1", 0))
self.tr = proto_helpers.StringTransport()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived(f"{operation} {a} {b}\r\n".encode())
self.assertEqual (int(self.tr.value()), expected)

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test('"divide", 14, 3, 4)

To fully understand this client, it helps a lot to be comfortable with the Factory/Protocol/Transport pattern used in
Twisted.

We first create a protocol factory object. Note that we have yet to see the RemoteCalculationFactory class.
It is in calculus/remote_1.py below. We call buildProtocol to ask the factory to build us a protocol ob-
ject that knows how to talk to our server. We then make a fake network transport, an instance of twisted.
test.proto_helpers.StringTransport class (note that test packages are generally not part of Twisted’s public
API; twisted.test.proto_helpers™ is an exception). This fake transport is the key to the communications. It is used to
emulate a network connection without a network. The address and port passed to buildProtocol are typically used
by the factory to choose to immediately deny remote connections; since we’re using a fake transport, we can choose
any value that will be acceptable to the factory. In this case the factory just ignores the address, so we don’t need to
pick anything in particular.

Testing protocols without the use of real network connections is both simple and recommended when testing Twisted
code. Even though there are many tests in Twisted that use the network, most good tests don’t. The problem with unit

28 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

tests and networking is that networks aren’t reliable. We cannot know that they will exhibit reasonable behavior all the
time. This creates intermittent test failures due to network vagaries. Right now we’re trying to test our Twisted code,
not network reliability. By setting up and using a fake transport, we can write 100% reliable tests. We can also test
network failures in a deterministic manner, another important part of your complete test suite.

The final key to understanding this client code is the _test method. The call to dataReceived simulates data ar-
riving on the network transport. But where does it arrive? It’s handed to the 1ineReceived method of the protocol
instance (in calculus/remote_1.py below). So the client is essentially tricking the server into thinking it has re-
ceived the operation and the arguments over the network. The server (once again, see below) hands over the work
to its CalculationProxy object which in turn hands it to its Calculation instance. The result is written back via
sendLine (into the fake string transport object), and is then immediately available to the client, who fetches it with
tr.value() and checks that it has the expected value. So there’s quite a lot going on behind the scenes in the two-line
_test method above.

Finally , let’s see the implementation of this protocol. Put the following into calculus/remote_1.py :

remote_1.py

-*- test-case-name: calculus.test.test_remote_1 -*-
from calculus.base_3 import Calculation

from twisted.internet import protocol
from twisted.protocols import basic

class CalculationProxy:
def __init__(self):
self.calc = Calculation()
for m in ["add", "subtract", "multiply", "divide"]:
setattr(self, f'"remote_{m}!", getattr(self.calc, m))

class RemoteCalculationProtocol (basic.LineReceiver):
def __init__(self):
self.proxy = CalculationProxy()

def lineReceived(self, line):
op, a, b = line.decode("utf-8").split()
a = int(a)
b = int(b)
op = getattr(self.proxy, f'"remote_{op}")
result = op(a, b)
self.sendLine(str(result).encode("utf-8"))

class RemoteCalculationFactory(protocol.Factory):
protocol = RemoteCalculationProtocol

def main(Q):
import sys

from twisted.internet import reactor
from twisted.python import log

(continues on next page)

2.1. Developer Guides 29

Twisted Documentation, Release 23.8.0

(continued from previous page)

log.startLogging(sys.stdout)
reactor.listenTCP(®, RemoteCalculationFactory())
reactor.run()

if __name__ == "__main_

main()

As mentioned, this server creates a protocol that inherits from basic.LineReceiver , and then a factory that uses it
as protocol. The only trick is the CalculationProxy object, which calls Calculation methods through remote_*
methods. This pattern is used frequently in Twisted, because it is very explicit about what methods you are making
accessible.

If you run this test (python -m twisted.trial calculus.test.test_remote_1), everything should be fine.
You can also run a server to test it with a telnet client. To do that, call python calculus/remote_1.py. You should
have the following output:

2008-04-25 10:53:27+0200 [-] Log opened.

2008-04-25 10:53:27+0200 [-] __main__.RemoteCalculationFactory starting on 46194
2008-04-25 10:53:27+0200 [-] Starting factory <__main__.RemoteCalculationFactory..
—instance at 0x846a0cc>

46194 is replaced by a random port. You can then call telnet on it:

$ telnet localhost 46194
Trying 127.0.0.1...
Connected to localhost.
Escape character is 'A]'.
add 4123 9423

13546

It works!

Creating and testing the client

Of course, what we build is not particularly useful for now: we’ll now build a client for our server, to be able to use it
inside a Python program. And it will serve our next purpose.

Create calculus/test/test_client_1.py:

test_client_1.py

from calculus.client_1 import RemoteCalculationClient

from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):
self.tr = proto_helpers.StringTransport()
self.proto = RemoteCalculationClient()

(continues on next page)

30 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):

d = getattr(self.proto, operation)(a, b)
self.assertEqual (self.tr.value(), f"{operation a b A\r\n".encode())
self.tr.clear()
d.addCallback(self.assertEqual, expected)
self.proto.dataReceived(

"IAr\n". format(

expected,

) .encode("utf-8")

)

return d

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test('divide", 14, 3, 4)

It’s really symmetric to the server test cases. The only tricky part is that we don’t use a client factory. We’re lazy, and
it’s not very useful in the client part, so we instantiate the protocol directly.

Incidentally, we have introduced a very important concept here: the tests now return a Deferred object, and the assertion
is done in a callback. When a test returns a Deferred, the reactor is run until the Deferred fires and its callbacks run.
The important thing to do here is to not forget to return the Deferred . If you do, your tests will pass even if nothing
is asserted. That’s also why it’s important to make tests fail first: if your tests pass whereas you know they shouldn’t,
there is a problem in your tests.

We’ll now add the remote client class to produce calculus/client_1.py:

client_1.py

-%*- test-case-name: calculus.test.test_client_1 -*-

from twisted.internet import defer
from twisted.protocols import basic

class RemoteCalculationClient(basic.LineReceiver):
def __init__(self):
self.results = []

def lineReceived(self, line):
d = self.results.pop(0®)
d.callback(int(line))

def _sendOperation(self, op, a, b):
(continues on next page)

2.1. Developer Guides 31

Twisted Documentation, Release 23.8.0

(continued from previous page)
d = defer.Deferred()
self.results.append(d)
line = f"{op} {a} {b}".encode()
self.sendLine(line)
return d

def add(self, a, b):
return self._sendOperation('add", a, b)

def subtract(self, a, b):
return self._sendOperation('subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation('divide", a, b)

More good practices

Testing scheduling

When testing code that involves the passage of time, waiting e.g. for a two hour timeout to occur in a test is not very
realistic. Twisted provides a solution to this, the Clock class that allows one to simulate the passage of time.

As an example we’ll test the code for client request timeout: since our client uses TCP it can hang for a long time
(firewall, connectivity problems, etc...). So generally we need to implement timeouts on the client side. Basically it’s
just that we send a request, don’t receive a response and expect a timeout error to be triggered after a certain duration.

test_client_2.py

from calculus.client_2 import ClientTimeoutError, RemoteCalculationClient

from twisted.internet import task
from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.calllLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual (self.tr.value(), f"{operation} {a} {b}\r\n".encode())
self.tr.clear()
d.addCallback(self.assertEqual, expected)

(continues on next page)

32 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.proto.dataReceived(f" {expected}\r\n".encode())
return d

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test('divide", 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual (self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

What happens here? We instantiate our protocol as usual, the only trick is to create the clock, and assign proto.
callLaterto clock.calllLater . Thus, every callLater call in the protocol will finish before clock.advance ()
returns.

In the new test (test_timeout), we call clock.advance , that simulates an advance in time (logically it’s similar to a
time.sleep call). And we just have to verify that our Deferred got a timeout error.

Let’s implement that in our code.

client_2.py

-*- test-case-name: calculus.test.test_client_2 -*-

from twisted.internet import defer, reactor
from twisted.protocols import basic

class ClientTimeoutError (Exception):
pass

class RemoteCalculationClient(basic.LineReceiver):

calllLater = reactor.calllLater
timeOut = 60

def __init__(self):
self.results = []

def lineReceived(self, line):
d, callID = self.results.pop(0)
callID.cancel()
d.callback(int(line))

(continues on next page)

2.1. Developer Guides 33

Twisted Documentation, Release 23.8.0

(continued from previous page)

def _cancel(self, d):
d.errback(ClientTimeoutError())

def _sendOperation(self, op, a, b):
d = defer.Deferred()
callID = self.calllLater(self.timeOut, self._cancel, d)
self.results.append((d, callID))
line = f"{op} {a} {b}".encode()
self.sendLine(line)
return d

def add(self, a, b):
return self._sendOperation('add", a, b)

def subtract(self, a, b):
return self._sendOperation('subtract", a, b)

def multiply(self, a, b):
return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation('divide", a, b)

If everything completed successfully, it is important to remember to cancel the DelayedCall returned by callLater

Cleaning up after tests

This chapter is mainly intended for people who want to have sockets or processes created in their tests. If it’s still not
obvious, you must try to avoid using them, because it ends up with a lot of problems, one of them being intermittent
failures. And intermittent failures are the plague of automated tests.

To actually test that, we’ll launch a server with our protocol.

test_remote_2.py

from calculus.client_2 import RemoteCalculationClient
from calculus.remote_1 import RemoteCalculationFactory

from twisted.internet import protocol, reactor
from twisted.trial import unittest

class RemoteRunCalculationTestCase(unittest.TestCase):
def setUp(self):
factory = RemoteCalculationFactory()
self.port = reactor.listenTCP(®, factory, interface="127.0.0.1")
self.client = None

def tearDown(self):
if self.client is not None:

(continues on next page)

34 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.client.transport.loseConnection()
return self.port.stopListening()

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator(reactor, RemoteCalculationClient)

def cb(client):
self.client = client
return getattr(self.client, op)(a, b).addCallback(
self.assertEqual, expected

)

return creator.connectTCP("127.0.0.1", self.port.getHost().port).addCallback(ch)

def test_add(self):
return self._test("add", 5, 9, 14)

def test_subtract(self):
return self._test("subtract", 47, 13, 34)

def test_multiply(self):
return self._test("multiply", 7, 3, 21)

def test_divide(self):
return self._test("divide", 84, 10, 8)

Recent versions of Trial will fail loudly if you remove the stopListening call, which is good.

Also, you should be aware that tearDown will be called in any case, after success or failure. So don’t expect every
object you created in the test method to be present, because your tests may have failed in the middle.

Trial also has a addCleanup method, which makes these kind of cleanups easy and removes the need for tearDown.
For example, you could remove the code in _test this way:

def setUp(self):
factory = RemoteCalculationFactory()
self.port = reactor.listenTCP(0®, factory, interface="127.0.0.1")
self.addCleanup(self.port.stopListening)

def _test(self, op, a, b, expected):
creator = protocol.ClientCreator(reactor, RemoteCalculationClient)
def cb(client):
self.addCleanup(self.client.transport.loseConnection)
return getattr(client, op)(a, b).addCallback(self.assertEqual, expected)
return creator.connectTCP('127.0.0.1', self.port.getHost().port).addCallback(ch)

This removes the need of a tearDown method, and you don’t have to check for the value of self.client: you only call
addCleanup when the client is created.

2.1. Developer Guides 35

Twisted Documentation, Release 23.8.0

Handling logged errors

Currently, if you send an invalid command or invalid arguments to our server, it logs an exception and closes the
connection. This is a perfectly valid behavior, but for the sake of this tutorial, we want to return an error to the user if
they send invalid operators, and log any errors on server side. So we’ll want a test like this:

def test_invalidParameters(self):
self.proto.dataReceived('add foo bar\r\n')
self.assertEqual (self.tr.value(), "error\r\n")

remote_2.py

-*- test-case-name: calculus.test.test_remote_1 -*-
from calculus.base_3 import Calculation

from twisted.internet import protocol
from twisted.protocols import basic
from twisted.python import log

class CalculationProxy:
def __init__(self):
self.calc = Calculation()
for m in ["add", "subtract", "multiply", "divide"]:
setattr(self, f'"remote_{m}", getattr(self.calc, m))

class RemoteCalculationProtocol (basic.LineReceiver):
def __init__(self):
self.proxy = CalculationProxy()

def lineReceived(self, line):
op, a, b = line.decode("utf-8").split()
op = getattr(

self.proxy,
"remote_{}".format(
op,
)
)
try:

result = op(a, b)
except TypeError:
log.err()
self.sendLine(b"error™)
else:
self.sendLine(str(result).encode("utf-8"))

class RemoteCalculationFactory(protocol.Factory):
protocol = RemoteCalculationProtocol

(continues on next page)

36 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def main(Q:
import sys

from twisted.internet import reactor
from twisted.python import log

log.startLogging(sys.stdout)
reactor.listenTCP(0, RemoteCalculationFactory())
reactor.run()

if name__ == "__main__":

main()

If you try something like that, it will not work. Here is the output you should have:

$ python -m twisted.trial calculus.test.test_remote_3.RemoteCalculationTestCase.test_
—invalidParameters
calculus.test.test_remote_3
RemoteCalculationTestCase
test_invalidParameters ... [ERROR]

[ERROR]: calculus.test.test_remote_3.RemoteCalculationTestCase.test_invalidParameters

Traceback (most recent call last):
File "/tmp/calculus/remote_2.py", line 27, in lineReceived
result = op(a, b)
File "/tmp/calculus/base_3.py", line 11, in add
a, b = self._make_ints(a, b)
File "/tmp/calculus/base_3.py", line 8, in _make_ints
raise TypeError
exceptions.TypeError:

Ran 1 tests in 0.004s

FAILED (errors=1)

At first, you could think there is a problem, because you catch this exception. But in fact Trial doesn’t let you
do that without controlling it: you must expect logged errors and clean them. To do that, you have to use the
flushlLoggedErrors method. You call it with the exception you expect, and it returns the list of exceptions logged
since the start of the test. Generally, you’ll want to check that this list has the expected length, or possibly that each
exception has an expected message. We do the former in our test:

test_remote_3.py

from calculus.remote_2 import RemoteCalculationFactory
from twisted.test import proto_helpers

from twisted.trial import unittest

class RemoteCalculationTestCase(unittest.TestCase):

(continues on next page)

2.1. Developer Guides 37

Twisted Documentation, Release 23.8.0

(continued from previous page)
def setUp(self):
factory = RemoteCalculationFactory()
self.proto = factory.buildProtocol(("127.0.0.1", 0))
self.tr = proto_helpers.StringTransport()
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
self.proto.dataReceived(f" {operation} {a} {b}\r\n".encode())
self.assertEqual (int(self.tr.value()), expected)

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test("divide", 14, 3, 4)

def test_invalidParameters(self):
self.proto.dataReceived(b"add foo bar\r\n")
self.assertEqual (self.tr.value(), b"error\r\n")
errors = self.flushlLoggedErrors(TypeError)
self.assertEqual (len(errors), 1)

Resolve a bug

A bug was left over during the development of the timeout (probably several bugs, but that’s not the point), concerning
the reuse of the protocol when you got a timeout: the connection is not dropped, so you can get timeout forever.
Generally a user will come to you saying “I have this strange problem on my crappy network. It seems you could solve
it with doing XXX at YYY.”

Actually, this bug can be corrected several ways. But if you correct it without adding tests, one day you’ll face a big
problem: regression. So the first step is adding a failing test.

test_client_3.py

from calculus.client_3 import ClientTimeoutError, RemoteCalculationClient

from twisted.internet import task
from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):
self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()

(continues on next page)

38 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.tr.protocol = self.proto
self.proto.callLater = self.clock.callLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual (self.tr.value(), f"{operation a b \r\n".encode())
self.tr.clear()
d.addCallback(self.assertEqual, expected)
self.proto.dataReceived(f" {expected/\r\n".encode())
return d

def test_add(self):
return self._test("add", 7, 6, 13)

def test_subtract(self):
return self._test("subtract", 82, 78, 4)

def test_multiply(self):
return self._test("multiply", 2, 8, 16)

def test_divide(self):
return self._test('"divide", 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual (self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)
return self.assertFailure(d, ClientTimeoutError)

def test_timeoutConnectionlLost(self):
called = []

def lost(arg):
called. append(True)

self.proto.connectionlLost = lost
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")

self.clock.advance(self.proto.timeOut)

def check(ignore):
self.assertEqual(called, [True])

return self.assertFailure(d, ClientTimeoutError) .addCallback(check)

‘What have we done here?

¢ We switched to StringTransportWithDisconnection. This transport manages loseConnection and forwards it
to its protocol.

* We assign the protocol to the transport via the protocol attribute.

2.1. Developer Guides 39

Twisted Documentation, Release 23.8.0

¢ We check that after a timeout our connection has closed.

For doing that, we then use the TimeoutMixin class, that does almost everything we want. The great thing is that it

almost changes nothing to our class.

client_3.py

-*- test-case-name: calculus.test.test_client -%*-

from twisted.internet import defer
from twisted.protocols import basic, policies

class ClientTimeoutError (Exception):
pass

class RemoteCalculationClient(basic.LineReceiver, policies.TimeoutMixin):

def __init__(self):
self.results = []
self._timeOut = 60

def lineReceived(self, line):
self.setTimeout (None)
d = self.results.pop(0®)
d.callback(int(line))

def timeoutConnection(self):
for d in self.results:
d.errback(ClientTimeoutError())
self.transport.loseConnection()

def _sendOperation(self, op, a, b):
d = defer.Deferred()
self.results.append(d)
line = £"{op a b}".encode()
self.sendLine(line)
self.setTimeout(self._timeOut)
return d

def add(self, a, b):
return self._sendOperation("add", a, b)

def subtract(self, a, b):

return self._sendOperation('subtract"”, a, b)

def multiply(self, a, b):

return self._sendOperation("multiply", a, b)

def divide(self, a, b):
return self._sendOperation('divide", a, b)

40

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Testing Deferreds without the reactor

Above we learned about returning Deferreds from test methods in order to make assertions about their results, or
side-effects that only happen after they fire. This can be useful, but we don’t actually need the feature in this exam-
ple. Because we were careful to use Clock , we don’t need the global reactor to run in our tests. Instead of return-
ing the Deferred with a callback attached to it which performs the necessary assertions, we can use a testing helper,
successResultOf (and the corresponding error-case helper failureResultOf), to extract its result and make asser-
tions against it directly. Compared to returning a Deferred, this avoids the problem of forgetting to return the Deferred,
improves the stack trace reported when the assertion fails, and avoids the complexity of using global reactor (which,
for example, may then require cleanup).

test_client_4.py

from calculus.client_3 import ClientTimeoutError, RemoteCalculationClient

from twisted.internet import task
from twisted.test import proto_helpers
from twisted.trial import unittest

class ClientCalculationTestCase(unittest.TestCase):
def setUp(self):

self.tr = proto_helpers.StringTransportWithDisconnection()
self.clock = task.Clock()
self.proto = RemoteCalculationClient()
self.tr.protocol = self.proto
self.proto.callLater = self.clock.calllLater
self.proto.makeConnection(self.tr)

def _test(self, operation, a, b, expected):
d = getattr(self.proto, operation)(a, b)
self.assertEqual(self.tr.value(), f"{operation a b A\r\n".encode())
self.tr.clear()
self.proto.dataReceived(f" {expected}\r\n".encode())
self.assertEqual (expected, self.successResultO£f(d))

def test_add(self):
self._test("add", 7, 6, 13)

def test_subtract(self):
self._test("subtract", 82, 78, 4)

def test_multiply(self):
self._test("multiply", 2, 8, 16)

def test_divide(self):
self._test("divide", 14, 3, 4)

def test_timeout(self):
d = self.proto.add(9, 4)
self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)
self.failureResult0f(d).trap(ClientTimeoutError)

(continues on next page)

2.1. Developer Guides 41

Twisted Documentation, Release 23.8.0

(continued from previous page)

def test_timeoutConnectionlLost(self):
called = []

def lost(arg):
called. append(True)

self.proto.connectionlLost = lost
d = self.proto.add(9, 4)

self.assertEqual(self.tr.value(), b"add 9 4\r\n")
self.clock.advance(self.proto.timeOut)

def check(ignore):
self.assertEqual(called, [True])

self.failureResult0f(d) .trap(ClientTimeoutError)
self.assertEqual(called, [True])

This version of the code makes the same assertions, but no longer returns any Deferreds from any test methods. Instead
of making assertions about the result of the Deferred in a callback, it makes the assertions as soon as it knows the De-
ferred is supposed to have a result (in the _test method and in test_timeout and test_timeoutConnectionLost
). The possibility of knowing exactly when a Deferred is supposed to have a test is what makes successResultOf
useful in unit testing, but prevents it from being applicable to non-testing purposes.

successResultOf will raise an exception (failing the test) if the Deferred passed to it does not have a result, or has
a failure result. Similarly, failureResultOf will raise an exception (also failing the test) if the Deferred passed to it
does not have a result, or has a success result. There is a third helper method for testing the final case, assertNoResult
, which only raises an exception (failing the test) if the Deferred passed to it has a result (either success or failure).

Dropping into a debugger

In the course of writing and running your tests, it is often helpful to employ the use of a debugger. This can be
particularly helpful in tracking down where the source of a troublesome bug is in your code. Python’s standard library
includes a debugger in the form of the pdb module. Running your tests with pdb is as simple as invoking twisted with
the --debug option, which will start pdb at the beginning of the execution of your test suite.

Trial also provides a --debugger option which can run your test suite using another debugger instead. To specify a
debugger other than pdb , pass in the fully-qualified name of an object that provides the same interface as pdb . Most
third-party debuggers tend to implement an interface similar to pdb , or at least provide a wrapper object that does. For
example, invoking Trial with the extra arguments --debug --debugger pudb will open the PuDB debugger instead,
provided it is properly installed.

Code coverage

Code coverage is one of the aspects of software testing that shows how much your tests cross (cover) the code of your
program. There are different kinds of measures: path coverage, condition coverage, statement coverage... We’ll only
consider statement coverage here, whether a line has been executed or not.

Trial has an option to generate the statement coverage of your tests. This option is —coverage. It creates a coverage
directory in _trial_temp, with a file .cover for every module used during the tests. The ones interesting for us are
calculus.base.cover and calculus.remote.cover. Each line starts with a counter showing how many times the line was
executed during the tests, or the marker ‘>>>>>>" if the line was not covered. If you went through the whole tutorial
to this point, you should have complete coverage :).

42 Chapter 2. Twisted Core

https://docs.python.org/3/library/pdb.html#module-pdb
https://pypi.org/project/pudb

Twisted Documentation, Release 23.8.0

Again, this is only another useful pointer, but it doesn’t mean your code is perfect: your tests should consider every
possible input and output, to get full coverage (condition, path, etc.) as well .

Conclusion

So what did you learn in this document?
* How to use the Trial command-line tool to run your tests
* How to use string transports to test individual clients and servers without creating sockets
* If you really want to create sockets, how to cleanly do it so that it doesn’t have bad side effects
* And some small tips you can’t live without.

If one of the topics still looks cloudy to you, please give us your feedback! You can file tickets to improve this document
- learn how to contribute on the Twisted web site.

2.1.5 Twisted from Scratch, or The Evolution of Finger

The Evolution of Finger: building a simple finger service

Introduction

This is the first part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

If you’re not familiar with ‘finger’ it’s probably because it’s not used as much nowadays as it used to be. Basically, if
you run finger nail or finger nail@example.com the target computer spits out some information about the user
named nail . For instance:

Login: nail Name: Nail Sharp
Directory: /home/nail Shell: /usr/bin/sh
Last login Wed Mar 31 18:32 2004 (PST)
New mail received Thu Apr 1 10:50 2004 (PST)

Unread since Thu Apr 1 10:50 2004 (PST)
No Plan.

If the target computer does not have the fingerd daemon running you’ll get a “Connection Refused” error. Paranoid
sysadmins keep fingerd off or limit the output to hinder crackers and harassers. The above format is the standard
fingerd default, but an alternate implementation can output anything it wants, such as automated responsibility status
for everyone in an organization. You can also define pseudo “users”, which are essentially keywords.

This portion of the tutorial makes use of factories and protocols as introduced in the Writing a TCP Server howto and
deferreds as introduced in Using Deferreds and Generating Deferreds . Services and applications are discussed in
Using the Twisted Application Framework .

By the end of this section of the tutorial, our finger server will answer TCP finger requests on port 1079, and will read
data from the web.

2.1. Developer Guides 43

https://twistedmatrix.com/trac/wiki/TwistedDevelopment/

Twisted Documentation, Release 23.8.0

Refuse Connections

finger01.py

from twisted.internet import reactor

reactor.run()

This example only runs the reactor. It will consume almost no CPU resources. As it is not listening on any port, it
can’t respond to network requests — nothing at all will happen until we interrupt the program. At this point if you
run finger nail or telnet localhost 1079, you’ll get a “Connection refused” error since there’s no daemon
running to respond. Not very useful, perhaps — but this is the skeleton inside which the Twisted program will grow.

As implied above, at various points in this tutorial you’ll want to observe the behavior of the server being developed.
Unless you have a finger program which can use an alternate port, the easiest way to do this is with a telnet client.
telnet localhost 1079 will connect to the local host on port 1079, where a finger server will eventually be listening.

The Reactor

You don’t call Twisted, Twisted calls you. The reactor is Twisted’s main event loop, similar to the main loop in other
toolkits available in Python (Qt, wx, and Gtk). There is exactly one reactor in any running Twisted application. Once
started it loops over and over again, responding to network events and making scheduled calls to code.

Note that there are actually several different reactors to choose from; from twisted.internet import reactor
returns the current reactor. If you haven’t chosen a reactor class yet, it automatically chooses the default. See the
Reactor Basics HOWTO for more information.

Do Nothing

finger02.py

from twisted.internet import endpoints, protocol, reactor

class FingerProtocol (protocol.Protocol):
pass

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079™)
fingerEndpoint.listen(FingerFactory())
reactor.run()

Here we use endpoints.serverFromString to create a Twisted endpoint. An endpoint is a Twisted concept that
encapsulates one end of a connection. There are different endpoints for clients and servers. One of the great advantages
of endpoints is that they can be described textually using a kind of domain-specific language. For example, here,
we ask Twisted to create a TCP endpoint for a server using the string "tcp:1079". That, along with the call to
serverFromString, tells Twisted to look for a TCP endpoint, and pass it the port 1079. The endpoint returned from
that function can then have the 1isten() method invoked on it, which causes Twisted to start listening on port 1079.

44 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(The number 1079 is a reminder that eventually we want to run on port 79, the standard port for finger servers.) For
more detail on endpoints, check out the Getting Connected With Endpoints.

The factory given to the listen() method, FingerFactory , is used to handle incoming requests on that port.
Specifically, for each request, the reactor calls the factory’s buildProtocol method, which in this case causes
FingerProtocol to be instantiated. Since the protocol defined here does not actually respond to any events, con-
nections to 1079 will be accepted, but the input ignored.

A Factory is the proper place for data that you want to make available to the protocol instances, since the protocol
instances are garbage collected when the connection is closed.

Drop Connections

finger03.py

from twisted.internet import endpoints, protocol, reactor

class FingerProtocol (protocol.Protocol):
def connectionMade(self):
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

Here we add to the protocol the ability to respond to the event of beginning a connection — by terminating it. Perhaps
not an interesting behavior, but it is already close to behaving according to the letter of the standard finger protocol.
After all, there is no requirement to send any data to the remote connection in the standard. The only problem, as far
as the standard is concerned, is that we terminate the connection too soon. A client which is slow enough will see his
send () of the username result in an error.

Read Username, Drop Connections

finger04.py

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

(continues on next page)

2.1. Developer Guides 45

Twisted Documentation, Release 23.8.0

(continued from previous page)

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory())
reactor.run()

Here we make FingerProtocol inherit from LineReceiver , so that we get data-based events on a line-by-line basis.
We respond to the event of receiving the line with shutting down the connection.

If you use a telnet client to interact with this server, the result will look something like this:

$ telnet localhost 1079

Trying 127.0.0.1...

Connected to localhost.localdomain.
alice

Connection closed by foreign host.

Congratulations, this is the first standard-compliant version of the code. However, usually people actually expect some
data about users to be transmitted.

Read Username, Output Error, Drop Connections

finger05.py

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.write(b"No such user\r\n'")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079™)
fingerEndpoint.listen(FingerFactory())
reactor.run()

Finally, a useful version. Granted, the usefulness is somewhat limited by the fact that this version only prints out a “No
such user” message. It could be used for devastating effect in honey-pots (decoy servers), of course.

46 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Output From Empty Factory

finger06.py

Read username, output from empty factory, drop connections

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.write(self.factory.getUser(user) + b"\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def getUser(self, user):
return b"No such user"

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079™)
fingerEndpoint.listen(FingerFactory())
reactor.run()

The same behavior, but finally we see what usefulness the factory has: as something that does not get constructed for
every connection, it can be in charge of the user database. In particular, we won’t have to change the protocol if the
user database back-end changes.

Output from Non-empty Factory

finger07.py

Read username, output from non-empty factory, drop connections

from twisted.internet import endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
self.transport.write(self.factory.getUser(user) + b"\r\n")
self.transport.loseConnection()

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, users):
self.users = users
(continues on next page)

2.1. Developer Guides 47

Twisted Documentation, Release 23.8.0

(continued from previous page)

def getUser(self, user):
return self.users.get(user, b"No such user")

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory({b"moshez": b"Happy and well"}))
reactor.run()

Finally, a really useful finger database. While it does not supply information about logged in users, it could be used to
distribute things like office locations and internal office numbers. As hinted above, the factory is in charge of keeping
the user database: note that the protocol instance has not changed. This is starting to look good: we really won’t have
to keep tweaking our protocol.

Use Deferreds

finger08.py

Read username, output from non-empty factory, drop connections
Use deferreds, to minimize synchronicity assumptions

from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return "Internal error in server"

d.addErrback (onError)
def writeResponse(message):
self.transport.write(message + b"\r\n'")
self.transport.loseConnection()
d.addCallback(writeResponse)
class FingerFactory(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

(continues on next page)

48 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079™)
fingerEndpoint.listen(FingerFactory({b"moshez": b"Happy and well"}))
reactor.run()

But, here we tweak it just for the hell of it. Yes, while the previous version worked, it did assume the result of getUser
is always immediately available. But what if instead of an in-memory database, we would have to fetch the result
from a remote Oracle server? By allowing getUser to return a Deferred, we make it easier for the data to be retrieved
asynchronously so that the CPU can be used for other tasks in the meanwhile.

As described in the Deferred HOWTO , Deferreds allow a program to be driven by events. For instance, if one task in a
program is waiting on data, rather than have the CPU (and the program!) idly waiting for that data (a process normally
called ‘blocking’), the program can perform other operations in the meantime, and waits for some signal that data is
ready to be processed before returning to that process.

In brief, the code in FingerFactory above creates a Deferred, to which we start to attach callbacks . The deferred
action in FingerFactory is actually a fast-running expression consisting of one dictionary method, get . Since
this action can execute without delay, FingerFactory.getUser uses defer.succeed to create a Deferred which
already has a result, meaning its return value will be passed immediately to the first callback function, which turns out
to be FingerProtocol.writeResponse . We’ve also defined an errback (appropriately named FingerProtocol.
onError) that will be called instead of writeResponse if something goes wrong.

Run ‘finger’ Locally

finger09.py

Read username, output from factory interfacing to 0S, drop connections

from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)
def writeResponse(message):
self.transport.write(message + b"\r\n'")

self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def getUser(self, user):
return utils.getProcessOutput(b"finger", [user])

(continues on next page)

2.1. Developer Guides 49

Twisted Documentation, Release 23.8.0

(continued from previous page)

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079™)
fingerEndpoint.listen(FingerFactory())
reactor.run()

This example also makes use of a Deferred. twisted.internet.utils.getProcessOutput is a non-blocking
version of Python’s commands.getoutput : it runs a shell command (finger , in this case) and captures its stan-
dard output. However, getProcessOutput returns a Deferred instead of the output itself. Since FingerProtocol.
lineReceivedis already expecting a Deferred to be returned by getUser, it doesn’t need to be changed, and it returns
the standard output as the finger result.

Note that in this case the shell’s built-in finger command is simply run with whatever arguments it is given. This is
probably insecure, so you probably don’t want a real server to do this without a lot more validation of the user input.
This will do exactly what the standard version of the finger server does.

Read Status from the Web

The web. That invention which has infiltrated homes around the world finally gets through to our invention. In this
case we use the built-in Twisted web client via twisted.web.client.getPage, a non-blocking version of Python’s
urllib2.urlopen(URL) .read . Like getProcessOutput it returns a Deferred which will be called back with a
string, and can thus be used as a drop-in replacement.

Thus, we have examples of three different database back-ends, none of which change the protocol class. In fact, we
will not have to change the protocol again until the end of this tutorial: we have achieved, here, one truly usable class.

fingerl0.py

Read username, output from factory interfacing to web, drop connections

from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic
from twisted.web import client

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)
def writeResponse(message):
self.transport.write(message + b"\r\n'")

self.transport.loseConnection()
d.addCallback(writeResponse)
class FingerFactory(protocol.ServerFactory):

protocol = FingerProtocol
(continues on next page)

50 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def __init__(self, prefix):
self.prefix = prefix

def getUser(self, user):
return client.getPage(self.prefix + user)

fingerEndpoint = endpoints.serverFromString(reactor, "tcp:1079")
fingerEndpoint.listen(FingerFactory(prefix=b"http://livejournal.com/~"))
reactor.run()

Use Application

Up until now, we faked. We kept using port 1079, because really, who wants to run a finger server with root privileges?
Well, the common solution is “privilege shedding” : after binding to the network, become a different, less privileged
user. We could have done it ourselves, but Twisted has a built-in way to do it. We will create a snippet as above, but
now we will define an application object. That object will have uid and gid attributes. When running it (later we will
see how) it will bind to ports, shed privileges and then run.

Read on to find out how to run this code using the twistd utility.

twistd

This is how to run “Twisted Applications” — files which define an ‘application’. A daemon is expected to adhere to
certain behavioral standards so that standard tools can stop/start/query them. If a Twisted application is run via twistd,
the TWISTed Daemonizer, all this behavioral stuff will be handled for you. twistd does everything a daemon can be
expected to — shuts down stdin/stdout/stderr, disconnects from the terminal and can even change runtime directory, or
even the root filesystems. In short, it does everything so the Twisted application developer can concentrate on writing
his networking code.

root% twistd -ny fingerll.tac # just like before

root% twistd -y fingerll.tac # daemonize, keep pid in twistd.pid

root% twistd -y fingerll.tac --pidfile=finger.pid

root% twistd -y fingerll.tac --rundir=/

root% twistd -y fingerll.tac --chroot=/var

root% twistd -y fingerll.tac -1 /var/log/finger.log

root% twistd -y fingerll.tac --syslog # just log to syslog

root% twistd -y fingerll.tac --syslog --prefix=twistedfinger # use given prefix

There are several ways to tell twistd where your application is; here we show how it is done using the application
global variable in a Python source file (a Twisted Application Configuration file).

fingerll.tac

Read username, output from non-empty factory, drop connections
Use deferreds, to minimize synchronicity assumptions
Write application. Save in 'finger. tpy'

from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
(continues on next page)

2.1. Developer Guides 51

Twisted Documentation, Release 23.8.0

(continued from previous page)

from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return "Internal error in server"

d.addErrback (onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerFactory(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

application = service.Application("finger", uid=1, gid=1)

factory = FingerFactory({b"moshez": b"Happy and well"})

strports.service("tcp:79", factory, reactor=reactor).setServiceParent(
service.IServiceCollection(application)

Instead of using endpoints.serverFromString as in the above examples, here we are using its application-aware
counterpart, strports.service . Notice that when it is instantiated, the application object itself does not reference
either the protocol or the factory. Any services (such as the one we created with strports.service) which have the
application as their parent will be started when the application is started by twistd. The application object is more useful
for returning an object that supports the IService , IServiceCollection, IProcess , and sob.IPersistable
interfaces with the given parameters; we’ll be seeing these in the next part of the tutorial. As the parent of the endpoint
we opened, the application lets us manage the endpoint.

With the daemon running on the standard finger port, you can test it with the standard finger command: finger
moshez .

52 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

The Evolution of Finger: adding features to the finger service

Introduction

This is the second part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, our finger server will continue to sprout features: the ability for users to set finger an-
nounces, and using our finger service to send those announcements on the web, on IRC and over XML-RPC. Resources
and XML-RPC are introduced in the Web Applications portion of the Twisted Web howto . More examples using
twisted.words.protocols.irc can be found in Writing a TCP Client and the Twisted Words examples .

Setting Message By Local Users

Now that port 1079 is free, maybe we can use it with a different server, one which will let people set their messages.
It does no access control, so anyone who can login to the machine can set any message. We assume this is the desired
behavior in our case. Testing it can be done by simply:

% nc localhost 1079 # or telnet localhost 1079
moshez

Giving a tutorial now, sorry!

AD

fingerl2.tac

But let's try and fix setting away messages, shall we?
from twisted.application import service, strports

from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)
def writeResponse(message):
self.transport.write(message + b"\r\n'")
self.transport.loseConnection()
d.addCallback(writeResponse)
class FingerFactory(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, users):
self.users = users

def getUser(self, user):

(continues on next page)

2.1. Developer Guides 53

Twisted Documentation, Release 23.8.0

(continued from previous page)

return defer.succeed(self.users.get(user, b"No such user"))

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser(user, status)

class FingerSetterFactory(protocol.ServerFactory):
protocol = FingerSetterProtocol

def __init__(self, fingerFactory):
self.fingerFactory = fingerFactory

def setUser(self, user, status):
self.fingerFactory.users[user] = status

ff = FingerFactory({b"moshez": b"Happy and well"})
fsf = FingerSetterFactory(ff)

application = service.Application("finger", uid=1, gid=1)
serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", ff).setServiceParent(serviceCollection)
strports.service("tcp:1079", fsf).setServiceParent(serviceCollection)

This program has two protocol-factory-TCPServer pairs, which are both child services of the application. Specifically,
the setServiceParent method is used to define the two TCPServer services as children of application , which
implements IServiceCollection . Both services are thus started with the application.

Use Services to Make Dependencies Sane

The previous version had the setter poke at the innards of the finger factory. This strategy is usually not a good idea:
this version makes both factories symmetric by making them both look at a single object. Services are useful for when
an object is needed which is not related to a specific network server. Here, we define a common service class with
methods that will create factories on the fly. The service also contains methods the factories will depend on.

The factory-creation methods, getFingerFactory and getFingerSetterFactory , follow this pattern:
1. Instantiate a generic server factory, twisted.internet.protocol.ServerFactory .
2. Set the protocol class, just like our factory class would have.

3. Copy a service method to the factory as a function attribute. The function won’t have access to the factory’s
self, but that’s OK because as a bound method it has access to the service’s self , which is what it needs. For

54 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

getUser , a custom method defined in the service gets copied. For setUser , a standard method of the users
dictionary is copied.

Thus, we stopped subclassing: the service simply puts useful methods and attributes inside the factories. We are getting
better at protocol design: none of our protocol classes had to be changed, and neither will have to change until the end
of the tutorial.

As an application service, this new finger service implements the IService interface and can be started and stopped
in a standardized manner. We’ll make use of this in the next example.

fingerl3.tac

Fix asymmetry

from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)

def writeResponse(message):
self.transport.write(message + b"\r\n'")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionlLost(self, reason):
user = self.lines[0]
status = self.lines[1]
self.factory.setUser(user, status)

class FingerService(service.Service):
def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def setUser(self, user, status):

(continues on next page)

2.1. Developer Guides 55

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.users[user] = status

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getFingerSetterFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerSetterProtocol
f.setUser = self.setUser
return f

application = service.Application("finger", uid=1, gid=1)

f = FingerService({b"moshez": b"Happy and well"})

serviceCollection = service.IServiceCollection(application)

strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)

strports.service("tcp:1079", f.getFingerSetterFactory()).setServiceParent(
serviceCollection

)

Most application services will want to use the Service base class, which implements all the generic IService be-
havior.

Read Status File

This version shows how, instead of just letting users set their messages, we can read those from a centrally managed
file. We cache results, and every 30 seconds we refresh it. Services are useful for such scheduled tasks.

listings/finger/etc.users

fingerl4.tac

Read from file

from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)
def writeResponse(message):

self.transport.write(message + b"\r\n'")

(continues on next page)

56 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):
self.users = {}
self.filename = filename

def _read(self):
with open(self.filename, "rb") as f:
for line in f:

user, status = line.split(b":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

application = service.Application("finger", uid=1, gid=1)
f = FingerService("/etc/users")
finger = strports.service("tcp:79", f.getFingerFactory())

finger.setServiceParent(service.IServiceCollection(application))
f.setServiceParent(service.IServiceCollection(application))

Since this version is reading data from a file (and refreshing the data every 30 seconds), there is no
FingerSetterFactory and thus nothing listening on port 1079.

Here we override the standard startService and stopService hooks in the Finger service, which is set up as a
child service of the application in the last line of the code. startService calls _read, the function responsible for
reading the data; reactor.calllLater is then used to schedule it to run again after thirty seconds every time it is
called. reactor.callLater returns an object that lets us cancel the scheduled run in stopService using its cancel
method.

2.1. Developer Guides 57

Twisted Documentation, Release 23.8.0

Announce on Web, Too

The same kind of service can also produce things useful for other protocols. For example, in twisted.web, the factory
itself (Site) is almost never subclassed — instead, it is given a resource, which represents the tree of resources available
via URLs. That hierarchy is navigated by Site and overriding it dynamically is possible with getChild .

To integrate this into the Finger application (just because we can), we set up a new TCPServer that calls the Site factory
and retrieves resources via a new function of FingerService named getResource . This function specifically returns

a Resource object with an overridden getChild method.

fingerl5.tac

Read from file, announce on the web!
import cgi

from twisted.application import service, strports
from twisted.internet import defer, protocol, reactor
from twisted.protocols import basic

from twisted.web import resource, server, static

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)

def writeResponse(message):
self.transport.write(message + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeResponse)

class FingerResource(resource.Resource):
def __init__(self, users):
self.users = users
resource.Resource.__init__(self)

we treat the path as the username

def getChild(self, username, request):
'username' is L{bytes}.
request' is a 'twisted.web.server.Request'.
messagevalue = self.users.get(username)
if messagevalue:

if username:
username = username.decode("ascii')
username = cgi.escape(username)

messagevalue = messagevalue.decode('ascii")

(continues on next page)

58

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

if messagevalue is not None:

messagevalue = cgi.escape(messagevalue)

text = f"<hl>{username }</hl><p>{messagevalue}</p>"
else:

text = f"<hl>{username}</hl><p>No such user</p>"
text = text.encode("ascii')
return static.Data(text, "text/html")

class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(b":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = FingerResource(self.users)
return r

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)

f = FingerService("/etc/users")

serviceCollection = service.IServiceCollection(application)

f.setServiceParent (serviceCollection)

strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(

(continues on next page)

2.1. Developer Guides 59

Twisted Documentation, Release 23.8.0

serviceCollection

(continued from previous page)

Announce on IRC, Too

This is the first time there is client code. IRC clients often act a lot like servers: responding to events from the net-
work. The Client Service will make sure that severed links will get re-established, with intelligent tweaked exponential
back-off algorithms. The IRC client itself is simple: the only real hack is getting the nickname from the factory in

connectionMade .

fingerl6.tac

Read from file, announce on the web, irc
import cgi

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.web import resource, server, static

from twisted.words.protocols import irc

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

def onError(err):
return b"Internal error in server"

d.addErrback (onError)

def writeResponse(message):
self.transport.write(message + b"\r\n'")
self.transport.loseConnection()

d.addCallback(writeResponse)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg.encode("ascii"))

def onError(err):
return b"Internal error in server"

(continues on next page)

60

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

d.addErrback (onError)

def writeResponse(message):
message = message.decode("ascii")
irc.IRCClient.msg(self, user, msg +

+ message)

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(b":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
def getData(path, request):
user = self.users.get(path, b"No such users <p/> usage: site/user')
path = path.decode("ascii™)
user = user.decode("ascii")
text = f"<hl>{path}</hl><p>{useri</p>"
text = text.encode("ascii')
return static.Data(text, "text/html")

r = resource.Resource()
r.getChild = getData
return r

def getIRCBot(self, nickname):
f = protocol.ClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

(continues on next page)

2.1. Developer Guides 61

Twisted Documentation, Release 23.8.0

(continued from previous page)

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)

f = FingerService("/etc/users")

serviceCollection = service.IServiceCollection(application)

f.setServiceParent (serviceCollection)

strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)

strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(
serviceCollection

)

internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"),
f.getIRCBot("fingerbot"),

) .setServiceParent (serviceCollection)

FingerService now has another new function, getIRCbot , which returns a ClientFactory . This factory in turn
will instantiate the IRCReplyBot protocol. The IRCBot is configured in the last line to connect to irc.libera.chat
with a nickname of fingerbot .

By overriding irc.IRCClient.connectionMade , IRCReplyBot can access the nickname attribute of the factory
that instantiated it.

Add XML-RPC Support

In Twisted, XML-RPC support is handled just as though it was another resource. That resource will still support GET
calls normally through render(), but that is usually left unimplemented. Note that it is possible to return deferreds from
XML-RPC methods. The client, of course, will not get the answer until the deferred is triggered.

fingerl7.tac

Read from file, announce on the web, irc, xml-rpc
import cgi

from twisted.application import internet, service, strports

from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)

(continues on next page)

62 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

def onError(err):
return b"Internal error in server"

d.addErrback (onError)

def writeResponse(message):
self.transport.write(message + b"\r\n'")
self.transport.loseConnection()

d.addCallback(writeResponse)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower()

channel.lower():

(continued from previous page)

d = self.factory.getUser(msg.encode("ascii™))

def onError(err):
return "Internal error in server"

d.addErrback (onError)

def writeResponse(message):
message = message.decode("ascii")
irc.IRCClient.msg(self, user, msg +

d.addCallback(writeResponse)

class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}
def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:
user, status = line.split(b":",
user user.strip()
status status.strip()
self.users[user] status
self.call = reactor.calllLater(30, self._read)

D

def getUser(self, user):

+ message)

return defer.succeed(self.users.get(user, b"No such user"))

(continues on next page)

2.1. Developer Guides

63

Twisted Documentation, Release 23.8.0

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
def getData(path, request):

(continued from previous page)

user = self.users.get(path, b"No such user <p/> usage: site/user")

path = path.decode("ascii")

user = user.decode("ascii")

text = f"<hl>{path}</hl><p>{useri</p>"
text = text.encode("ascii')

return static.Data(text, "text/html")

r = resource.Resource()
r.getChild = getData

x = xmlrpc.XMLRPC()
x.xmlrpc_getUser = self.getUser
r.putChild("RPC2", x)

return r

def getIRCBot(self, nickname):
f = protocol.ClientFactory()
f.protocol = IRCReplyBot
f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService('"/etc/users")

serviceCollection = service.IServiceCollection(application)

f.setServiceParent(serviceCollection)

strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(

serviceCollection

)

internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"),

f.getIRCBot ("fingerbot™),
) .setServiceParent(serviceCollection)

Instead of a web browser, we can test the XMLRPC finger using a simple client based on Python’s built-in xmlrpclib

, which will access the resource we’ve made available at localhost/RPC2 .

64

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

fingerXRclient.py

testing xmlrpc finger

try:

Python 3

from xmlrpc.client import Server
except ImportError:

Python 2

from xmlrpclib import Server

server = Server("http://127.0.0.1:8000/RPC2")
print(server.getUser("moshez"))

The Evolution of Finger: cleaning up the finger code

Introduction

This is the third part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, we’ll clean up our code so that it is closer to a readable and extensible style.

Write Readable Code

The last version of the application had a lot of hacks. We avoided sub-classing, didn’t support things like user listings
over the web, and removed all blank lines — all in the interest of code which is shorter. Here we take a step back,
subclass what is more naturally a subclass, make things which should take multiple lines take them, etc. This shows
a much better style of developing Twisted applications, though the hacks in the previous stages are sometimes used in
throw-away prototypes.

fingerl8.tac

Do everything properly
import cgi

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):

(continues on next page)

2.1. Developer Guides 65

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
1 = [f'{user}' for user in users]
return "" + "".join(l) + ""

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":
return UserStatusTree(self.service)
else:
return UserStatus(path, self.service)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)

(continues on next page)

66 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<hl>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(b":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def getFingerFactory(self):
f = protocol.ServerFactory()
f.protocol = FingerProtocol
f.getUser = self.getUser
return f

def getResource(self):
r = UserStatusTree(self)
X = UserStatusXR(self)
r.putChild("RPC2", x)
return r

def getIRCBot(self, nickname):
f = protocol.ClientFactory()
f.protocol = IRCReplyBot

(continues on next page)

2.1. Developer Guides 67

Twisted Documentation, Release 23.8.0

(continued from previous page)

f.nickname = nickname
f.getUser = self.getUser
return f

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)

f = FingerService('"/etc/users")

serviceCollection = service.IServiceCollection(application)

f.setServiceParent (serviceCollection)

strports.service("tcp:79", f.getFingerFactory()).setServiceParent(serviceCollection)

strports.service("tcp:8000", server.Site(f.getResource())).setServiceParent(
serviceCollection

)

internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"),
f.getIRCBot (" fingerbot"),

) .setServiceParent (serviceCollection)

The Evolution of Finger: moving to a component based architecture

Introduction

This is the fourth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this section of the tutorial, we’ll move our code to a component architecture so that adding new features is trivial.
See Interfaces and Adapters for a more complete discussion of components.

Write Maintainable Code

In the last version, the service class was three times longer than any other class, and was hard to understand. This was
because it turned out to have multiple responsibilities. It had to know how to access user information, by rereading
the file every half minute, but also how to display itself in a myriad of protocols. Here, we used the component-
based architecture that Twisted provides to achieve a separation of concerns. All the service is responsible for, now,
is supporting getUser /getUsers . It declares its support via the zope.interface.implementer decorator. Then,
adapters are used to make this service look like an appropriate class for various things: for supplying a finger factory
to TCPServer , for supplying a resource to site’s constructor, and to provide an IRC client factory for TCPClient .
All the adapters use are the methods in FingerService they are declared to use:getUser /getUsers . We could, of
course, skip the interfaces and let the configuration code use things like FingerFactoryFromService (f) directly.
However, using interfaces provides the same flexibility inheritance gives: future subclasses can override the adapters.

fingerl9.tac

68 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

i

Return a deferred returning L{bytes}.

i

def getUsers():

i

Return a deferred returning a L{list} of L{bytes}.

i

class IFingerSetterService(Interface):
def setUser(user, status):

o

Set the user's status to something.

i

def catchError(err):
return b"Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):
Return a deferred returning L{bytes}

(continues on next page)

2.1. Developer Guides 69

Twisted Documentation, Release 23.8.0

(continued from previous page)

def buildProtocol(addr):

i

Return a protocol returning L{bytes}

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

e

Return a deferred returning L{bytes}.

o

def buildProtocol(addr):

e

Return a protocol returning L{bytes}.

i

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):

(continues on next page)

70 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

e

@ivar nickname

e

def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

e

Return a protocol.

o

@implementer (IIRCClientFactory)

class IRCClientFactoryFromService(protocol.ClientFactory):
protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

(continues on next page)

2.1. Developer Guides 71

Twisted Documentation, Release 23.8.0

(continued from previous page)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer (resource.IResource)
class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
1 = [f'{user}</1li>' for user in users]

return "" + .join(1l) + ""

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":
return UserStatusTree(self.service)
else:
return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<hl>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):

(continues on next page)

72 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(bh":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)

f = FingerService('"/etc/users")

serviceCollection = service.IServiceCollection(application)
f.setServiceParent(serviceCollection)

strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = ITRCClientFactory(£f)
i.nickname = "fingerbot"

internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)

2.1. Developer Guides 73

Twisted Documentation, Release 23.8.0

Advantages of Latest Version

* Readable — each class is short

* Maintainable — each class knows only about interfaces
* Dependencies between code parts are minimized

* Example: writing a new IFingerService is easy

fingerl9a_changes.py

class IFingerSetterService(Interface):
def setUser(user, status):
"""Set the user's status to something

i

Advantages of latest version

@implementer (IFingerService, IFingerSetterService)
class MemoryFingerService(service.Service):
def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def setUser(self, user, status):
self.users[user] = status

f = MemoryFingerService({b"moshez": b"Happy and well"})
serviceCollection = service.IServiceCollection(application)
strports.service(

"tcp:1079:interface=127.0.0.1", IFingerSetterFactory(f)
) .setServiceParent(serviceCollection)

Full source code here:

fingerl9a.tac

Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc
from twisted.words.protocols import irc
(continues on next page)

74 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

class IFingerService(Interface):

def getUser(user):
"""Return a deferred returning L{bytes}

i

def getUsers():
"""Return a deferred returning a L{list} of L{bytes}"""

class IFingerSetterService(Interface):

def setUser(user, status):
"""Set the user's status to something

i

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")

self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):

def getUser(user):
"""Return a deferred returning L{bytes}

i

def buildProtocol(addr):
"""Return a protocol returning L{bytes}

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

(continues on next page)

2.1. Developer Guides

75

Twisted Documentation, Release 23.8.0

(continued from previous page)

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):
"""Return a deferred returning L{bytes}"""
def buildProtocol(addr):
"""Return a protocol returning L{bytes}

i

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):
protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

(continues on next page)

76 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

o

@ivar nickname

e

def getUser(user):

"""Return a deferred returning a string"""
def buildProtocol (addr):

"""Return a protocol"""

@implementer (IIRCClientFactory)

class IRCClientFactoryFromService(protocol.ClientFactory):
protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, ITRCClientFactory

)

@implementer (resource.IResource)
class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
1 = [f'{user/' for user in users]

return "" + .join(l) + ""

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":
return UserStatusTree(self.service)
else:

(continues on next page)

2.1. Developer Guides 77

Twisted Documentation, Release 23.8.0

(continued from previous page)

return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<hl>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer (IFingerService, IFingerSetterService)
class MemoryFingerService(service.Service):
def __init__(self, users):
self.users = users

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def setUser(self, user, status):
self.users[user] = status

application = service.Application("finger", uid=1, gid=1)

f = MemoryFingerService({b"moshez": b"Happy and well"})

serviceCollection = service.IServiceCollection(application)

strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)

strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(
serviceCollection

)

(continues on next page)

78 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

i = ITIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)
strports.service(
"tcp:1079:interface=127.0.0.1", IFingerSetterFactory(f)
) .setServiceParent(serviceCollection)

Aspect-Oriented Programming

At last, an example of aspect-oriented programming that isn’t about logging or timing. This code is actually useful!
Watch how aspect-oriented programming helps you write less code and have fewer dependencies!

The Evolution of Finger: pluggable backends

Introduction

This is the fifth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part we will add new several new backends to our finger service using the component-based architecture devel-
oped in The Evolution of Finger: moving to a component based architecture . This will show just how convenient it is
to implement new back-ends when we move to a component based architecture. Note that here we also use an interface
we previously wrote, FingerSetterFactory, by supporting one single method. We manage to preserve the service’s
ignorance of the network.

Another Back-end

finger19b_changes.py

import pwd
from twisted.internet import defer, protocol, reactor, utils

Another back-end

@implementer (IFingerService)
class LocalFingerService(service.Service):
def getUser(self, user):
need a local finger daemon running for this to work
return utils.getProcessOutput('finger", [user])

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

2.1. Developer Guides 79

Twisted Documentation, Release 23.8.0

Full source code here:

fingerl9b.tac

Do everything properly, and componentize
import cgi
import pwd

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports

from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

i

Return a deferred returning L{bytes}.

i

def getUsers():

i

Return a deferred returning a L{list} of L{bytes}.

i

class IFingerSetterService(Interface):
def setUser(user, status):

i

Set the user's status to something.

i

class IFingerSetterService(Interface):
def setUser(user, status):

i

Set the user's status to something.

i

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
(continues on next page)

80 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):
protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

i

Return a deferred returning L{bytes}.

i

def buildProtocol (addr):

i

(continues on next page)

2.1. Developer Guides 81

Twisted Documentation, Release 23.8.0

(continued from previous page)

Return a protocol returning L{bytes}.

o

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):
protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

i

@ivar nickname

o

def getUser(user):

e

Return a deferred returning L{bytes}.

i

def buildProtocol (addr):

e

Return a protocol.

i

@implementer (IIRCClientFactory)

(continues on next page)

82 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

class IRCClientFactoryFromService(protocol.ClientFactory):
protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer (resource.IResource)
class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
1 = [f'{user}' for user in users]

return "" + .join(1l) + ""

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":
return UserStatusTree(self.service)
else:
return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):

(continues on next page)

2.1. Developer Guides 83

Twisted Documentation, Release 23.8.0

(continued from previous page)
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<hl>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(bh":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):

service.Service.stopService(self)
self.call.cancel()

Another back-end

@implementer (IFingerService)

(continues on next page)

84 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

class LocalFingerService(service.Service):
def getUser(self, user):
need a local finger daemon running for this to work
return utils.getProcessOutput(b"finger", [user])

def getUsers(self):
return defer.succeed([])

application = service.Application("finger", uid=1, gid=1)

f = LocalFingerService()

serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent/(

serviceCollection
)
i = ITIRCClientFactory(f)
i.nickname = "fingerbot"

internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)

We’ve already written this, but now we get more for less work: the network code is completely separate from the
back-end.

Yet Another Back-end: Doing the Standard Thing

finger19c_changes.py

import os
import pwd

from twisted.internet import defer, protocol, reactor, utils

Yet another back-end

@implementer (IFingerService)
class LocalFingerService(service.Service):
def getUser(self, user):
user = user.strip()
try:
entry = pwd.getpwnam(user)
except KeyError:
return defer.succeed("No such user™)
try:
f = open(os.path.join(entry[5], ".plan"))
except OSError:
return defer.succeed("No such user")
with f:
data = f.read(Q)

(continues on next page)

2.1. Developer Guides 85

Twisted Documentation, Release 23.8.0

(continued from previous page)

data = data.strip(Q)
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

f = LocalFingerService()

Full source code here:

fingerl9c.tac

Do everything properly, and componentize
import cgi

import os

import pwd

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports

from twisted.internet import defer, endpoints, protocol, reactor, utils
from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

i

Return a deferred returning L{bytes}.

i

def getUsers():

i

Return a deferred returning a L{list} of L{bytes}.

i

class IFingerSetterService(Interface):
def setUser(user, status):

i

Set the user's status to something.

i

class IFingerSetterService(Interface):
def setUser(user, status):

i

Set the user's status to something.

i

(continues on next page)

86 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")

self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):

(continues on next page)

2.1. Developer Guides

87

Twisted Documentation, Release 23.8.0

(continued from previous page)

if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade():
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

o

@ivar nickname

e

(continues on next page)

88 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol.

e

@implementer (IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

@implementer (resource.IResource)
class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service
self.putChild("RPC2", UserStatusXR(self.service))

def render_GET(self, request):
d = self.service.getUsers()

def formatUsers(users):
1 = [f'{user/' for user in users]

return "" + .join(1l) + ""

d.addCallback(formatUsers)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

def getChild(self, path, request):
if path == "":
return UserStatusTree(self.service)

(continues on next page)

2.1. Developer Guides 89

Twisted Documentation, Release 23.8.0

(continued from previous page)

else:
return UserStatus(path, self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(cgi.escape)
d.addCallback(lambda m: "<hl>%s</h1>" % self.user + "<p>%s</p>" % m)
d.addCallback(request.write)
d.addCallback(lambda _: request.finish())
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(b":", 1)
user = user.strip()
status = status.strip(Q
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))
(continues on next page)

90 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

Yet another back-end

@implementer (IFingerService)
class LocalFingerService(service.Service):
def getUser(self, user):
user = user.strip()
try:
entry = pwd.getpwnam(user)
except KeyError:
return defer.succeed(b"No such user")
try:
f = open(os.path.join(entry[5], ".plan"))
except OSError:
return defer.succeed(b"No such user")
with f:
data = f.read(Q)
data = data.strip(Q)
return defer.succeed(data)

def getUsers(self):
return defer.succeed([])

application = service.Application("finger", uid=1, gid=1)

f = LocalFingerService()

serviceCollection = service.IServiceCollection(application)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = ITRCClientFactory(f)
i.nickname = "fingerbot"

internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)

Not much to say except that now we can be churn out backends like crazy. Feel like doing a back-end for Advogato ,
for example? Dig out the XML-RPC client support Twisted has, and get to work!

2.1. Developer Guides 91

http://www.advogato.org/

Twisted Documentation, Release 23.8.0

The Evolution of Finger: a web frontend

Introduction

This is the sixth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we demonstrate adding a web frontend using simple twisted.web.resource.Resource objects:
UserStatusTree , which will produce a listing of all users at the base URL (/) of our site; UserStatus , which
gives the status of each user at the location /username ; and UserStatusXR , which exposes an XMLRPC interface
to getUser and getUsers functions at the URL /RPC2 .

In this example we construct HTML segments manually. If the web interface was less trivial, we would want to use
more sophisticated web templating and design our system so that HTML rendering and logic were clearly separated.

finger20.tac

Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.python import components

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

i

Return a deferred returning L{bytes}.

i

def getUsers():

i

Return a deferred returning a L{list} of L{bytes}.

i

class IFingerSetterService(Interface):
def setUser(user, status):

i

Set the user's status to something.

i

def catchError(err):
return b"Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):

(continues on next page)

92 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

i

Return a deferred returning a string.

e

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

i

(continues on next page)

2.1. Developer Guides 93

Twisted Documentation, Release 23.8.0

(continued from previous page)

Return a deferred returning a string.

o

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

e

@ivar nickname

o

def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

(continues on next page)

94 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

o

Return a protocol.

i

@implementer (IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

add a specific child for the path "RPC2"
self.putChild(b"RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild(b"", self)

def _cb_render_GET(self, users, request):
userQutput = "".join(
[f'{user}</1li>' for user in users]

)

request.write(
<html><head><title>Users</title></head><body>
<h1>Users</h1>

%s
</body></html>"""
% userOutput

)

request. finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

(continues on next page)

2.1. Developer Guides 95

Twisted Documentation, Release 23.8.0

(continued from previous page)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(
b"""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>"""
% (self.user, self.user, status)
)

request. finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

(continues on next page)

96 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(bh":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)

f = FingerService("/etc/users")

serviceCollection = service.IServiceCollection(application)

f.setServiceParent (serviceCollection)

strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent/(

serviceCollection
)
i = ITRCClientFactory(f)
i.nickname = "fingerbot"

internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)

The Evolution of Finger: Twisted client support using Perspective Broker

Introduction

This is the seventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add a Perspective Broker service to the finger application so that Twisted clients can access the finger
server. Perspective Broker is introduced in depth in its own section of the core howto index.

2.1. Developer Guides 97

Twisted Documentation, Release 23.8.0

Use Perspective Broker

We add support for perspective broker, Twisted’s native remote object protocol. Now, Twisted clients will not have to
go through XML-RPCish contortions to get information about users.

finger2l.tac

Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.python import components

from twisted.spread import pb

from twisted.web import resource, server, static, xmlrpc

from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

i

Return a deferred returning L{bytes}.

i

def getUsers():

i

Return a deferred returning a L{list} of L{bytes}.

i

class IFingerSetterService(Interface):
def setUser(user, status):

i

Set the user's status to something.

o

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + "\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

(continues on next page)

98 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

class IFingerFactory(Interface):
def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter (FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol returning a string.

i

(continues on next page)

2.1. Developer Guides 99

Twisted Documentation, Release 23.8.0

(continued from previous page)

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg.encode("ascii™))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

e

@ivar nickname

i

def getUser(user):

i

Return a deferred returning a string.

e

def buildProtocol(addr):

o

Return a protocol.

e

@implementer (IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

(continues on next page)

100 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, IIRCClientFactory

)

class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userOutput = "".join(
[f'{user}</1i>' for user in users]

)

request.write(
<html><head><title>Users</title></head><body>
<h1>Users</hl1>

%s
</body></html>"""
% userOutput

)

request.finish()
def render_GET(self, request):
d = self.service.getUsers()

d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

(continues on next page)

2.1. Developer Guides 101

Twisted Documentation, Release 23.8.0

(continued from previous page)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(
"""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>"""
% (self.user, self.user, status)
)

request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):
def remote_getUser(username) :

e

Return a user's status.

i

def remote_getUsers():

i

Return a user's status.

i

@implementer (IPerspectiveFinger)

(continues on next page)

102 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
class PerspectiveFingerFromService(pb.Root):
def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(
PerspectiveFingerFromService, IFingerService, IPerspectiveFinger

)

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f£:
for line in f£:

user, status = line.split(bh":", 1)
user = user.strip()
status = status.strip(Q
self.users[user] = status

self.call = reactor.callLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)

f = FingerService("/etc/users")

serviceCollection = service.IServiceCollection(application)

f.setServiceParent (serviceCollection)

strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)

(continues on next page)

2.1. Developer Guides 103

Twisted Documentation, Release 23.8.0

(continued from previous page)

strports.service("tcp:8000", server.Site(resource.IResource(f))).setServiceParent(

serviceCollection
)
i = ITRCClientFactory(f)
i.nickname = "fingerbot"

internet.ClientService(

endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i

) .setServiceParent(serviceCollection)
strports.service(

"tcp:8889", pb.PBServerFactory(IPerspectiveFinger(f))
) .setServiceParent (serviceCollection)

A simple client to test the perspective broker finger:

fingerPBclient.py

test the PB finger on port 8889
this code is essentially the same as
the first example in howto/pb-usage

from twisted.internet import endpoints, reactor
from twisted.spread import pb

def gotObject(object):
print("got object:", object)
object.callRemote(''getUser", "moshez").addCallback(gotData)

or
object.callRemote("getUsers").addCallback(gotData)

def gotData(data):
print("server sent:", data)
reactor.stop()

def gotNoObject(reason):
print("no object:", reason)
reactor.stop()

factory = pb.PBClientFactory()

clientEndpoint = endpoints.clientFromString("tcp:127.0.0.1:8889")
clientEndpoint.connect (factory)

factory.getRootObject() .addCallbacks(gotObject, gotNoObject)
reactor.run()

104

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

The Evolution of Finger: using a single factory for multiple protocols

Introduction

This is the eighth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we add HTTPS support to our web frontend, showing how to have a single factory listen on multiple ports.
More information on using SSL in Twisted can be found in the SSL howrto .

Support HTTPS

All we need to do to code an HTTPS site is just write a context factory (in this case, which loads the certificate from a
certain file) and then use the twisted.internet.endpoints.serverFromString method to build a SSL endpoint

Note that one factory (in this case, a site) can listen on multiple ports with multiple protocols.

Of course, this endpoint doesn’t work without a TLS certificate and a private key. You’ll need to create a self-signed
cert and key. This will obviously not be trusted by your web browser, so you’ll see a warning when you connect. In
this case, don’t worry: you’re not at risk.

To create a certificate and key that can be used by this tutorial, run the following:

[openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365

finger22.py

from

from
from
from
from
from
from
from

def

OpenSSL

twisted.
twisted.
twisted.
twisted.
twisted.
twisted.
twisted.

i

Do everything properly, and componentize
import cgi

from zope.interface import Interface, implementer

import SSL

application import internet, service, strports
internet import defer, endpoints, protocol, reactor
protocols import basic

python import components

spread import pb

web import resource, server, static, xmlrpc
words.protocols import irc

class IFingerService(Interface):
def getUser(user):

Return a deferred returning L{bytes}.

o

i

getUsers():

Return a deferred returning a L{list} of L{bytes}.

i

class IFingerSetterService(Interface):

(continues on next page)

2.1. Developer Guides

105

Twisted Documentation, Release 23.8.0

(continued from previous page)

def setUser(user, status):

o

Set the user's status to something.

i

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\r\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

i

Return a deferred returning a string.

i

def buildProtocol(addr):

i

Return a protocol returning a string.

i

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade(self):
self.lines = []

(continues on next page)

106 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

i

Return a deferred returning L{bytes}.

i

def buildProtocol(addr):

o

Return a protocol returning L{bytes}.

i

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg.encode("ascii"))
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

(continues on next page)

2.1. Developer Guides 107

Twisted Documentation, Release 23.8.0

(continued from previous page)

class IIRCClientFactory(Interface):

e

@ivar nickname

i

def getUser(user):

i

Return a deferred returning a string.

e

def buildProtocol(addr):

i

Return a protocol.

i

@implementer (IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(
IRCClientFactoryFromService, IFingerService, ITRCClientFactory

)

class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))

need to do this for resources at the root of the site
self.putChild("", self)

def _cb_render_GET(self, users, request):
userQutput = "".join(
[f'{user}</1i>' for user in users]

)

request.write(

i

(continues on next page)

108 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

<html><head><title>Users</title></head><body>
<h1>Users</hl1>

%s
</body></html>"""
% userOutput
)

request.finish()

def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

def getChild(self, path, request):
return UserStatus(user=path, service=self.service)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def _cb_render_GET(self, status, request):
request.write(
"""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>"""
% (self.user, self.user, status)

)

request.finish()

def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)

signal that the rendering is not complete
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

(continues on next page)

2.1. Developer Guides 109

Twisted Documentation, Release 23.8.0

(continued from previous page)

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):
def remote_getUser(username) :

e

Return a user's status.

o

def remote_getUsers():

e

Return a user's status.

i

@implementer (IPerspectiveFinger)
class PerspectiveFingerFromService(pb.Root):
def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser(username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(
PerspectiveFingerFromService, IFingerService, IPerspectiveFinger

)

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename
self.users = {}

def _read(self):
self.users.clear()
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(b":", 1)
user = user.strip()
status = status.strip(Q)
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

(continues on next page)

110 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(list(self.users.keys()))

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

application = service.Application("finger", uid=1, gid=1)
f = FingerService('"/etc/users")
serviceCollection = service.IServiceCollection(application)
f.setServiceParent (serviceCollection)
strports.service("tcp:79", IFingerFactory(f)).setServiceParent(serviceCollection)
site = server.Site(resource.IResource(f))
strports.service(
"tcp:8000",
site,
) .setServiceParent(serviceCollection)
strports.service(
"ssl:port=443:certKey=cert.pem:privateKey=key.pem", site
) .setServiceParent (serviceCollection)
i = ITRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)
strports.service(
"tcp:8889", pb.PBServerFactory(IPerspectiveFinger(f))
) .setServiceParent(serviceCollection)

The Evolution of Finger: a Twisted finger client

Introduction

This is the ninth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we develop a client for the finger server: a proxy finger server which forwards requests to another finger
server.

2.1. Developer Guides 111

Twisted Documentation, Release 23.8.0

Finger Proxy

Writing new clients with Twisted is much like writing new servers. We implement the protocol, which just gathers up
all the data, and give it to the factory. The factory keeps a deferred which is triggered if the connection either fails or
succeeds. When we use the client, we first make sure the deferred will never fail, by producing a message in that case.
Implementing a wrapper around client which just returns the deferred is a common pattern. While less flexible than
using the factory directly, it’s also more convenient.

Additionally, because this code now programmatically receives its host and port, it’s a bit less convenient to use client-
FromString. Instead, we move to using the specific endpoint we want. In this case, because we’re connecting as a client
over IPv4 using TCP, we want the TCP4ClientEndpoint.

fingerproxy.tac

finger proxy
from zope.interface import Interface, implementer

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.python import components

def catchError(err):
return "Internal error in server"

class IFingerService(Interface):
def getUser(user):
"""Return a deferred returning L{bytes}"""
def getUsers():
"""Return a deferred returning a L{list} of L{bytes}

mirn

class IFingerFactory(Interface):
def getUser(user):
"""Return a deferred returning L{bytes}"""
def buildProtocol(addr):
"""Return a protocol returning L{bytes}

i

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value)

self.transport.loseConnection()

d.addCallback(writeValue)

(continues on next page)

112 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ClientFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerClient (protocol.Protocol):
def connectionMade(self):
self.transport.write(self.factory.user + b"\r\n")
self.buf = []

def dataReceived(self, data):
self.buf.append(data)

def connectionLost(self, reason):
self.factory.gotData("".join(self.buf))

class FingerClientFactory(protocol.ClientFactory):
protocol = FingerClient

def __init__(self, user):
self.user = user
self.d = defer.Deferred()

def clientConnectionFailed(self, _, reason):
self.d.errback(reason)

def gotData(self, data):
self.d.callback(data)

def finger(user, host, port=79):
f = FingerClientFactory(user)
endpoint = endpoints.TCP4ClientEndpoint(reactor, host, port)
endpoint.connect (£f)
return f.d

@implementer (IFingerService)
class ProxyFingerService(service.Service):

(continues on next page)

2.1. Developer Guides 113

Twisted Documentation, Release 23.8.0

(continued from previous page)

def getUser(self, user):

try:

user, host = user.split("@", 1)
except BaseException:

user = user.strip()

host = "127.0.0.1"
ret = finger(user, host)
ret.addErrback(lambda
return ret

"Could not connect to remote host")

def getUsers(self):
return defer.succeed([])

application = service.Application("finger", uid=1, gid=1)

f = ProxyFingerService()

strports.service("tcp:7779", IFingerFactory(f)).setServiceParent(
service.IServiceCollection(application)

)

The Evolution of Finger: making a finger library

Introduction

This is the tenth part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we separate the application code that launches a finger service from the library code which defines a finger
service, placing the application in a Twisted Application Configuration (.tac) file. We also move configuration (such as
HTML templates) into separate files. Configuration and deployment with .tac and twistd are introduced in Using the
Twisted Application Framework .

Organization

Now this code, while quite modular and well-designed, isn’t properly organized. Everything above the application=
belongs in a module, and the HTML templates all belong in separate files.

We can use the templateFile and templateDirectory attributes to indicate what HTML template file to use for
each Page, and where to look for it.

organized-finger.tac

organized-finger.tac
eg: twistd -ny organized-finger.tac

import finger

from twisted.application import internet, service, strports
from twisted.internet import defer, endpoints, protocol, reactor
from twisted.python import log
from twisted.spread import pb
from twisted.web import resource, server
(continues on next page)

114 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

application = service.Application("finger", uid=1, gid=1)

f = finger.FingerService("/etc/users")

serviceCollection = service.IServiceCollection(application)

strports.service("tcp:79", finger.IFingerFactory(f)).setServiceParent(serviceCollection)

site = server.Site(resource.IResource(f))
strports.service(

"tcp:8000",

site,
) .setServiceParent (serviceCollection)

strports.service(
"ssl:port=443:certKey=cert.pem:privateKey=key.pem", site
) .setServiceParent (serviceCollection)

i = finger.IIRCClientFactory(f)
i.nickname = "fingerbot"
internet.ClientService(
endpoints.clientFromString(reactor, "tcp:irc.freenode.org:6667"), i
) .setServiceParent (serviceCollection)

strports.service(
"tcp:8889", pb.PBServerFactory(finger.IPerspectiveFinger(f))
) .setServiceParent (serviceCollection)

Note that our program is now quite separated. We have:
¢ Code (in the module)
* Configuration (file above)
* Presentation (templates)
¢ Content (/etc/users)
* Deployment (twistd)

Prototypes don’t need this level of separation, so our earlier examples all bunched together. However, real applications
do. Thankfully, if we write our code correctly, it is easy to achieve a good separation of parts.

Easy Configuration

We can also supply easy configuration for common cases with a makeService method that will also help build .tac
files later:

finger_config.py

Easy configuration
makeService from finger module

def makeService(config):
finger on port 79
s = service.MultiService()
(continues on next page)

2.1. Developer Guides 115

Twisted Documentation, Release 23.8.0

(continued from previous page)

'—h
Il

FingerService(config["file"])
strports.service("tcp:79", IFingerFactory(f))
h.setServiceParent(s)

=2
Il

website on port 8000

r = resource.IResource(f)
r.templateDirectory = config["templates"]
site = server.Site(r)

j = strports.service("tcp:8000", site)
j.setServiceParent(s)

ssl on port 443

if config.get("ssl"):
k = strports.service("ssl:port=443:certKey=cert.pem:privateKey=key.pem", site)
k.setServiceParent(s)

irc fingerbot
if "ircnick" in config:
i = IIRCClientFactory(f)
i.nickname = config["ircnick"]
ircserver = config["ircserver"]
b = internet.ClientService(
endpoints.HostnameEndpoint (reactor, ircserver, 6667), i
)

b.setServiceParent(s)

Pespective Broker on port 8889
if "pbport" in config:

m = internet.StreamServerEndpointService(
endpoints.TCP4ServerEndpoint (reactor, int(config["pbport"])),
pb.PBServerFactory(IPerspectiveFinger(f)),

)

m.setServiceParent(s)

return s

And we can write simpler files now:

simple-finger.tac

simple-finger.tac
eg: twistd -ny simple-finger.tac

import finger
from twisted.application import service

options = {

"file": "/etc/users",

"templates": "/usr/share/finger/templates"”,
"ircnick": "fingerbot",

"ircserver": "irc.freenode.net",

"pbport": 8889,

(continues on next page)

116 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
"ssl": "ssl=0",

ser = finger.makeService(options)
application = service.Application("finger", uid=1, gid=1)
ser.setServiceParent(service.IServiceCollection(application))

[% twistd -ny simple-finger.tac J

Note: the finger user still has ultimate power: they can use makeService, or they can use the lower-level interface if
they have specific needs (maybe an IRC server on some other port? Maybe we want the non-SSL webserver to listen
only locally? etc. etc.). This is an important design principle: never force a layer of abstraction; allow usage of layers
of abstractions instead.

The pasta theory of design:

Spaghetti
Each piece of code interacts with every other piece of code (can be implemented with GOTO, functions, objects).

Lasagna
Code has carefully designed layers. Each layer is, in theory independent. However low-level layers usually cannot
be used easily, and high-level layers depend on low-level layers.

Ravioli
Each part of the code is useful by itself. There is a thin layer of interfaces between various parts (the sauce).
Each part can be usefully be used elsewhere.

...but sometimes, the user just wants to order “Ravioli”, so one coarse-grain easily definable layer of abstraction on
top of it all can be useful.

The Evolution of Finger: configuration of the finger service

Introduction

This is the eleventh part of the Twisted tutorial Twisted from Scratch, or The Evolution of Finger .

In this part, we make it easier for non-programmers to configure a finger server. Plugins are discussed further in the
Twisted Plugin System howto. Writing twistd plugins is covered in Writing a twistd Plugin, and .tac applications are
covered in Using the Twisted Application Framework.

Plugins

So far, the user had to be somewhat of a programmer to be able to configure stuff. Maybe we can eliminate even that?
Move old code to finger/__init__.py and...

Full source code for finger module here:

finger.py

finger.py module
from zope.interface import Interface, implementer

from twisted.application import internet, service, strports

(continues on next page)

2.1. Developer Guides 117

Twisted Documentation, Release 23.8.0

from twisted.internet import defer, endpoints, protocol, reactor
from twisted.protocols import basic

from twisted.python import components, log

from twisted.spread import pb

from twisted.web import resource, server, xmlrpc

from twisted.words.protocols import irc

class IFingerService(Interface):
def getUser(user):

i

Return a deferred returning a L{bytes}.

i

def getUsers():

i

Return a deferred returning a L{list} of L{bytes}.

o

class IFingerSetterService(Interface):
def setUser(user, status):

o

Set the user's status to something.

i

def catchError(err):
return "Internal error in server"

class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)

def writeValue(value):
self.transport.write(value + b"\n")
self.transport.loseConnection()

d.addCallback(writeValue)

class IFingerFactory(Interface):
def getUser(user):

i

Return a deferred returning L{bytes}.

i

def buildProtocol(addr):

i

Return a protocol returning L{bytes}.

(continued from previous page)

(continues on next page)

118

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

o

@implementer (IFingerFactory)
class FingerFactoryFromService(protocol.ServerFactory):

protocol = FingerProtocol

def __init__(self, service):
self.service = service

def getUser(self, user):
return self.service.getUser(user)

components.registerAdapter(FingerFactoryFromService, IFingerService, IFingerFactory)

class FingerSetterProtocol (basic.LineReceiver):
def connectionMade(self):
self.lines = []

def lineReceived(self, line):
self.lines.append(line)

def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)

class IFingerSetterFactory(Interface):
def setUser(user, status):

i

Return a deferred returning L{bytes}.

i

def buildProtocol(addr):

i

Return a protocol returning L{bytes}.

i

@implementer (IFingerSetterFactory)
class FingerSetterFactoryFromService(protocol.ServerFactory):

protocol = FingerSetterProtocol

def __init__(self, service):
self.service = service

def setUser(self, user, status):
self.service.setUser(user, status)

(continues on next page)

2.1. Developer Guides 119

Twisted Documentation, Release 23.8.0

(continued from previous page)

components.registerAdapter(
FingerSetterFactoryFromService, IFingerSetterService, IFingerSetterFactory

)

class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)

def privmsg(self, user, channel, msg):
user = user.split("!")[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: f"Status of {msg}/: {m}")
d.addCallback(lambda m: self.msg(user, m))

class IIRCClientFactory(Interface):

e

@ivar nickname

e

def getUser(user):

i

Return a deferred returning L{bytes}.

i

def buildProtocol(addr):

i

Return a protocol.

i

@implementer (IIRCClientFactory)
class IRCClientFactoryFromService(protocol.ClientFactory):

protocol = IRCReplyBot
nickname = None

def __init__(self, service):
self.service = service

def getUser(self, user):

return self.service.getUser(user)

components.registerAdapter(

(continues on next page)

120 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

IRCClientFactoryFromService, IFingerService, IIRCClientFactory

class UserStatusTree(resource.Resource):

template = """<html><head><title>Users</title></head><body>
<h1>Users</h1>

</body>
</html>"""

def __init__(self, service):
resource.Resource.__init__(self)
self.service = service

def getChild(self, path, request):
if path == "":
return self
elif path == "RPC2":
return UserStatusXR(self.service)
else:
return UserStatus(path, self.service)

def render_GET(self, request):
users = self.service.getUsers()

def cbUsers(users):
request.write(
self.template

% {
"users": "".join(
[
Name should be quoted properly these uses.
f'{namej</1i>"
for name in users
]
)
}

)

request. finish()
users.addCallback(cbUsers)

def ebUsers(err):
log.err(err, "UserStatusTree failed")
request.finish()

users.addErrback (ebUsers)
return server.NOT_DONE_YET

(continues on next page)

2.1.

Developer Guides 121

Twisted Documentation, Release 23.8.0

(continued from previous page)

components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)

class UserStatus(resource.Resource):
template = """<html><head><title> </title></head>
<body><h1> </h1><p> </p></body></html>"""

def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service

def render_GET(self, request):
status = self.service.getUser(self.user)

def cbStatus(status):
request.write(
self.template
% {"title": self.user, '"name": self.user, "status": status}
)

request.finish()
status.addCallback(cbStatus)

def ebStatus(err):
log.err(err, "UserStatus failed")
request.finish()

status.addErrback(ebStatus)
return server.NOT_DONE_YET

class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service

def xmlrpc_getUser(self, user):
return self.service.getUser(user)

def xmlrpc_getUsers(self):
return self.service.getUsers()

class IPerspectiveFinger(Interface):
def remote_getUser(username):

i

Return a user's status.

i

(continues on next page)

122 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def remote_getUsers():

i

Return a user's status.

i

@implementer (IPerspectiveFinger)
class PerspectiveFingerFromService(pb.Root):
def __init__(self, service):
self.service = service

def remote_getUser(self, username):
return self.service.getUser (username)

def remote_getUsers(self):
return self.service.getUsers()

components.registerAdapter(
PerspectiveFingerFromService, IFingerService, IPerspectiveFinger

)

@implementer (IFingerService)
class FingerService(service.Service):
def __init__(self, filename):
self.filename = filename

def _read(self):
self.users = {}
with open(self.filename, "rb") as f:
for line in f£:

user, status = line.split(bh":", 1)
user = user.strip()
status = status.strip()
self.users[user] = status

self.call = reactor.calllLater(30, self._read)

def getUser(self, user):
return defer.succeed(self.users.get(user, b"No such user"))

def getUsers(self):
return defer.succeed(self.users.keys())

def startService(self):
self._read()
service.Service.startService(self)

def stopService(self):
service.Service.stopService(self)
self.call.cancel()

(continues on next page)

2.1. Developer Guides 123

Twisted Documentation, Release 23.8.0

Easy configuration

def makeService(config):

finger on port 79
service.MultiService()
= FingerService(config["file"])
strports.service("tcp:1079", IFingerFactory(f))
.setServiceParent(s)

== o V)
1l

website on port 8000

r = resource.IResource(f)
r.templateDirectory = config["templates"]
site = server.Site(r)

j = strports.service("tcp:8000", site)
j.setServiceParent(s)

ssl on port 443
if config.get('ssl'):

(continued from previous page)

"ssl:port=443:certKey=cert.pem:privateKey=key.pem", site

#
#
k = strports.service(
#
)
k.setServiceParent(s)
irc fingerbot
if "ircnick" in config:
i = ITIRCClientFactory(f)
i.nickname = config["ircnick"]
ircserver = config["ircserver"]
b = internet.ClientService(

endpoints.HostnameEndpoint (reactor, ircserver, 6667), i

)

b.setServiceParent(s)

Pespective Broker on port 8889
if "pbport" in config:
m = internet.StreamServerEndpointService(

endpoints.TCP4ServerEndpoint (reactor, int(config["pbport"])),

pb.PBServerFactory(IPerspectiveFinger(f)),

)
m.setServiceParent(s)
return s
tap.py

finger/tap.py
import finger

from twisted.application import internet, service

(continues on next page)

124

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

from twisted.internet import interfaces
from twisted.python import usage

class Options(usage.Options):

optParameters = [
["file", "£f", "/etc/users"],
["templates", "t", "/usr/share/finger/templates"],
["ircnick", "n", "fingerbot"],
["ircserver", None, "irc.freenode.net"],
["pbport", "p", 8889],

]

optFlags = [["ssl", "s"]]

def makeService(config):
return finger.makeService(config)

And register it all:

finger_tutorial.py

from twisted.application.service import ServiceMaker

finger = ServiceMaker("finger", "finger.tap", "Run a finger service", "finger")

Note that the second argument to ServiceMaker ,“finger.tap " , is a reference to a module (finger/tap.py), not to
a filename.

And now, the following works

[% sudo twistd -n finger --file=/etc/users --ircnick=fingerbot

For more details about this, see the rwistd plugin documentation .

Introduction

Twisted is a big system. People are often daunted when they approach it. It’s hard to know where to start looking.

This guide builds a full-fledged Twisted application from the ground up, using most of the important bits of the frame-
work. There is a lot of code, but don’t be afraid.

The application we are looking at is a “finger” service, along the lines of the familiar service traditionally provided by
UNIX™ servers. We will extend this service slightly beyond the standard, in order to demonstrate some of Twisted’s
higher-level features.

Each section of the tutorial dives straight into applications for various Twisted topics. These topics have their own
introductory howtos listed in the core howto index and in the documentation for other Twisted projects like Twisted
Web and Twisted Words. There are at least three ways to use this tutorial: you may find it useful to read through the rest
of the topics listed in the core howto index before working through the finger tutorial, work through the finger tutorial
and then go back and hit the introductory material that is relevant to the Twisted project you’re working on, or read the
introductory material one piece at a time as it comes up in the finger tutorial.

2.1. Developer Guides 125

Twisted Documentation, Release 23.8.0

Contents

This tutorial is split into eleven parts:

1.

—_ =
- O

0 ® N kLW

The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:
The Evolution of Finger:

. The Evolution of Finger:

building a simple finger service

adding features to the finger service

cleaning up the finger code

moving to a component based architecture
pluggable backends

a web frontend

Twisted client support using Perspective Broker
using a single factory for multiple protocols

a Twisted finger client

making a finger library

configuration of the finger service

2.1.6 Setting up the TwistedQuotes application

Goal

This document describes how to set up the TwistedQuotes application used in a number of other documents, such as
designing Twisted applications .

Setting up the TwistedQuotes project directory

In order to run the Twisted Quotes example, you will need to do the following:

1. Make a TwistedQuotes directory on your system

2. Place the following files in the TwistedQuotes directory:

e __init__.py

e

Twisted Quotes

e

(this file marks it as a package, see this section of the Python tutorial for more on packages)

e quoters.py

from random import choice
from zope.interface import implementer

from TwistedQuotes import quoteproto

@implementer (quoteproto.IQuoter)

(continues on next page)

126

Chapter 2. Twisted Core

http://docs.python.org/tutorial/modules.html#packages

Twisted Documentation, Release 23.8.0

(continued from previous page)
class StaticQuoter:

i

Return a static quote.

i

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

@implementer (quoteproto.IQuoter)
class FortuneQuoter:

e

Load quotes from a fortune-format file.

i

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
with open(choice(self.filenames)) as quoteFile:
quotes = quoteFile.read().split("\n%\n")
return choice(quotes)

* quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter(Interface):

e

An object that returns quotes.

i

def getQuote():

o

Return a quote.

i

class QOTD(Protocol):
def connectionMade(self):
self.transport.write(self. factory.quoter.getQuote() + "\r\n")
self.transport.loseConnection()

class QOTDFactory(Factory):

e

(continues on next page)

2.1. Developer Guides 127

Twisted Documentation, Release 23.8.0

(continued from previous page)

A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by
the L{QOTD} protocol to get quotes to emit.

o

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

3. Add the TwistedQuotes directory’s parent to your Python path. For example, if the TwistedQuotes direc-
tory’s path is /mystuff/TwistedQuotes or c:\mystuff\TwistedQuotes add /mystuff to your Python
path. On UNIX this would be export PYTHONPATH=/mystuff:$PYTHONPATH, on Microsoft Windows change
the PYTHONPATH variable through the Systems Properties dialog by adding ; c:\mystuff at the end.

4. Test your package by trying to import it in the Python interpreter:

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "copyright", "credits" or "license" for more information.
>>> import TwistedQuotes

>>> # No traceback means you're fine.

2.1.7 Designing Twisted Applications
Goals

This document describes how a good Twisted application is structured. It should be useful for beginning Twisted
developers who want to structure their code in a clean, maintainable way that reflects current best practices.

Readers will want to be familiar with writing servers and clients using Twisted.

Example of a modular design: TwistedQuotes

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality — Quote of the Day — which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Day protocol, and more.

Set up the project directory

See the description of setting up the TwistedQuotes example .

128 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

A Look at the Heart of the Application

quoters.py

from random import choice
from zope.interface import implementer

from TwistedQuotes import quoteproto

@implementer (quoteproto.IQuoter)
class StaticQuoter:

e

Return a static quote.

i

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

@implementer (quoteproto.IQuoter)
class FortuneQuoter:

e

Load quotes from a fortune-format file.

o

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
with open(choice(self.filenames)) as quoteFile:
quotes = quoteFile.read().split("\n%\n")
return choice(quotes)

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking to
the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the day”

Note that this module does not import any Twisted functionality at all! The reason for doing things this way is in-
tegration. If your “business objects” are not stuck to your user interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file formats. Having such classes provides a way to decouple your
components from each other, by allowing each to be used independently.

In this manner, Twisted itself has minimal impact on the logic of your program. Although the Twisted “dot products”
are highly interoperable, they also follow this approach. You can use them independently because they are not stuck
to each other. They communicate in well-defined ways, and only when that communication provides some additional
feature. Thus, you can use twisted.web with twisted.enterprise , but neither requires the other, because they
are integrated around the concept of Deferreds .

Your Twisted applications should follow this style as much as possible. Have (at least) one module which implements
your specific functionality, independent of any user-interface code.

2.1. Developer Guides 129

Twisted Documentation, Release 23.8.0

Next, we’re going to need to associate this abstract logic with some way of displaying it to the user. We’ll do this by
writing a Twisted server protocol, which will respond to the clients that connect to it by sending a quote to the client
and then closing the connection. Note: don’t get too focused on the details of this — different ways to interface with the
user are 90% of what Twisted does, and there are lots of documents describing the different ways to do it.

quoteproto.py

from zope.interface import Interface

from twisted.internet.protocol import Factory, Protocol

class IQuoter(Interface):

o

An object that returns quotes.

e

def getQuote():

i

Return a quote.

o

class QOTD(Protocol):
def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote() + "\r\n")
self.transport.loseConnection()

class QOTDFactory(Factory):

o

A factory for the Quote of the Day protocol.

@type quoter: L{IQuoter} provider
@ivar quoter: An object which provides L{IQuoter} which will be used by
the L{QOTD} protocol to get quotes to emit.

o

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

This is a very straightforward Protocol implementation, and the pattern described above is repeated here. The Protocol
contains essentially no logic of its own, just enough to tie together an object which can generate quotes (a Quoter) and
an object which can relay bytes to a TCP connection (a Transport). When a client connects to this server, a QOTD
instance is created, and its connectionMade method is called.

The QOTDFactory ‘s role is to specify to the Twisted framework how to create a Protocol instance that will handle
the connection. Twisted will not instantiate a QQTDFactory ; you will do that yourself later, in a twistd plug-in.

Note: you can read more specifics of Protocol and Factory in the Writing Servers HOWTO.

Once we have an abstraction — a Quoter — and we have a mechanism to connect it to the network — the QOTD protocol
— the next thing to do is to put the last link in the chain of functionality between abstraction and user. This last link will
allow a user to choose a Quoter and configure the protocol. Writing this configuration is covered in the Application

130 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

HOWTO .

2.1.8 Overview of Twisted Internet

Twisted Internet is a collection of compatible event-loops for Python. It contains the code to dispatch events to interested
observers and a portable API so that observers need not care about which event loop is running. Thus, it is possible to
use the same code for different loops, from Twisted’s basic, yet portable, select -based loop to the loops of various
GUI toolkits like GTK+ or Tk.

Twisted Internet contains the various interfaces to the reactor API, whose usage is documented in the low-level chapter.
Those APIs are IReactorCore , IReactorTCP , IReactorSSL , TReactorUNIX , IReactorUDP , IReactorTime ,
IReactorProcess , IReactorMulticast and IReactorThreads . The reactor APIs allow non-persistent calls to
be made.

Twisted Internet also covers the interfaces for the various transports, in ITransport and friends. These interfaces
allow Twisted network code to be written without regard to the underlying implementation of the transport.

The IProtocolFactory dictates how factories, which are usually a large part of third party code, are written.

2.1.9 Reactor Overview

This HOWTO introduces the Twisted reactor, describes the basics of the reactor and links to the various reactor inter-
faces.

Reactor Basics

The reactor is the core of the event loop within Twisted — the loop which drives applications using Twisted. The event
loop is a programming construct that waits for and dispatches events or messages in a program. It works by calling
some internal or external “event provider”, which generally blocks until an event has arrived, and then calls the relevant
event handler (“dispatches the event”). The reactor provides basic interfaces to a number of services, including network
communications, threading, and event dispatching.

For information about using the reactor and the Twisted event loop, see:
* the event dispatching howtos: Scheduling and Using Deferreds ;
¢ the communication howtos: TCP servers , TCP clients , UDP networking and Using processes ; and
* Using threads .

There are multiple implementations of the reactor, each modified to provide better support for specialized features over
the default implementation. More information about these and how to use a particular implementation is available via
Choosing a Reactor .

Twisted applications can use the interfaces in twisted.application.service to configure and run the application
instead of using boilerplate reactor code. See Using Application for an introduction to Application.

2.1. Developer Guides 131

Twisted Documentation, Release 23.8.0

Using the reactor object

You can get to the reactor object using the following code:

[from twisted.internet import reactor]

The reactor usually implements a set of interfaces, but depending on the chosen reactor and the platform, some of the
interfaces may not be implemented:

e TReactorCore : Core (required) functionality.

e TReactorFDSet : Use FileDescriptor objects.

» TReactorProcess : Process management. Read the Using Processes document for more information.
* TReactorSSL : SSL networking support.

e TReactorTCP : TCP networking support. More information can be found in the Writing Servers and Writing
Clients documents.

» TReactorThreads : Threading use and management. More information can be found within Threading In
Twisted .

e TReactorTime : Scheduling interface. More information can be found within Scheduling Tasks .
* TReactorUDP : UDP networking support. More information can be found within UDP Networking .
* TReactorUNIX : UNIX socket support.

* TReactorSocket : Third-party socket support.

2.1.10 Using TLS in Twisted

Overview

This document describes how to secure your communications using TLS (Transport Layer Security) — also known as
SSL (Secure Sockets Layer) — in Twisted servers and clients. It assumes that you know what TLS is, what some of
the major reasons to use it are, and how to generate your own certificates. It also assumes that you are comfortable
with creating TCP servers and clients as described in the server howto and client howto . After reading this document
you should be able to create servers and clients that can use TLS to encrypt their connections, switch from using an
unencrypted channel to an encrypted one mid-connection, and require client authentication.

Using TLS in Twisted requires that you have pyOpenSSL installed. A quick test to verify that you do is to run from
OpenSSL import SSL at a python prompt and not get an error.

Twisted provides TLS support as a transport — that is, as an alternative to TCP. When using TLS, use of the TCP
APIs you’re already familiar with, TCP4ClientEndpoint and TCP4ServerEndpoint — or reactor.listenTCP
and reactor.connectTCP — is replaced by use of parallel TLS APIs (many of which still use the legacy name “SSL”
due to age and/or compatibility with older APIs). To create a TLS server, use SSL4ServerEndpoint or 1istenSSL .
To create a TLS client, use SSL4ClientEndpoint or connectSSL .

TLS provides transport layer security, but it’s important to understand what “security” means. With respect to TLS it
means three things:

1. Identity: TLS servers (and sometimes clients) present a certificate, offering proof of who they are, so that you
know who you are talking to.

2. Confidentiality: once you know who you are talking to, encryption of the connection ensures that the communi-
cations can’t be understood by any third parties who might be listening in.

132 Chapter 2. Twisted Core

https://github.com/pyca/pyopenssl

Twisted Documentation, Release 23.8.0

3. Integrity: TLS checks the encrypted messages to ensure that they actually came from the party you originally
authenticated to. If the messages fail these checks, then they are discarded and your application does not see
them.

Without identity, neither confidentiality nor integrity is possible. If you don’t know who you’re talking to, then you
might as easily be talking to your bank or to a thief who wants to steal your bank password. Each of the APIs listed
above with “SSL” in the name requires a configuration object called (for historical reasons) a contextFactory. (Please
pardon the somewhat awkward name.) The contextFactory serves three purposes:

1. It provides the materials to prove your own identity to the other side of the connection: in other words, who you
are.

2. It expresses your requirements of the other side’s identity: in other words, who you would like to talk to (and
who you trust to tell you that you’re talking to the right party).

3. It allows you to specify certain specialized options about the way the TLS protocol itself operates.

The requirements of clients and servers are slightly different. Both can provide a certificate to prove their identity, but
commonly, TLS servers provide a certificate, whereas TLS clients check the server’s certificate (to make sure they’re
talking to the right server) and then later identify themselves to the server some other way, often by offering a shared
secret such as a password or API key via an application protocol secured with TLS and not as part of TLS itself.

Since these requirements are slightly different, there are different APIs to construct an appropriate contextFactory
value for a client or a server.

For servers, we can use twisted.internet.ssl.CertificateOptions. In order to prove the server’s
identity, you pass the privateKey and certificate arguments to this object. twisted.internet.ssl.
PrivateCertificate.options() is a convenient way to create a CertificateOptions instance configured to
use a particular key and certificate.

For clients, we can use twisted.internet.ssl.optionsForClientTLS(). This takes two arguments, hostname
(which indicates what hostname must be advertised in the server’s certificate) and optionally trustRoot. By default,
optionsForClientTLS tries to obtain the trust roots from your platform, but you can specify your own.

You may obtain an object suitable to pass as the trustRoot= parameter with an explicit list of twisted.internet.
ssl.Certificate or twisted.internet.ssl.PrivateCertificate instances by calling twisted.internet.
ssl.trustRootFromCertificates(). This will cause optionsForClientTLS to accept any connection so long
as the server’s certificate is signed by at least one of the certificates passed.

Note: Currently, Twisted only supports loading of OpenSSL’s default trust roots. If you’ve built OpenSSL yourself,
you must take care to include these in the appropriate location. If you’re using the OpenSSL shipped as part of macOS
10.5-10.9, this behavior will also be correct. If you're using Debian, or one of its derivatives like Ubuntu, install
the ca-certificates package to ensure you have trust roots available, and this behavior should also be correct. Work
is ongoing to make platformTrust — the API that optionsForClientTLS uses by default — more robust. For
example, platformTrust should fall back to the “certifi” package if no platform trust roots are available but it doesn’t
do that yet. When this happens, you shouldn’t need to change your code.

2.1. Developer Guides 133

https://pypi.org/project/certifi

Twisted Documentation, Release 23.8.0

TLS echo server and client

Now that we’ve got the theory out of the way, let’s try some working examples of how to get started with a TLS server.
The following examples rely on the files server.pem (private key and self-signed certificate together) and public.
pem (the server’s public certificate by itself).

TLS echo server

echoserv_ssl.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import sys
import echoserv

from twisted.internet import defer, protocol, ssl, task
from twisted.python import log
from twisted.python.modules import getModule

def main(reactor):
log.startLogging(sys.stdout)
certData = getModule(__name__).filePath.sibling("server.pem").getContent()
certificate = ssl.PrivateCertificate.loadPEM(certData)
factory = protocol.Factory.forProtocol (echoserv.Echo)
reactor.listenSSL(8000, factory, certificate.options())
return defer.Deferred()

if _name__ == "__main__":
import echoserv_ssl

task.react(echoserv_ssl.main)

This server uses 1istenSSL to listen for TLS traffic on port 8000, using the certificate and private key contained in the
file server.pem. It uses the same echo example server as the TCP echo server — even going so far as to import its
protocol class. Assuming that you can buy your own TLS certificate from a certificate authority, this is a fairly realistic
TLS server.

TLS echo client

echoclient_ssl.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import echoclient

(continues on next page)

134 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.python.modules import getModule

@defer.inlineCallbacks

def main(reactor):
factory = protocol.Factory.forProtocol (echoclient.EchoClient)
certData = getModule(__name__).filePath.sibling("public.pem").getContent()
authority = ssl.Certificate.loadPEM(certData)
options = ssl.optionsForClientTLS("example.com", authority)
endpoint = endpoints.SSL4ClientEndpoint(reactor, "localhost", 8000, options)
echoClient = yield endpoint.connect(factory)

done = defer.Deferred()
echoClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == "__main_

import echoclient_ssl

task.react(echoclient_ssl.main)

This client uses SSL4ClientEndpoint to connect to echoserv_ssl.py. It also uses the same echo example client
as the TCP echo client. Whenever you have a protocol that listens on plain-text TCP it is easy to run it over TLS
instead. It specifies that it only wants to talk to a host named "example.com", and that it trusts the certificate authority
in "public.pem" to say who "example.com" is. Note that the host you are connecting to — localhost — and the
host whose identity you are verifying — example.com — can differ. In this case, our example server.pem certificate
identifies a host named “example.com”, but your server is proably running on localhost.

In a realistic client, it’s very important that you pass the same “hostname” your connection API (in this case,
SSL4ClientEndpoint) and optionsForClientTLS. In this case we’re using “localhost” as the host to connect
to because you’re probably running this example on your own computer and “example.com” because that’s the value
hard-coded in the dummy certificate distributed along with Twisted’s example code.

Connecting To Public Servers

Here is a short example, now using the default trust roots for optionsForClientTLS from platformTrust.

check_server_certificate.py

import sys

from twisted.internet import defer, endpoints, error, protocol, ssl, task

def main(reactor, host, port=443):
options = ssl.optionsForClientTLS (hostname=host.decode("'utf-8"))
port = int(port)

class ShowCertificate(protocol.Protocol):
def connectionMade(self):

(continues on next page)

2.1. Developer Guides 135

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.transport.write(b"GET / HTTP/1.0\r\n\r\n")
self.done = defer.Deferred()

def dataReceived(self, data):
certificate = ssl.Certificate(self.transport.getPeerCertificate())
print("OK:", certificate)
self.transport.abortConnection()

def connectionLost(self, reason):
print("Lost.")
if not reason.check(error.ConnectionClosed):
print("BAD:", reason.value)
self.done.callback(None)

return endpoints.connectProtocol(

endpoints.SSL4ClientEndpoint (reactor, host, port, options), ShowCertificate()
) .addCallback(lambda protocol: protocol.done)

task.react(main, sys.argv[1:])

You can use this tool fairly simply to retrieve certificates from an HTTPS server with a valid TLS certificate, by running
it with a host name. For example:

$ python check_server_certificate.py www.twistedmatrix.com

OK: <Certificate Subject=www.twistedmatrix.com ...>
$ python check_server_certificate.py www.cacert.org
BAD: [(... 'certificate verify failed')]

$ python check_server_certificate.py dornkirk.twistedmatrix.com
BAD: No service reference ID could be validated against certificate.

Note: To properly validate your hostname parameter according to RFC6125, please also install the “service_identity”
and “idna” packages from PyPI. Without this package, Twisted will currently make a conservative guess as to the
correctness of the server’s certificate, but this will reject a large number of potentially valid certificates. service_identity
implements the standard correctly and it will be a required dependency for TLS in a future release of Twisted.

Using startTLS

If you want to switch from unencrypted to encrypted traffic mid-connection, you’ll need to turn on TLS with startTLS
on both ends of the connection at the same time via some agreed-upon signal like the reception of a particular message.
You can readily verify the switch to an encrypted channel by examining the packet payloads with a tool like Wireshark

136 Chapter 2. Twisted Core

https://pypi.python.org/pypi/service_identity
https://pypi.python.org/pypi/idna
https://www.wireshark.org/

Twisted Documentation, Release 23.8.0

startTLS server

starttls_server.py

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.protocols.basic import LineReceiver
from twisted.python.modules import getModule

class TLSServer(LineReceiver):
def lineReceived(self, line):
print("received: ", line)
if line == b"STARTTLS":
print("-- Switching to TLS")
self.sendLine(b"READY")
self.transport.startTLS(self.factory.options)

def main(reactor):
certData = getModule(__name__).filePath.sibling("server.pem").getContent()
cert = ssl.PrivateCertificate.loadPEM(certData)
factory = protocol.Factory.forProtocol (TLSServer)
factory.options = cert.options()
endpoint = endpoints.TCP4ServerEndpoint(reactor, 8000)
endpoint.listen(factory)
return defer.Deferred()

if _name__ == "__main__":
import starttls_server

task.react(starttls_server.main)

startTLS client

starttls_client.py

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.protocols.basic import LineReceiver
from twisted.python.modules import getModule

class StartTLSClient(LineReceiver):
def connectionMade(self):
self.sendLine(b"plain text")
self.sendLine(b"STARTTLS")

def lineReceived(self, line):
print("received: ", line)
if line == b"READY":
self.transport.startTLS(self.factory.options)
self.sendLine(b'"secure text")

(continues on next page)

2.1. Developer Guides 137

Twisted Documentation, Release 23.8.0

(continued from previous page)

self.transport.loseConnection()

@defer.inlineCallbacks
def main(reactor):
factory = protocol.Factory.forProtocol (StartTLSClient)
certData = getModule(__name__).filePath.sibling("server.pem").getContent()
factory.options = ssl.optionsForClientTLS(
"example.com", ssl.PrivateCertificate.loadPEM(certData)
)
endpoint = endpoints.HostnameEndpoint(reactor, "localhost", 8000)
startTLSClient = yield endpoint.connect(factory)

done = defer.Deferred()
startTLSClient.connectionLost = lambda reason: done.callback(None)
yield done

if __name__ == "__main_

import starttls_client

task.react(starttls_client.main)

startTLS is a transport method that gets passed a contextFactory. It is invoked at an agreed-upon time in the
data reception method of the client and server protocols. The server uses PrivateCertificate.options to create
a contextFactory which will use a particular certificate and private key (a common requirement for TLS servers).

The client creates an uncustomized CertificateOptions which is all that’s necessary for a TLS client to interact
with a TLS server.

Client authentication

Server and client-side changes to require client authentication fall largely under the dominion of pyOpenSSL, but few
examples seem to exist on the web so for completeness a sample server and client are provided here.

TLS server with client authentication via client certificate verification

When one or more certificates are passed to PrivateCertificate.options, the resulting contextFactory will
use those certificates as trusted authorities and require that the peer present a certificate with a valid chain anchored by
one of those authorities.

A server can use this to verify that a client provides a valid certificate signed by one of those certificate authorities;
here is an example of such a certificate.

ssl_clientauth_server.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import sys

(continues on next page)

138 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

import echoserv

from twisted.internet import defer, protocol, ssl, task
from twisted.python import log
from twisted.python.modules import getModule

def main(reactor):
log.startLogging(sys.stdout)
certData getModule(__name__).filePath.sibling("public.pem").getContent()
authData = getModule(_name__).filePath.sibling("server.pem").getContent()
authority = ssl.Certificate.loadPEM(certData)
certificate = ssl.PrivateCertificate.loadPEM(authData)
factory = protocol.Factory. forProtocol (echoserv.Echo)
reactor.listenSSL(8000, factory, certificate.options(authority))
return defer.Deferred()

if __name__ == main_

import ssl_clientauth_server

task.react(ssl_clientauth_server.main)

Client with certificates

The following client then supplies such a certificate as the clientCertificate argument to optionsForClientTLS,
while still validating the server’s identity.

ssl_clientauth_client.py

#!/usr/bin/env python
Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import echoclient

from twisted.internet import defer, endpoints, protocol, ssl, task
from twisted.python.modules import getModule

@defer.inlineCallbacks

def main(reactor):
factory = protocol.Factory.forProtocol (echoclient.EchoClient)
certData = getModule(__name__).filePath.sibling("public.pem").getContent()
authData = getModule(__name__).filePath.sibling("server.pem").getContent()
clientCertificate = ssl.PrivateCertificate.loadPEM(authData)
authority = ssl.Certificate.loadPEM(certData)
options = ssl.optionsForClientTLS("example.com", authority, clientCertificate)
endpoint = endpoints.SSL4ClientEndpoint(reactor, "localhost", 8000, options)
echoClient = yield endpoint.connect(factory)

(continues on next page)

2.1. Developer Guides 139

Twisted Documentation, Release 23.8.0

(continued from previous page)
done = defer.Deferred()
echoClient.connectionlLost = lambda reason: done.callback(None)
yield done

if name_ == "__main__":

import ssl_clientauth_client

task.react(ssl_clientauth_client.main)

Notice that these two examples are very, very similar to the TLS echo examples above. In fact, you can demonstrate
a failed authentication by simply running echoclient_ssl.py against ssl_clientauth_server.py; you’ll see no
output because the server closed the connection rather than echoing the client’s authenticated input.

TLS Protocol Options

For servers, it is desirable to offer Diffie-Hellman based key exchange that provides perfect forward secrecy. The
ciphers are activated by default, however it is necessary to pass an instance of DiffieHellmanParameters to
CertificateOptions via the dhParameters option to be able to use them.

For example,

from twisted.internet.ssl import CertificateOptions, DiffieHellmanParameters
from twisted.python.filepath import FilePath

dhFilePath = FilePath('dh_param_1024.pem')

dhParams = DiffieHellmanParameters.fromFile(dhFilePath)

options = CertificateOptions(..., dhParameters=dhParams)

Another part of the TLS protocol which CertificateOptions can control is the version of the TLS or SSL protocol
used. By default, Twisted will configure it to use TLSv1.2 or later and disable the insecure SSLv3 protocol. Manual
control over protocols can be helpful if you need to support legacy SSLv3 systems, or you wish to restrict it down to
just the strongest of the TLS versions.

You can ask CertificateOptions to use a more secure default minimum than Twisted’s by using the
raiseMinimumTo argument in the initializer:

from twisted.internet.ssl import CertificateOptions, TLSVersion
options = CertificateOptions(

raiseMinimumTo=TLSVersion.TLSv1_3)

This will always negotiate a minimum of TLSv1.3, but will negotiate higher versions if Twisted’s default is higher. This
usage will stay secure if Twisted updates the minimum to some hypothetical future TLS version, rather than causing
your application to use the now theoretically insecure minimum you set.

If you need a strictly hard range of TLS versions you wish CertificateOptions to negotiate, you can use the
insecurelyLowerMinimumTo and lowerMaximumSecurityTo arguments in the initializer:

from twisted.internet.ssl import CertificateOptions, TLSVersion

options = CertificateOptions(
insecurelyLowerMinimumTo=TLSVersion.TLSv1_0,
lowerMaximumSecurityTo=TLSVersion.TLSv1_2)

140 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

This will cause it to negotiate between TLSv1.0 and TLSv1.2, and will not change if Twisted’s default minimum TLS
version is raised. Note that this may not work at all, due to your version of OpenSSL potentially limiting the avail-
ability of deprecated or broken TLS versions. It is highly recommended not to set lowerMaximumSecurityTo unless
you have a peer that is known to misbehave on newer TLS versions, and to only set insecurelyLowerMinimumTo
when Twisted’s minimum is not acceptable. Using these two arguments to CertificateOptions may make your
application’s TLS insecure if you do not review it frequently, and should not be used in libraries.

SSLv3 support is still available and you can enable support for it if you wish. As an example, this supports all TLS
versions and SSLv3:

from twisted.internet.ssl import CertificateOptions, TLSVersion
options = CertificateOptions(

insecurelyLowerMinimumTo=TLSVersion.SSLv3)

Future OpenSSL versions may completely remove the ability to negotiate the insecure SSLv3 protocol, and this will
not allow you to re-enable it.

Additionally, it is possible to limit the acceptable ciphers for your connection by passing an IAcceptableCiphers
object to CertificateOptions. Since Twisted uses a secure cipher configuration by default, it is discouraged to do
so unless absolutely necessary.

Application Layer Protocol Negotiation (ALPN) and Next Protocol Negotiation (NPN)

ALPN and NPN are TLS extensions that can be used by clients and servers to negotiate what application-layer protocol
will be spoken once the encrypted connection is established. This avoids the need for extra custom round trips once
the encrypted connection is established. It is implemented as a standard part of the TLS handshake.

NPN is supported from OpenSSL version 1.0.1. ALPN is the newer of the two protocols, supported in OpenSSL
versions 1.0.2 onward. These functions require pyOpenSSL version 0.15 or higher. To query the methods supported
by your system, use twisted.internet.ssl.protocolNegotiationMechanisms(). It will return a collection of
flags indicating support for NPN and/or ALPN.

twisted.internet.ssl.CertificateOptions and twisted.internet.ssl.optionsForClientTLS() allow
for selecting the protocols your program is willing to speak after the connection is established.

On the server-side you will have:

from twisted.internet.ssl import CertificateOptions
options = CertificateOptions(..., acceptableProtocols=[b'h2', b'http/1.1"'])

and for clients:

from twisted.internet.ssl import optionsForClientTLS
options = optionsForClientTLSChostname=hostname, acceptableProtocols=[b'h2', b'http/1.1
~'1)

Twisted will attempt to use both ALPN and NPN, if they’re available, to maximise compatibility with peers. If both
ALPN and NPN are supported by the peer, the result from ALPN is preferred.

For NPN, the client selects the protocol to use; For ALPN, the server does. If Twisted is acting as the peer who is
supposed to select the protocol, it will prefer the earliest protocol in the list that is supported by both peers.

To determine what protocol was negotiated, after the connection is done, use TLSMemoryBIOProtocol.
negotiatedProtocol. It will return one of the protocol names passed to the acceptableProtocols parameter.
It will return None if the peer did not offer ALPN or NPN.

2.1. Developer Guides 141

Twisted Documentation, Release 23.8.0

It can also return None if no overlap could be found and the connection was established regardless (some peers will
do this: Twisted will not). In this case, the protocol that should be used is whatever protocol would have been used if
negotiation had not been attempted at all.

Warning: If ALPN or NPN are used and no overlap can be found, then the remote peer may choose to terminate the
connection. This may cause the TLS handshake to fail, or may result in the connection being torn down immediately
after being made. If Twisted is the selecting peer (that is, Twisted is the server and ALPN is being used, or Twisted
is the client and NPN is being used), and no overlap can be found, Twisted will always choose to fail the handshake
rather than allow an ambiguous connection to set up.

An example of using this functionality can be found in this example script for clients and this example
script for servers.

Related facilities

twisted.protocols.amp supports encrypted connections and exposes a startTLS method one can use or subclass.
twisted.web has built-in TLS support in its client , http, and xmlrpc modules.

Conclusion

After reading through this tutorial, you should be able to:
* Use listenSSL and connectSSL to create servers and clients that use TLS
* Use startTLS to switch a channel from being unencrypted to using TLS mid-connection

* Add server and client support for client authentication

2.1.11 UDP Networking

Overview

Unlike TCP, UDP has no notion of connections. A UDP socket can receive datagrams from any server on the network
and send datagrams to any host on the network. In addition, datagrams may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no connections, we only use a single object, a protocol, for each UDP socket. We then use the reactor
to connect this protocol to a UDP transport, using the twisted.internet.interfaces.IReactorUDP reactor API.

DatagramProtocol

The class where you actually implement the protocol parsing and handling will usually be descended from twisted.
internet.protocol.DatagramProtocol or from one of its convenience children. The DatagramProtocol class
receives datagrams and can send them out over the network. Received datagrams include the address they were sent
from. When sending datagrams the destination address must be specified.

Here is a simple example:

basic_example.py

142 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):
print(f"received {data from {addr'")
self.transport.write(data, addr)

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registered with the reactor. This means it may be persisted if it’s added to an application,
and thus it has startProtocol and stopProtocol methods that will get called when the protocol is connected and
disconnected from a UDP socket.

The protocol’s transport attribute will implement the twisted.internet.interfaces.IUDPTransport inter-
face. Notice that addr argument to self. transport.write should be a tuple with IP address and port number. First
element of tuple must be ip address and not a hostname. If you only have the hostname use reactor.resolve() to
resolve the address (see twisted.internet.interfaces.IReactorCore.resolve()).

Other thing to keep in mind is that data written to transport must be bytes. Trying to write string may work ok in Python
2, but will fail if you are using Python 3.

To confirm that socket is indeed listening you can try following command line one-liner.

[> echo "Hello World!" | nc -4u -wl localhost 9999

If everything is ok your “server” logs should print:

received b'Hello World!\n' from ('127.0.0.1', 32844) # where 32844 is some random port.,
—number

Adopting Datagram Ports

By default reactor.listenUDP() call will create appropriate socket for you, but it is also possible to add an existing
SOCK_DGRAM file descriptor of some socket to the reactor using the adoptDatagramPort APL

Here is a simple example:

adopt_datagram_port.py

import socket

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):
print(f"received {data from {addr}'")
self.transport.write(data, addr)

(continues on next page)

2.1. Developer Guides 143

Twisted Documentation, Release 23.8.0

(continued from previous page)

Create new socket that will be passed to reactor later.
portSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Make the port non-blocking and start it listening.
portSocket.setblocking(False)
portSocket.bind(("127.0.0.1", 9999))

Now pass the port file descriptor to the reactor.
port = reactor.adoptDatagramPort(portSocket.fileno(), socket.AF_INET, Echo())

The portSocket should be cleaned up by the process that creates it.
portSocket.close()

reactor.run()

Note:
* You must ensure that the socket is non-blocking before passing its file descriptor to adoptDatagramPort.

* adoptDatagramPort cannot (currently) detect the family of the adopted socket so you must ensure that you
pass the correct socket family argument.

* The reactor will not shutdown the socket. It is the responsibility of the process that created the socket to shutdown
and clean up the socket when it is no longer needed.

Connected UDP

A connected UDP socket is slightly different from a standard one as it can only send and receive datagrams to/from a
single address. However this does not in any way imply a connection as datagrams may still arrive in any order and
the port on the other side may have no one listening. The benefit of the connected UDP socket is that it may provide
notification of undelivered packages. This depends on many factors (almost all of which are out of the control of the
application) but still presents certain benefits which occasionally make it useful.

Unlike a regular UDP protocol, we do not need to specify where to send datagrams and are not told where they came
from since they can only come from the address to which the socket is ‘connected’.

connected_udp.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Helloer(DatagramProtocol):
def startProtocol(self):
host = "192.168.1.1"
port = 1234

self.transport.connectChost, port)
print("now we can only send to host port " % (host, port))

self.transport.write(b"hello") # no need for address

(continues on next page)

144 Chapter 2. Twisted Core

https://twistedmatrix.com/trac/ticket/5599

Twisted Documentation, Release 23.8.0

(continued from previous page)
def datagramReceived(self, data, addr):
print(f"received {data from {addr}")

Possibly invoked if there is no server listening on the
address to which we are sending.
def connectionRefused(self):

print("No one listening")

0 means any port, we don't care in this case
reactor.listenUDP(0, Helloer())
reactor.run()

Note that connect (), like write() will only accept IP addresses, not unresolved hostnames. To obtain the IP of a
hostname use reactor.resolve(), e.g:

getting_ip.py

from twisted.internet import reactor

def gotIP(ip):
print("IP of 'localhost' is", ip)
reactor.stop()

reactor.resolve("localhost™).addCallback(gotIP)
reactor.run()

Connecting to a new address after a previous connection or making a connected port unconnected are not currently
supported, but likely will be in the future.

Multicast UDP

Multicast allows a process to contact multiple hosts with a single packet, without knowing the specific IP address of
any of the hosts. This is in contrast to normal, or unicast, UDP, where each datagram has a single IP as its destination.
Multicast datagrams are sent to special multicast group addresses (in the IPv4 range 224.0.0.0 to 239.255.255.255),
along with a corresponding port. In order to receive multicast datagrams, you must join that specific group address.
However, any UDP socket can send to multicast addresses. Here is a simple server example:

MulticastServer.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class MulticastPingPong(DatagramProtocol):
def startProtocol(self):

i

Called after protocol has started listening.

i

Set the TTL>1 so multicast will cross router hops:
self.transport.setTTL(5)

(continues on next page)

2.1. Developer Guides 145

Twisted Documentation, Release 23.8.0

(continued from previous page)

Join a specific multicast group:
self.transport.joinGroup('"228.0.0.5")

def datagramReceived(self, datagram, address):
print(f"Datagram {repr(datagram) ' received from {repr(address) ;")
if datagram == b"Client: Ping" or datagram == "Client: Ping":
Rather than replying to the group multicast address, we send the
reply directly (unicast) to the originating port:
self.transport.write(b"Server: Pong", address)

We use listenMultiple=True so that we can run MulticastServer.py and
MulticastClient.py on same machine:

reactor.listenMulticast(9999, MulticastPingPong(), listenMultiple=True)
reactor.run()

As with UDP, with multicast there is no server/client differentiation at the protocol level. Our server example is very
simple and closely resembles a normal 1istenUDP protocol implementation. The main difference is that instead of
listenUDP, listenMulticast is called with the port number. The server calls joinGroup to join a multicast group.
A DatagramProtocol that is listening with multicast and has joined a group can receive multicast datagrams, but also
unicast datagrams sent directly to its address. The server in the example above sends such a unicast message in reply
to the multicast message it receives from the client.

Client code may look like this:

MulticastClient.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class MulticastPingClient(DatagramProtocol):
def startProtocol(self):
Join the multicast address, so we can receive replies:
self.transport.joinGroup('"228.0.0.5")
Send to 228.0.0.5:9999 - all listeners on the multicast address
(including us) will receive this message.
self.transport.write(b"Client: Ping", ("228.0.0.5", 9999))

def datagramReceived(self, datagram, address):
print(f"Datagram {repr(datagram)} received from {repr(address)}’")

reactor.listenMulticast (9999, MulticastPingClient(), listenMultiple=True)
reactor.run()

Note that a multicast socket will have a default TTL (time to live) of 1. That is, datagrams won’t traverse more than one
router hop, unless a higher TTL is set with setTTL. Other functionality provided by the multicast transport includes
setOutgoingInterface and setLoopbackMode — see IMulticastTransport for more information.

To test your multicast setup you need to start server in one terminal and couple of clients in other terminals. If all goes
ok you should see “Ping” messages sent by each client in logs of all other connected clients.

146 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Broadcast UDP

Broadcast allows a different way of contacting several unknown hosts. Broadcasting via UDP sends a packet out to all
hosts on the local network by sending to a magic broadcast address ("<broadcast>"). This broadcast is filtered by
routers by default, and there are no “groups” like multicast, only different ports.

Broadcast is enabled by passing True to setBroadcastAllowed on the port. Checking the broadcast status can be
done with getBroadcastAllowed on the port.

For a complete example of this feature, see udpbroadcast.py.

IPv6

UDP sockets can also bind to IPv6 addresses to support sending and receiving datagrams over IPv6. By passing an
IPv6 address to 1istenUDP’s interface argument, the reactor will start an IPv6 socket that can be used to send and
receive UDP datagrams.

ipv6_listen.py

from twisted.internet import reactor
from twisted.internet.protocol import DatagramProtocol

class Echo(DatagramProtocol):
def datagramReceived(self, data, addr):
print(f"received {data from {addr}")
self.transport.write(data, addr)

reactor.listenUDP(9999, Echo(), interface="::")
reactor.run()

2.1.12 Using Processes

Overview
Along with connection to servers across the internet, Twisted also connects to local processes with much the same APIL
The API is described in more detail in the documentation of:

e twisted.internet.interfaces.IReactorProcess

e twisted.internet.interfaces.IProcessTransport

e twisted.internet.interfaces.IProcessProtocol

2.1. Developer Guides 147

Twisted Documentation, Release 23.8.0

Running Another Process

Processes are run through the reactor, using reactor.spawnProcess . Pipes are created to the child process, and
added to the reactor core so that the application will not block while sending data into or pulling data out of the new
process. reactor.spawnProcess requires two arguments, processProtocol and executable , and optionally
takes several more: args , environment , path, userID, groupID, usePTY, and childFDs . Not all of these are
available on Windows.

from twisted.internet import reactor

processProtocol = MyProcessProtocol()

reactor.spawnProcess(processProtocol, executable, args=[program, argl, arg2],
env={'HOME': os.environ['HOME']}, path,
uid, gid, usePTY, childFDs)

e processProtocol should be an instance of a subclass of twisted.internet.protocol.ProcessProtocol
. The interface is described below.

* executable is the full path of the program to run. It will be connected to processProtocol.
* args is alist of command line arguments to be passed to the process. args [0] should be the name of the process.
* env is a dictionary containing the environment to pass through to the process.

* path is the directory to run the process in. The child will switch to the given directory just before starting the
new program. The default is to stay in the current directory.

e uid and gid are the user ID and group ID to run the subprocess as. Of course, changing identities will be more
likely to succeed if you start as root.

* usePTY specifies whether the child process should be run with a pty, or if it should just get a pair of pipes. Whether
a program needs to be run with a PTY or not depends on the particulars of that program. Often, programs which
primarily interact with users via a terminal do need a PTY.

* childFDs lets you specify how the child’s file descriptors should be set up. Each key is a file descriptor number
(an integer) as seen by the child. 0, 1, and 2 are usually stdin, stdout, and stderr, but some programs may be
instructed to use additional fds through command-line arguments or environment variables. Each value is either
an integer specifying one of the parent’s current file descriptors, the string “r” which creates a pipe that the parent
can read from, or the string “w” which creates a pipe that the parent can write to. If childFDs is not provided,

a default is used which creates the usual stdin-writer, stdout-reader, and stderr-reader pipes.

args and env have empty default values, but many programs depend upon them to be set correctly. At the very least,
args[0] should probably be the same as executable . If you just provide os.environ for env , the child program
will inherit the environment from the current process, which is usually the civilized thing to do (unless you want to
explicitly clean the environment as a security precaution). The default is to give an empty env to the child.

reactor.spawnProcess returns an instance that implements IProcessTransport.

148 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Writing a ProcessProtocol

The ProcessProtocol you pass to spawnProcess is your interaction with the process. It has a very similar signature to
a regular Protocol, but it has several extra methods to deal with events specific to a process. In our example, we will
interface with ‘wc’ to create a word count of user-given text. First, we’ll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol (protocol.ProcessProtocol):

def __init__(self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, it has the connectionMade method called. In our protocol, we
will write our text to the standard input of our process and then close standard input, to let the process know we are
done writing to it.

def connectionMade(self):
self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has received the data, and it’s time for us to read the results. Instead of being received
in dataReceived , data from standard output is received in outReceived . This is to distinguish it from data on
standard error.

def outReceived(self, data):
fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words int(data[fieldLength: fieldLength*2])
chars = int(data[fieldLength*2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the connection to the process. Then it sends the results on to the
final method, receiveCounts. This is for users of the class to override, so as to do other things with the data. For our
demonstration, we will just print the results.

def receiveCounts(self, lines, words, chars):
print('Received counts from wc.')

print('Lines:', lines)
print('Words: "', words)
print('Characters:', chars)

We’re done! To use our WCProcessProtocol, we create an instance, and pass it to spawnProcess.

from twisted.internet import reactor

wcProcess = WCProcessProtocol ("accessing protocols through Twisted is fun!\n")
reactor.spawnProcess(wcProcess, 'wc', ['wc'])

reactor.run()

2.1. Developer Guides 149

Twisted Documentation, Release 23.8.0

Things that can happen to your ProcessProtocol

These are the methods that you can usefully override in your subclass of ProcessProtocol :

.connectionMade() : This is called when the program is started, and makes a good place to write data into
the stdin pipe (using self.transport.write).

.outReceived(data) : This is called with data that was received from the process’ stdout pipe. Pipes tend to
provide data in larger chunks than sockets (one kilobyte is a common buffer size), so you may not experience the
“random dribs and drabs” behavior typical of network sockets, but regardless you should be prepared to deal if
you don’t get all your data in a single call. To do it properly, outReceived ought to simply accumulate the data
and put off doing anything with it until the process has finished.

.errReceived(data) : Thisis called with data from the process’ stderr pipe. It behaves just like outReceived

.inConnectionLost : This is called when the reactor notices that the process’ stdin pipe has closed. Programs
don’t typically close their own stdin, so this will probably get called when your ProcessProtocol has shut down
the write side with self. transport.loseConnection .

.outConnectionLost : This is called when the program closes its stdout pipe. This usually happens when the
program terminates.

.errConnectionLost : Same as outConnectionLost , but for stderr instead of stdout.

.processExited(status) : This is called when the child process has been reaped, and receives information
about the process’ exit status. The status is passed in the form of a Failure instance, created with a .value
that either holds a ProcessDone object if the process terminated normally (it died of natural causes instead of
receiving a signal, and if the exit code was 0), or a ProcessTerminated object (with an .exitCode attribute)
if something went wrong.

.processEnded(status) : This is called when all the file descriptors associated with the child process have
been closed and the process has been reaped. This means it is the last callback which will be made onto a
ProcessProtocol . The status parameter has the same meaning as it does for processExited .

The base-class definitions of most of these functions are no-ops. This will result in all stdout and stderr being thrown
away. Note that it is important for data you don’t care about to be thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a full pipe.

Things you can do from your ProcessProtocol

The following are the basic ways to control the child process:

self.transport.write(data) : Stuff some data in the stdin pipe. Note that this write method will queue
any data that can’t be written immediately. Writing will resume in the future when the pipe becomes writable
again.

self.transport.closeStdin: Close the stdin pipe. Programs which act as filters (reading from stdin, mod-
ifying the data, writing to stdout) usually take this as a sign that they should finish their job and terminate. For
these programs, it is important to close stdin when you’re done with it, otherwise the child process will never
quit.

self.transport.closeStdout : Not usually called, since you're putting the process into a state where any
attempt to write to stdout will cause a SIGPIPE error. This isn’t a nice thing to do to the poor process.

self.transport.closeStderr : Not usually called, same reason as closeStdout .
self.transport.loseConnection : Close all three pipes.

self.transport.signalProcess('KILL') : Kill the child process. This will eventually result in
processEnded being called.

150

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Verbose Example

Here is an example that is rather verbose about exactly when all the methods are called. It writes a number of lines into
the wc program and then parses the output.

process.py

#!/usr/bin/env python

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

import re

from twisted.internet import protocol, reactor

class MyPP(protocol.ProcessProtocol):
def __init__(self, verses):
self.verses = verses
self.data = ""

def connectionMade(self):
print ("connectionMade!")
for i in range(self.verses):
self.transport.write(
"Aleph-null bottles of beer on the wall,\n"
+ "Aleph-null bottles of beer,\n"
+ "Take one down and pass it around,\n"
+ "Aleph-null bottles of beer on the wall.\n"
)

self.transport.closeStdin() # tell them we're done

def outReceived(self, data):
print("outReceived! with %d bytes!"™ % len(data))
self.data = self.data + data

def errReceived(self, data):
print("errReceived! with %d bytes!" % len(data))

def inConnectionlLost(self):
print("inConnectionlLost! stdin is closed! (we probably did it)")

def outConnectionLost(self):
print("outConnectionlLost! The child closed their stdout!")
now is the time to examine what they wrote
print("I saw them write:", self.data)
(dummy, lines, words, chars, file) = re.split(r"\s+", self.data)
print("I saw %s lines" % lines)

def errConnectionLost(self):
print("errConnectionlLost! The child closed their stderr.")

(continues on next page)

2.1. Developer Guides 151

Twisted Documentation, Release 23.8.0

(continued from previous page)

def processExited(self, reason):
print ("processExited, status " % (reason.value.exitCode,))

def processEnded(self, reason):
print("processEnded, status " % (reason.value.exitCode,))
print("quitting™)
reactor.stop()

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

The exact output of this program depends upon the relative timing of some un-synchronized events. In particular, the
program may observe the child process close its stderr pipe before or after it reads data from the stdout pipe. One
possible transcript would look like this:

% ./process.py

connectionMade!

inConnectionlLost! stdin is closed! (we probably did it)
errConnectionlost! The child closed their stderr.
outReceived! with 24 bytes!

outConnectionlLost! The child closed their stdout!
I saw 40 lines

processEnded, status 0

quitting

Main loop terminated.

%

Doing it the Easy Way

Frequently, one just needs a simple way to get all the output from a program. In the blocking world, you might use
commands . getoutput from the standard library, but using that in an event-driven program will cause everything else
to stall until the command finishes. (in addition, the SIGCHLD handler used by that function does not play well with
Twisted’s own signal handling). For these cases, the twisted.internet.utils.getProcessOutput () function
can be used. Here is a simple example:

quotes.py

from cStringIO import StringIO
from twisted.internet import protocol, reactor, utils
from twisted.python import failure
class FortuneQuoter(protocol.Protocol):
fortune = "/usr/games/fortune"
def connectionMade(self):
output = utils.getProcessOutput(self.fortune)

output.addCallbacks(self.writeResponse, self.noResponse)
(continues on next page)

152 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def writeResponse(self, resp):
self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

if _name__ == "__main__":
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, £)
reactor.run()

If you only need the final exit code (like commands . getstatusoutput (cmd) [0]), the twisted.internet.utils.
getProcessValue () function is useful. Here is an example:

trueandfalse.py

from twisted.internet import reactor, utils

def printTrueValue(val):
print("/bin/true exits with rc=%d" % val)
output = utils.getProcessValue("/bin/false™)
output.addCallback(printFalseValue)

def printFalseValue(val):
print("/bin/false exits with rc=%d" % val)
reactor.stop()

output = utils.getProcessValue("/bin/true")
output.addCallback(printTrueValue)
reactor.run()

Mapping File Descriptors

“stdin” , “stdout” , and “stderr” are just conventions. Programs which operate as filters generally accept input on fdO,
write their output on fd1, and emit error messages on fd2. This is common enough that the standard C library provides
macros like “stdin” to mean fd0, and shells interpret the pipe character “|” to mean “redirect fd1 from one command
into fdO of the next command” .

But these are just conventions, and programs are free to use additional file descriptors or even ignore the standard three
entirely. The”’childFDs” argument allows you to specify exactly what kind of files descriptors the child process should
be given.

Each child FD can be put into one of three states:

* Mapped to a parent FD: this causes the child’s reads and writes to come from or go to the same source/destination
as the parent.

2.1. Developer Guides 153

Twisted Documentation, Release 23.8.0

* Feeding into a pipe which can be read by the parent.
* Feeding from a pipe which the parent writes into.

Mapping the child FDs to the parent’s is very commonly used to send the child’s stderr output to the same place as the
parent’s. When you run a program from the shell, it will typically leave fds 0, 1, and 2 mapped to the shell’s 0, 1, and
2, allowing you to see the child program’s output on the same terminal you used to launch the child. Likewise, inetd
will typically map both stdin and stdout to the network socket, and may map stderr to the same socket or to some kind
of logging mechanism. This allows the child program to be implemented with no knowledge of the network: it merely
speaks its protocol by doing reads on fd0 and writes on fd1.

Feeding into a parent’s read pipe is used to gather output from the child, and is by far the most common way of interacting
with child processes.

Feeding from a parent’s write pipe allows the parent to control the child. Programs like “bc” or “ftp” can be controlled
this way, by writing commands into their stdin stream.

The “childFDs” dictionary maps file descriptor numbers (as will be seen by the child process) to one of these three
states. To map the fd to one of the parent’s fds, simply provide the fd number as the value. To map it to a read pipe,

[T [T

use the string “r” as the value. To map it to a write pipe, use the string “w” .

For example, the default mapping sets up the standard stdin/stdout/stderr pipes. It is implemented with the following
dictionary:

[childFDs ={0: "w"', 1: "r", 2: "r" }

To launch a process which reads and writes to the same places that the parent python program does, use this:

[childFDs - {0:0, 1: 1, 2: 2}

To write into an additional fd (say it is fd number 4), use this:

[ChildFDs ={0: "w", 1: "r", 2: "r" , 4: "w"}

ProcessProtocols with extra file descriptors

When you provide a “childFDs” dictionary with more than the normal three fds, you need additional methods to access
those pipes. These methods are more generalized than the . outReceived ones described above. In fact, those methods
(outReceived and errReceived) are actually just wrappers left in for compatibility with older code, written before
this generalized fd mapping was implemented. The new list of things that can happen to your ProcessProtocol is as
follows:

e .connectionMade : This is called when the program is started.

e .childDataReceived(childFD, data) : This is called with data that was received from one of the process’
output pipes (i.e. where the childFDs value was “r” . The actual file number (from the point of view of the child
process) is in “childFD” . For compatibility, the default implementation of .childDataReceived dispatches

to .outReceived or .errReceived when “childFD” is 1 or 2.

e .childConnectionLost(childFD) : This is called when the reactor notices that one of the process’ pipes
has been closed. This either means you have just closed down the parent’s end of the pipe (with .transport.
closeChildFD), the child closed the pipe explicitly (sometimes to indicate EOF), or the child process has
terminated and the kernel has closed all of its pipes. The “childFD” argument tells you which pipe was closed.
Note that you can only find out about file descriptors which were mapped to pipes: when they are mapped to exist-
ing fds the parent has no way to notice when they’ve been closed. For compatibility, the default implementation
dispatches to .inConnectionLost , .outConnectionlLost , or .errConnectionlLost .

154 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

e .processEnded(status) : This is called when the child process has been reaped, and all pipes have been
closed. This insures that all data written by the child prior to its death will be received before .processEnded
is invoked.

In addition to those methods, there are other methods available to influence the child process:

e self.transport.writeToChild(childFD, data) : Stuff some data into an input pipe. .write simply
writes to childFD=0.

* self.transport.closeChildFD(childFD) : Close one of the child’s pipes. Closing an input pipe is a com-
mon way to indicate EOF to the child process. Closing an output pipe is neither very friendly nor very useful.

Examples

GnuPG, the encryption program, can use additional file descriptors to accept a passphrase and emit status output. These
are distinct from stdin (used to accept the crypttext), stdout (used to emit the plaintext), and stderr (used to emit human-
readable status/warning messages). The passphrase FD reads until the pipe is closed and uses the resulting string to
unlock the secret key that performs the actual decryption. The status FD emits machine-parseable status messages to
indicate the validity of the signature, which key the message was encrypted to, etc.

gpg accepts command-line arguments to specify what these fds are, and then assumes that they have been opened by
the parent before the gpg process is started. It simply performs reads and writes to these fd numbers.

To invoke gpg in decryption/verification mode, you would do something like the following:

class GPGProtocol (ProcessProtocol):
def __init__(self, crypttext):
self.crypttext = crypttext
self.plaintext = ""
self.status = ""
def connectionMade(self):
self.transport.writeToChild(3, self.passphrase)
self.transport.closeChildFD(3)
self.transport.writeToChild(®, self.crypttext)
self.transport.closeChildFD(0)
def childDataReceived(self, childFD, data):
if childFD == 1: self.plaintext += data
if childFD == 4: self.status += data
def processEnded(self, status):
rc = status.value.exitCode
if rc ==
self.deferred.callback(self)
else:
self.deferred.errback(rc)

def decrypt(crypttext):
gp = GPGProtocol(crypttext)
gp.deferred = Deferred()
cnd = ["gpg", "--decrypt", "--passphrase-fd", "3", "--status-fd", "4",
"--batch"]
p = reactor.spawnProcess(gp, cmd[0], cmd, env=None,
childFDs={0:"w", 1:"r", 2:2, 3:"w", 4:"r"})
return gp.deferred

In this example, the status output could be parsed after the fact. It could, of course, be parsed on the fly, as it is a simple
line-oriented protocol. Methods from LineReceiver could be mixed in to make this parsing more convenient.

2.1. Developer Guides 155

Twisted Documentation, Release 23.8.0

The stderr mapping (“2:2”) used will cause any GPG errors to be emitted by the parent program, just as if those errors
had caused in the parent itself. This is sometimes desirable (it roughly corresponds to letting exceptions propagate
upwards), especially if you do not expect to encounter errors in the child process and want them to be more visible to
the end user. The alternative is to map stderr to a read-pipe and handle any such output from within the ProcessProtocol
(roughly corresponding to catching the exception locally).

2.1.13 Introduction to Deferreds
This document introduces Deferreds, Twisted’s preferred mechanism for controlling the flow of asynchronous code.
Don’t worry if you don’t know what that means yet — that’s why you are here!

It is intended for newcomers to Twisted, and was written particularly to help people read and understand code that
already uses Deferreds.

This document assumes you have a good working knowledge of Python. It assumes no knowledge of Twisted.

By the end of the document, you should understand what Deferreds are and how they can be used to coordinate
asynchronous code. In particular, you should be able to:

¢ Read and understand code that uses Deferreds
* Translate from synchronous code to asynchronous code and back again

* Implement any sort of error-handling for asynchronous code that you wish

The joy of order

When you write Python code, one prevailing, deep, unassailled assumption is that a line of code within a block is only
ever executed after the preceding line is finished.

pod_bay_doors.open()
pod.launch()

The pod bay doors open, and only then does the pod launch. That’s wonderful. One-line-after-another is a built-in
mechanism in the language for encoding the order of execution. It’s clear, terse, and unambiguous.

Exceptions make things more complicated. If pod_bay_doors.open() raises an exception, then we cannot know
with certainty that it completed, and so it would be wrong to proceed blithely to the next line. Thus, Python gives us
try, except, finally, and else, which together model almost every conceivable way of handling a raised exception,
and tend to work really well.

Function application is the other way we encode order of execution:

[pprint(sorted(x. get_names())) J

First x.get_names () gets called, then sorted is called with its return value, and then pprint with whatever sorted
returns.

It can also be written as:

names = x.get_names()
sorted_names = sorted(names)
pprint(sorted_names)

Sometimes it leads us to encode the order when we don’t need to, as in this example:

156 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

from __future__ import print_function
total = 0
for account in accounts:

total += account.get_balance()
print("Total balance ${}".format(total))

But that’s normally not such a big deal.

All in all, things are pretty good, and all of the explanation above is laboring familiar and obvious points. One line
comes after another and one thing happens after another, and both facts are inextricably tied.

But what if we had to do it differently?

A hypothetical problem

What if we could no longer rely on the previous line of code being finished (whatever that means) before we started
to interpret & execute the next line of code? What if pod_bay_doors.open() returned immediately, triggering
something somewhere else that would eventually open the pod bay doors, recklessly sending the Python interpreter
plunging into pod.launch() ?

That is, what would we do if the order of execution did not match the order of lines of Python? If “returning” no longer
meant “finishing”?

Asynchronous operations?

How would we prevent our pod from hurtling into the still-closed doors? How could we respond to a potential failure
to open the doors at all? What if opening the doors gave us some crucial information that we needed in order to launch
the pod? How would we get access to that information?

And, crucially, since we are writing code, how can we write our code so that we can build other code on top of it?

The components of a solution

We would still need a way of saying “do this only when that has finished”.

We would need a way of distinguishing between successful completion and interrupted processing, normally modeled
with try, except, else, and finally.

We need a mechanism for getting return failures and exception information from the thing that just executed to the thing
that needs to happen next.

We need somehow to be able to operate on results that we don’t have yet. Instead of acting, we need to make and encode
plans for how we would act if we could.

Unless we hack the interpreter somehow, we would need to build this with the Python language constructs we are given:
methods, functions, objects, and the like.

Perhaps we want something that looks a little like this:

placeholder = pod_bay_doors.open()
placeholder.when_done (pod.launch)

2.1. Developer Guides 157

Twisted Documentation, Release 23.8.0

One solution: Deferred
Twisted tackles this problem with Deferreds, a type of object designed to do one thing, and one thing only: encode
an order of execution separately from the order of lines in Python source code.

It doesn’t deal with threads, parallelism, signals, or subprocesses. It doesn’t know anything about an event loop, green-
lets, or scheduling. All it knows about is what order to do things in. How does it know that? Because we explicitly tell
it the order that we want.

Thus, instead of writing:

pod_bay_doors.open()
pod.launch()

We write:

d = pod_bay_doors.open()
d.addCallback(lambda ignored: pod.launch())

That introduced a dozen new concepts in a couple of lines of code, so let’s break it down. If you think you’ve got it,
you might want to skip to the next section.

Here, pod_bay_doors.open() is returning a Deferred, which we assign to d. We can think of d as a placeholder,
representing the value that open() will eventually return when it finally gets around to finishing.

To “do this next”, we add a callback to d. A callback is a function that will be called with whatever open () eventually
returns. In this case, we don’t care, so we make a function with a single, ignored parameter that just calls pod.
launch(Q).

So, we’ve replaced the “order of lines is order of execution” with a deliberate, in-Python encoding of the order of
execution, where d represents the particular flow and d.addCallback replaces “new line”.

Of course, programs generally consist of more than two lines, and we still don’t know how to deal with failure.
Getting it right: The failure cases

In what follows, we are going to take each way of expressing order of operations in normal Python (using lines of code
and try/except) and translate them into an equivalent code built with Deferred objects.

This is going to be a bit painstaking, but if you want to really understand how to use Deferreds and maintain code that
uses them, it is worth understanding each example below.

One thing, then another, then another

Recall our example from earlier:

[pprint(sorted(x. get_names())) }

Also written as:

names = x.get_names()
sorted_names = sorted(names)
pprint (sorted_names)

What if neither get_names nor sorted can be relied on to finish before they return? That is, if both are asynchronous
operations?

158 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Well, in Twisted-speak they would return Deferreds and so we would write:

d = x.get_names()
d.addCallback(sorted)
d.addCallback(pprint)

Eventually, sorted will get called with whatever get_names finally delivers. When sorted finishes, pprint will be
called with whatever it delivers.

‘We could also write this as:

[x .get_names () .addCallback(sorted) .addCallback(pprint)

Since d.addCallback returns d.

Simple failure handling

We often want to write code equivalent to this:

try:
x.get_names()
except Exception as e:
report_error(e)

How would we write this with Deferreds?

d = x.get_names()
d.addErrback(report_error)

errback is the Twisted name for a callback that is called when an error is received.

This glosses over an important detail. Instead of getting the exception object e, report_error would get a Failure
object, which has all of the useful information that e does, but is optimized for use with Deferreds.

We’ll dig into that a bit later, after we’ve dealt with all of the other combinations of exceptions.

Handle an error, but do something else on success

What if we want to do something after our try block if it actually worked? Abandoning our contrived examples and
reaching for generic variable names, we get:

try:
y = £O
except Exception as e:

g(e)
else:

h(y)

Well, we’d write it like this with Deferreds:

d = £fO
d.addCallbacks(h, g)

2.1. Developer Guides 159

Twisted Documentation, Release 23.8.0

Where addCallbacks means “add a callback and an errback at the same time”. h is the callback, g is the errback.

Now that we have addCallbacks along with addErrback and addCallback, we can match any possible combination
of try, except, else, and finally by varying the order in which we call them. Explaining exactly how it works is
tricky (although the Deferred reference does rather a good job), but once we’re through all of the examples it ought to

be clearer.

Handle an error, then proceed anyway

What if we want to do something after our try/except block, regardless of whether or not there was an exception?
That is, what if we wanted to do the equivalent of this generic code:

try:
y = £O

except Exception as e:
y = g(e)

h(y)

And with Deferreds:

d=f£f0
d.addErrback(g)
d.addCallback(h)

Because addErrback returns d, we can chain the calls like so:

[f() .addErrback(g) .addCallback(h)

)

The order of addErrback and addCallback matters. In the next section, we can see what would happen when we

swap them around.

Handle an error for the entire operation

What if we want to wrap up a multi-step operation in one exception handler?

try:
y = £O
z = h(y)
except Exception as e:

g(e)

With Deferreds, it would look like this:

d=f£0
d.addCallback (h)
d.addErrback(g)

Or, more succinctly:

[d = £() .addCallback(h) .addErrback(g)

160

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Do something regardless

What about finally? How do we do something regardless of whether or not there was an exception? How do we
translate this:

try:
y = £O
finally:
gO

Well, roughly we do this:

d = £f0O
d.addBoth(g)

This adds g as both the callback and the errback. It is equivalent to:

{d. addCallbacks(g, g)]

Why “roughly”? Because if f raises, g will be passed a Failure object representing the exception. Otherwise, g will
be passed the asynchronous equivalent of the return value of £() (i.e. y).

Coroutines with async/await

Note: New in version 16.4.

Python 3.5 introduced PEP 492 (“Coroutines with async and await syntax”) and native coroutines. Deferred.
fromCoroutine allows you to write coroutines with the async def syntax and await on Deferreds, similar to
inlineCallbacks. Rather than decorating every function that may await a Deferred (as you would with functions
that yield Deferreds with inlineCallbacks), you only need to call fromCoroutine with the outer-most coroutine
object to schedule it for execution. Coroutines can await other coroutines once running without needing to use this
function themselves.

Note: The ensureDeferred function also provides a way to convert a coroutine to a Deferred, but it’s interface is
more type-ambiguous; Deferred. fromCoroutine is meant to replace it.

Awaiting on a Deferred which fires with a Failure will raise the exception inside your coroutine as if it were regular
Python. If your coroutine raises an exception, it will be translated into a Failure fired on the Deferred that Deferred.
fromCoroutine returns for you. Calling return will cause the Deferred that Deferred. fromCoroutine returned
for you to fire with a result.

import json

from twisted.internet.defer import Deferred
from twisted.logger import Logger

log = Logger()

async def getUsers():
try:
return json.loads(await makeRequest("GET", "/users'))
except ConnectionError:

(continues on next page)

2.1. Developer Guides 161

https://peps.python.org/pep-0492/

Twisted Documentation, Release 23.8.0

(continued from previous page)

log. failure("makeRequest failed due to connection error')
return []

def do(Q):
d = Deferred.fromCoroutine(getUsers())
d.addCallback(print)
return d

When writing coroutines, you do not need to use Deferred. fromCoroutine when you are writing a coroutine which
calls other coroutines which await on Deferreds; you can just await on it directly. For example:

async def foo():
res = await someFunctionThatReturnsADeferred()
return res

async def bar():
baz = await someOtherDeferredFunction()
fooResult = await foo()
return baz + fooResult

def myDeferredReturningFunction():
coro = bar()
return Deferred.fromCoroutine(coro)

Even though Deferreds were used in both coroutines, only bar had to be wrapped in Deferred. fromCoroutine to
return a Deferred.

Inline callbacks - using ‘yield’

Note: Unless your code supports Python 2 (and therefore needs compatibility with older versions of Twisted), writing
coroutines with the functionality described in “Coroutines with async/await” is preferred over inlineCallbacks.
Coroutines are supported by dedicated Python syntax, are compatible with asyncio, and provide higher performance.

Twisted features a decorator named inlineCallbacks which allows you to work with Deferreds without writing
callback functions.

This is done by writing your code as generators, which yield Deferreds instead of attaching callbacks.

Consider the following function written in the traditional Deferred style:

def getUsers():
d = makeRequest("GET", "/users')
d.addCallback(json.loads)
return d

using inlineCallbacks, we can write this as:

from twisted.internet.defer import inlineCallbacks, returnValue

@inlineCallbacks
def getUsers(self):

(continues on next page)

162 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

responseBody = yield makeRequest("GET", "/users")
returnValue(json. loads(responseBody))

a couple of things are happening here:

1. instead of calling addCallback on the Deferred returned by makeRequest, we yield it. This causes Twisted
to return the Deferred‘s result to us.

2. weuse returnValue to propagate the final result of our function. Because this function is a generator, we cannot
use the return statement; that would be a syntax error.

Note: New in version 15.0.

On Python 3, instead of writing returnValue(json. loads (responseBody)) you can instead write return json.
loads(responseBody). This can be a significant readability advantage, but unfortunately if you need compatibility
with Python 2, this isn’t an option.

Both versions of getUsers present exactly the same API to their callers: both return a Deferred that fires with the
parsed JSON body of the request. Though the inlineCallbacks version looks like synchronous code, which blocks
while waiting for the request to finish, each yield statement allows other code to run while waiting for the Deferred
being yielded to fire.

inlineCallbacks become even more powerful when dealing with complex control flow and error handling. For
example, what if makeRequest fails due to a connection error? For the sake of this example, let’s say we want to log
the exception and return an empty list.

def getUsers():
d = makeRequest("GET", "/users')

def connectionError(failure):
failure.trap(ConnectionError)
log. failure("makeRequest failed due to connection error",
failure)
return []

d.addCallbacks(json.loads, connectionError)
return d

With inlineCallbacks, we can rewrite this as:

@inlineCallbacks
def getUsers(self):
try:
responseBody = yield makeRequest("GET", "/users')
except ConnectionError:
log. failure("makeRequest failed due to connection error')
returnValue([])

returnValue(json. loads(responseBody))

Our exception handling is simplified because we can use Python’s familiar try / except syntax for handling
ConnectionErrors.

2.1. Developer Guides 163

Twisted Documentation, Release 23.8.0

Conclusion

You have been introduced to asynchronous code and have seen how to use Deferreds to:
* Do something after an asynchronous operation completes successfully
* Use the result of a successful asynchronous operation
* Catch errors in asynchronous operations
* Do one thing if an operation succeeds, and a different thing if it fails
* Do something after an error has been handled successfully
* Wrap multiple asynchronous operations with one error handler
* Do something after an asynchronous operation, regardless of whether it succeeded or failed
* Write code without callbacks using inlineCallbacks
* Write coroutines that interact with Deferreds using Deferred. fromCoroutine

These are very basic uses of Deferred. For detailed information about how they work, how to combine multiple
Deferreds, and how to write code that mixes synchronous and asynchronous APIs, see the Deferred reference. Alter-
natively, read about how to write functions that generate Deferreds.

2.1.14 Deferred Reference

This document is a guide to the behaviour of the twisted.internet.defer.Deferred object, and to various ways
you can use them when they are returned by functions.

This document assumes that you are familiar with the basic principle that the Twisted framework is structured around:
asynchronous, callback-based programming, where instead of having blocking code in your program or using threads
to run blocking code, you have functions that return immediately and then begin a callback chain when data is available.

After reading this document, the reader should expect to be able to deal with most simple APIs in Twisted and Twisted-
using code that return Deferreds.

» what sorts of things you can do when you get a Deferred from a function call; and

* how you can write your code to robustly handle errors in Deferred code.

Deferreds

Twisted uses the Deferred object to manage the callback sequence. The client application attaches a series of functions
to the deferred to be called in order when the results of the asynchronous request are available (this series of functions
is known as a series of callbacks, or a callback chain), together with a series of functions to be called if there is an
error in the asynchronous request (known as a series of errbacks or an errback chain). The asynchronous library
code calls the first callback when the result is available, or the first errback when an error occurs, and the Deferred
object then hands the results of each callback or errback function to the next function in the chain.

164 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Callbacks

A twisted.internet.defer.Deferred is a promise that a function will at some point have a result. We can attach
callback functions to a Deferred, and once it gets a result these callbacks will be called. In addition Deferreds allow the
developer to register a callback for an error, with the default behavior of logging the error. The deferred mechanism
standardizes the application programmer’s interface with all sorts of blocking or delayed operations.

from twisted.internet import reactor, defer

def getDummyData(inputData):
This function is a dummy which simulates a delayed result and
returns a Deferred which will fire with that result. Don't try too
hard to understand this.
print('getDummyData called')
deferred = defer.Deferred()
simulate a delayed result by asking the reactor to fire the
Deferred in 2 seconds time with the result inputData * 3
reactor.callLater(2, deferred.callback, inputData * 3)
return deferred

def cbPrintData(result):

o

Data handling function to be added as a callback: handles the
data by printing the result

e

print('Result received: {}'.format(result))

deferred = getDummyData(3)
deferred.addCallback(cbPrintData)

manually set up the end of the process by asking the reactor to
stop itself in 4 seconds time

reactor.calllLater(4, reactor.stop)

start up the Twisted reactor (event loop handler) manually
print('Starting the reactor')

reactor.run()

Multiple callbacks

Multiple callbacks can be added to a Deferred. The first callback in the Deferred’s callback chain will be called with
the result, the second with the result of the first callback, and so on. Why do we need this? Well, consider a Deferred
returned by twisted.enterprise.adbapi - the result of a SQL query. A web widget might add a callback that
converts this result into HTML, and pass the Deferred onwards, where the callback will be used by twisted to return
the result to the HTTP client. The callback chain will be bypassed in case of errors or exceptions.

from twisted.internet import reactor, defer

class Getter:
def gotResults(self, x):

i

(continues on next page)

2.1. Developer Guides 165

Twisted Documentation, Release 23.8.0

def

def

(continued from previous page)

The Deferred mechanism provides a mechanism to signal error
conditions. In this case, odd numbers are bad.

This function demonstrates a more complex way of starting
the callback chain by checking for expected results and
choosing whether to fire the callback or errback chain
if self.d is None:

print ("Nowhere to put results")

return
d = self.d
self.d = None

if x %2 ==0:
d.callback(x*3)
else:
d.errback(ValueError("You used an odd number!'™))

_toHTML(self, r):

i

This function converts r to HTML.

It is added to the callback chain by getDummyData in
order to demonstrate how a callback passes its own result
to the next callback

i

return "Result: %s" % r

getDummyData(self, x):

The Deferred mechanism allows for chained callbacks.
In this example, the output of gotResults is first
passed through _toHTML on its way to printData.

Again this function is a dummy, simulating a delayed result
using calllLater, rather than using a real asynchronous

setup.

self.d = defer.Deferred()

simulate a delayed result by asking the reactor to schedule
gotResults in 2 seconds time

reactor.calllLater(2, self.gotResults, x)
self.d.addCallback(self._toHTML)

return self.d

def cbPrintData(result):
print(result)

def ebPrintError(failure):
import sys

sys.

stderr.write(str(failure))

(continues on next page)

166

Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

this series of callbacks and errbacks will print an error message
Getter()

g.getDummyData(3)

.addCallback(cbPrintData)

.addErrback (ebPrintError)

Q.0 0 Q
1

this series of callbacks and errbacks will print "Result: 12"
= Getter()

= g.getDummyData(4)

.addCallback(cbPrintData)

.addErrback (ebPrintError)

Q0 0 Q

reactor.calllLater(4, reactor.stop)
reactor.run()

Note: Pay particular attention to the handling of self.d in the gotResults method. Before the Deferred is fired
with aresult or an error, the attribute is set to None so that the Get ter instance no longer has a reference to the Deferred
about to be fired. This has several benefits. First, it avoids any chance Getter.gotResults will accidentally fire the
same Deferred more than once (which would result in an AlreadyCalledError exception). Second, it allows a
callback on that Deferred to call Getter.getDummyData (which sets a new value for the d attribute) without causing
problems. Third, it makes the Python garbage collector’s job easier by eliminating a reference cycle.

Visual Explanation

1

Data Sink
Requests Data FroMlpaes source

>
Returns Deferread
ol ject
q J
Attaches

1. Requesting method (data sink) requests data, gets Deferred object.

2. Requesting method attaches callbacks to Deferred object.

2.1. Developer Guides 167

Twisted Documentation, Release 23.8.0

Data Source

result or| failure

Deferread
object

resué;,f/\\\{iéjufe

C
= J? o % E
]_ .‘.'4 Ji'
l r
b b
=1 " ".__.". 2
Pl A & e
k
= 5
1. When the result is ready, give it to the Deferred object. .callback(result) if the operation succeeded, .
errback(failure) if it failed. Note that failure is typically an instance of a twisted.python. failure.
Failure instance.
2. Deferred object triggers previously-added (call/err)back with the result or failure. Execution then follows
the following rules, going down the chain of callbacks to be processed.
* Result of the callback is always passed as the first argument to the next callback, creating a chain of pro-
Cessors.
* If a callback raises an exception, switch to errback.
* Anunhandled failure gets passed down the line of errbacks, this creating an asynchronous analog to a series
to a series of except: statements.
 If an errback doesn’t raise an exception or return a twisted.python. failure.Failure instance, switch
to callback.
Errbacks

Deferred’s error handling is modeled after Python’s exception handling. In the case that no errors occur, all the callbacks
run, one after the other, as described above.

If the errback is called instead of the callback (e.g. because a DB query raised an error), then a twisted.python.
failure.Failure is passed into the first errback (you can add multiple errbacks, just like with callbacks). You can
think of your errbacks as being like except blocks of ordinary Python code.

Unless you explicitly raise an error in an except block, the Exception is caught and stops propagating, and normal
execution continues. The same thing happens with errbacks: unless you explicitly return a Failure or (re-)raise
an exception, the error stops propagating, and normal callbacks continue executing from that point (using the value
returned from the errback). If the errback does return a Failure or raise an exception, then that is passed to the next
errback, and so on.

168 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Note: If an errback doesn’t return anything, then it effectively returns None, meaning that callbacks will continue to be
executed after this errback. This may not be what you expect to happen, so be careful. Make sure your errbacks return
a Failure (probably the one that was passed to it), or a meaningful return value for the next callback.

Also, twisted.python. failure.Failure instances have a useful method called trap, allowing you to effectively
do the equivalent of:

try:
code that may throw an exception
cookSpamAndEggs ()

except (SpamException, EggException):
Handle SpamExceptions and EggExceptions

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

If none of arguments passed to failure. trap match the error encapsulated in that Failure, then it re-raises the error.

There’s another potential “gotcha” here. There’s a method twisted.internet.defer.Deferred.
addCallbacks() which is similar to, but not exactly the same as, addCallback followed by addErrback. In
particular, consider these two cases:

Case 1

d = getDeferredFromSomewhere()
d.addCallback(callbackl) # A
d.addErrback(errbackl) # B
d.addCallback(callback?2)
d.addErrback(errback?2)

Case 2

= getDeferredFromSomewhere ()
.addCallbacks(callbackl, errbackl) # C
.addCallbacks(callback2, errback2)

0o o %

If an error occurs in callback1, then for Case 1 errback1 will be called with the failure. For Case 2, errback2 will
be called. Be careful with your callbacks and errbacks.

What this means in a practical sense is in Case 1, the callback in line A will handle a success condition from
getDeferredFromSomewhere, and the errback in line B will handle any errors that occur from either the up-
stream source, or that occur in A. In Case 2, the errback in line C will only handle an error condition raised by
getDeferredFromSomewhere, it will not do any handling of errors raised in callbackl.

2.1. Developer Guides 169

Twisted Documentation, Release 23.8.0

Unhandled Errors

If a Deferred is garbage-collected with an unhandled error (i.e. it would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. This means that you can typically get away with not adding
errbacks and still get errors logged. Be careful though; if you keep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see the error (and your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add an errback after your callbacks, even if all you do is:

Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

Handling either synchronous or asynchronous results

In some applications, there are functions that might be either asynchronous or synchronous. For example, a user
authentication function might be able to check in memory whether a user is authenticated, allowing the authentication
function to return an immediate result, or it may need to wait on network data, in which case it should return a Deferred
to be fired when that data arrives. However, a function that wants to check if a user is authenticated will then need to
accept both immediate results and Deferreds.

In this example, the library function authenticateUser uses the application function isValidUser to authenticate
a user:

def authenticateUser(isValidUser, user):
if isValidUser(user):
print("User is authenticated")
else:
print("User is not authenticated")

However, it assumes that isValidUser returns immediately, whereas isValidUser may actually authenticate the
user asynchronously and return a Deferred. It is possible to adapt this trivial user authentication code to accept either a
synchronous isValidUser or an asynchronous isValidUser, allowing the library to handle either type of function. It
is, however, also possible to adapt synchronous functions to return Deferreds. This section describes both alternatives:
handling functions that might be synchronous or asynchronous in the library function (authenticateUser) or in the
application code.

Handling possible Deferreds in the library code

Here is an example of a synchronous user authentication function that might be passed to authenticateUser:

synch-validation.py

def synchronousIsValidUser (user):

e

Return true if user is a valid user, false otherwise

e

return user in ["Alice", "Angus", "Agnes"]

However, here’s an asynchronousIsValidUser function that returns a Deferred:

from twisted.internet import reactor, defer

(continues on next page)

170 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
def asynchronousIsValidUser(user):
d = defer.Deferred()
reactor.calllLater(2, d.callback, user in ["Alice", "Angus", "Agnes"])
return d

Our original implementation of authenticateUser expected isValidUser to be synchronous, but now we need
to change it to handle both synchronous and asynchronous implementations of isValidUser. For this, we use
maybeDeferred to call isValidUser, ensuring that the result of isValidUser is a Deferred, even if isValidUser
is a synchronous function:

from twisted.internet import defer

def printResult(result):
if result:
print("User is authenticated")
else:
print("User is not authenticated")

def authenticateUser(isValidUser, user):
d = defer.maybeDeferred(isValidUser, user)
d.addCallback(printResult)

Now isValidUser could be either synchronousIsValidUser or asynchronousIsValidUser.

It is also possible to modify synchronousIsValidUser to return a Deferred, see Generating Deferreds for more
information.

Cancellation

Motivation

A Deferred may take any amount of time to be called back; in fact, it may never be called back. Your users may not
be that patient. Since all actions taken when the Deferred completes are in your application or library’s callback code,
you always have the option of simply disregarding the result when you receive it, if it’s been too long. However, while
you're ignoring it, the underlying operation represented by that Deferred is still chugging along in the background,
possibly consuming resources such as CPU time, memory, network bandwidth and maybe even disk space. So, when
the user has closed the window, hit the cancel button, disconnected from your server or sent a “stop” network message,
you will want to announce your indifference to the result of that operation so that the originator of the Deferred can
clean everything up and free those resources to be put to better use.

Cancellation for Applications which Consume Deferreds

Here’s a simple example. You’re connecting to an external host with an endpoint, but that host is really slow. You want
to put a “cancel” button into your application to terminate the connection attempt, so the user can try connecting to a
different host instead. Here’s a simple sketch of such an application, with the actual user interface left as an exercise
for the reader:

def startConnecting(someEndpoint):
def connected(it):
"Do something useful when connected."
return someEndpoint.connect(myFactory) .addCallback(connected)
(continues on next page)

2.1. Developer Guides 171

Twisted Documentation, Release 23.8.0

(continued from previous page)
connectionAttempt = startConnecting(endpoint)
def cancelClicked(Q):
connectionAttempt.cancel ()

Obviously (I hope), startConnecting is meant to be called by some UI element that lets the user choose what
host to connect to and then constructs an appropriate endpoint (perhaps using twisted.internet.endpoints.
clientFromString). Then, a cancel button, or similar, is hooked up to the cancelClicked.

When connectionAttempt.cancel is invoked, that will:
1. cause the underlying connection operation to be terminated, if it is still ongoing
2. cause the connectionAttempt Deferred to be completed, one way or another, in a timely manner
3. likely cause the connectionAttempt Deferred to be errbacked with CancelledError

You may notice that that set of consequences is very heavily qualified. Although cancellation indicates the calling API’s
desire for the underlying operation to be stopped, the underlying operation cannot necessarily react immediately. Even
in this very simple example, there is already one thing that might not be interruptible: platform-native name resolution
blocks, and therefore needs to be executed in a thread; the connection operation can’t be cancelled if it’s stuck waiting
for a name to be resolved in this manner. So, the Deferred that you are cancelling may not callback or errback right
away.

A Deferred may wait upon another Deferred at any point in its callback chain (see “Handling...asynchronous results”,
above). There’s no way for a particular point in the callback chain to know if everything is finished. Since multiple
layers of the callback chain may wish to cancel the same Deferred, any layer may call .cancel() at any time. The
.cancel () method never raises any exception or returns any value; you may call it repeatedly, even on a Deferred
which has already fired, or which has no remaining callbacks. The main reason for all these qualifications, aside from
specific examples, is that anyone who instantiates a Deferred may supply it with a cancellation function; that function
can do absolutely anything that it wants to. Ideally, anything it does will be in the service of stopping the operation your
requested, but there’s no way to guarantee any exact behavior across all Deferreds that might be cancelled. Cancellation
of Deferreds is best effort. This may be the case for a number of reasons:

1. The Deferred doesn’t know how to cancel the underlying operation.

2. The underlying operation may have reached an uncancellable state, because some irreversible operation has been
done.

3. The Deferred may already have a result, and so there’s nothing to cancel.

Calling cancel) will always succeed without an error regardless of whether or not cancellation was possible. In cases
1 and 2 the Deferred may well errback with a twisted.internet.defer.CancelledError while the underlying
operation continues. Deferred s that support cancellation should document what they do when cancelled, if they are
uncancellable in certain edge cases, etc..

If the cancelled Deferred is waiting on another Deferred, the cancellation will be forwarded to the other Deferred.

172 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Default Cancellation Behavior

All Deferreds support cancellation. However, by default, they support a very rudimentary form of cancellation which
doesn’t free any resources.

Consider this example of a Deferred which is ignorant of cancellation:

operation = Deferred()
def x(result):
print ("Hooray, a result:
operation.addCallback(x)
...
def operationDone():
operation.callback("completed™)

+ repr(x))

A caller of an API that receives operation may call cancel on it. Since operation does not have a cancellation
function, one of two things will happen.

1. If operationDone has been called, and the operation has completed, nothing much will change. operation
will still have a result, and there are no more callbacks, so there’s no observable change in behavior.

2. If operationDone has not yet been invoked, then operation will be immediately errbacked with a
CancelledError.

However, once it’s cancelled, there’s no way to tell operationDone not to run; it will eventually call
operation.callback later. In normal operation, issuing callback on a Deferred that has already called
back results in an AlreadyCalledError, and this would cause an ugly traceback that could not be caught.
Therefore, .callback can be invoked exactly once, causing a no-op, on a Deferred which has been cancelled
but has no canceller. If you call it multiple times, you will still get an AlreadyCalledError exception.

Creating Cancellable Deferreds: Custom Cancellation Functions

Let’s imagine you are implementing an HTTP client, which returns a Deferred firing with the response from the server.
Cancellation is best achieved by closing the connection. In order to make cancellation do that, all you have to do is
pass a function to the constructor of the Deferred (it will get called with the Deferred that is being cancelled):

class HTTPClient (Protocol):
def request(self, method, path):
self.resultDeferred = Deferred(
lambda ignore: self.transport.abortConnection())
request = b" HTTP/1.0\r\n\r\n" % (method, path)
self.transport.write(request)
return self.resultDeferred

def dataReceived(self, data):
... parse HTTP response ...
... eventually call self.resultDeferred.callback()

Now if someone calls cancel () on the Deferred returned from HTTPClient.request (), the HTTP request will be
cancelled (assuming it’s not too late to do so). Care should be taken not to callback() a Deferred that has already
been cancelled.

2.1. Developer Guides 173

Twisted Documentation, Release 23.8.0

Timeouts
Timeouts are a special case of Cancellation. Let’s say we have a Deferred representing a task that may take a long
time. We want to put an upper bound on that task, so we want the Deferred to time out X seconds in the future.

A convenient API to do so is Deferred.addTimeout. By default, it will fail with a TimeoutError if the Deferred
hasn’t fired (with either an errback or a callback) within timeout seconds.

import random
from twisted.internet import task

def £Q:
return "Hopefully this will be called in 3 seconds or less"

def main(reactor):
delay = random.uniform(1l, 5)

def called(result):
print (" seconds later:".format(delay), result)

d = task.deferLater(reactor, delay, f)
d.addTimeout (3, reactor).addBoth(called)

return d

£f() will be timed out if the random delay is greater than 3 seconds
task.react(main)

Deferred.addTimeout uses the Deferred.cancel function under the hood, but can distinguish between a user’s
call to Deferred.cancel and a cancellation due to a timeout. By default, Deferred.addTimeout translates a
CancelledError produced by the timeout into a TimeoutError.

However, if you provided a custom cancellation when creating the Deferred, then cancelling it may not produce a
CancelledError. In this case, the default behavior of Deferred.addTimeout is to preserve whatever callback or
errback value your custom cancellation function produced. This can be useful if, for instance, a cancellation or timeout
should produce a default value instead of an error.

Deferred.addTimeout also takes an optional callable onTimeoutCancel which is called immediately after the de-
ferred times out. onTimeoutCancel is not called if it the deferred is otherwise cancelled before the timeout. It takes
an arbitrary value, which is the value of the deferred at that exact time (probably a CancelledError Failure), and
the timeout. This can be useful if, for instance, the cancellation or timeout does not result in an error but you want to
log the timeout anyway. It can also be used to alter the return value.

from twisted.internet import task, defer

def logTimeout(result, timeout):
print("Got but actually timed out after seconds". format (
result, timeout))
return result + " (timed out)"

def main(reactor):
generate a deferred with a custom canceller function, and never
never callback or errback it to guarantee it gets timed out
d = defer.Deferred(lambda c: c.callback("Everything's ok!"))
d.addTimeout (2, reactor, onTimeoutCancel=1logTimeout)

(continues on next page)

174 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

d.addBoth(print)
return d

task.react(main)

Note that the exact place in the callback chain that Deferred.addTimeout is added determines how much of the
callback chain should be timed out. The timeout encompasses all the callbacks and errbacks added to the Deferred
before the call to addTimeout, and none of the callbacks and errbacks added after the call. The timeout also starts
counting down as soon as soon as it’s invoked.

DeferredList

Sometimes you want to be notified after several different events have all happened, rather than waiting for each one
individually. For example, you may want to wait for all the connections in a list to close. twisted.internet.defer.
DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you simply pass a list of the Deferreds you want it to wait for:

Creates a DeferredList
dl = defer.DeferredList([deferredl, deferred2, deferred3])

You can now treat the DeferredList like an ordinary Deferred; you can call addCallbacks and so on. The DeferredList
will call its callback when all the deferreds have completed. The callback will be called with a list of the results of the
Deferreds it contains, like so:

A callback that unpacks and prints the results of a DeferredList
def printResult(result):
for (success, value) in result:
if success:
print('Success:', value)
else:
print('Failure:', value.getErrorMessage())

Create three deferreds.

deferredl = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()

Pack them into a DeferredList
dl = defer.DeferredList([deferredl, deferred2, deferred3], consumeErrors=True)

Add our callback
dl.addCallback(printResult)

Fire our three deferreds with various values.
deferredl.callback('one')
deferred?2.errback(Exception('bang! "))
deferred3.callback('three')

At this point, dl will fire its callback, printing:
Success: one
Failure: bang!

(continues on next page)

2.1. Developer Guides 175

Twisted Documentation, Release 23.8.0

(continued from previous page)

Success: three
(note that defer.SUCCESS == True, and defer.FAILURE == False)

A standard DeferredList will never call errback, but failures in Deferreds passed to a DeferredList will still errback
unless consumeErrors is passed True. See below for more details about this and other flags which modify the behavior
of DeferredList.

Note: If you want to apply callbacks to the individual Deferreds that go into the DeferredList, you should be careful
about when those callbacks are added. The act of adding a Deferred to a DeferredList inserts a callback into that
Deferred (when that callback is run, it checks to see if the DeferredList has been completed yet). The important thing
to remember is that it is this callback which records the value that goes into the result list handed to the DeferredList’s
callback.

Therefore, if you add a callback to the Deferred after adding the Deferred to the DeferredList, the value returned by
that callback will not be given to the DeferredList’s callback. To avoid confusion, we recommend not adding callbacks
to a Deferred once it has been used in a DeferredList.

def printResult(result):
print(result)

def addTen(result):
return result +

ten

Deferred gets callback before DeferredlList is created

deferredl = defer.Deferred()

deferred2 = defer.Deferred()

deferredl.addCallback(addTen)

dl = defer.DeferredList([deferredl, deferred2])

dl.addCallback(printResult)

deferredl.callback("one") # fires addTen, checks DeferredlList, stores '"one ten"
deferred2.callback("two")

At this point, dl will fire its callback, printing:

[(1, 'one ten'), (1, 'two")]

Deferred gets callback after DeferredList is created

deferredl = defer.Deferred()

deferred2 = defer.Deferred()

dl = defer.DeferredList([deferredl, deferred2])
deferredl.addCallback(addTen) # will run *after® DeferredList gets its value
dl.addCallback(printResult)

deferredl.callback("one") # checks DeferredList, stores '"one", fires addTen
deferred2.callback("two")

At this point, dl will fire its callback, printing:

[(1, 'one), (1, 'two")]

176 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Other behaviours

DeferredList accepts three keyword arguments that modify its behaviour: fireOnOneCallback, fireOnOneErrback
and consumeErrors. If fireOnOneCallback is set, the DeferredList will immediately call its callback as soon as
any of its Deferreds call their callback. Similarly, fireOnOneErrback will call errback as soon as any of the Deferreds
call their errback. Note that DeferredList is still one-shot, like ordinary Deferreds, so after a callback or errback has
been called the DeferredList will do nothing further (it will just silently ignore any other results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for all the results if everything succeeds,
but also want to know immediately if something fails.

The consumeErrors argument will stop the DeferredList from propagating any errors along the callback chains of
any Deferreds it contains (usually creating a DeferredList has no effect on the results passed along the callbacks and
errbacks of their Deferreds). Stopping errors at the DeferredList with this option will prevent “Unhandled error in
Deferred” warnings from the Deferreds it contains without needing to add extra errbacks' . Passing a true value for the
consumeErrors parameter will not change the behavior of fireOnOneCallback or fireOnOneErrback.

gatherResults

A common use for DeferredList is to “join” a number of parallel asynchronous operations, finishing successfully if
all of the operations were successful, or failing if any one of the operations fails. In this case, twisted.internet.
defer.gatherResults() is a useful shortcut:

from twisted.internet import defer

dl = defer.Deferred()
d2 = defer.Deferred()
d = defer.gatherResults([dl, d2], consumeErrors=True)

def cbPrintResult(result):
print(result)

d.addCallback(cbPrintResult)

dl.callback("one")

nothing is printed yet; d is still awaiting completion of d2
d2.callback("two")

printResult prints ["one", "two"]

The consumeErrors argument has the same meaning as it does for DeferredList: if true, it causes gatherResults
to consume any errors in the passed-in Deferreds. Always use this argument unless you are adding further callbacks
or errbacks to the passed-in Deferreds, or unless you know that they will not fail. Otherwise, a failure will result in an
unhandled error being logged by Twisted. This argument is available since Twisted 11.1.0.

! Unless of course a later callback starts a fresh error — but as we’ve already noted, adding callbacks to a Deferred after its used in a DeferredList
is confusing and usually avoided.

2.1. Developer Guides 177

Twisted Documentation, Release 23.8.0

Class Overview

This is an overview API reference for Deferred from the point of using a Deferred returned by a function. It is not
meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its use.

There is a parallel overview of functions used by the Deferred’s creator in Generating Deferreds.

Basic Callback Functions

e addCallbacks(self, callback[, errback, callbackArgs, callbackKeywords, errbackArgs,
errbackKeywords])

This is the method you will use to interact with Deferred. It adds a pair of callbacks “parallel” to each other (see
diagram above) in the list of callbacks made when the Deferred is called back to. The signature of a method
added using addCallbacks should be myMethod(result, *methodAsrgs, **methodKeywords). If your
method is passed in the callback slot, for example, all arguments in the tuple callbackArgs will be passed
as *methodArgs to your method.

There are various convenience methods that are derivative of addCallbacks. I will not cover them in detail here,
but it is important to know about them in order to create concise code.

e addCallback(callback, *callbackArgs, **callbackKeywords)

Adds your callback at the next point in the processing chain, while adding an errback that will re-raise
its first argument, not affecting further processing in the error case.

Note that, while addCallbacks (plural) requires the arguments to be passed in a tuple, addCallback
(singular) takes all its remaining arguments as things to be passed to the callback function. The reason
is obvious: addCallbacks (plural) cannot tell whether the arguments are meant for the callback or the
errback, so they must be specifically marked by putting them into a tuple. addCallback (singular)
knows that everything is destined to go to the callback, so it can use Python’s “*” and “**” syntax to
collect the remaining arguments.

addErrback(errback, *errbackArgs, **errbackKeywords)

Adds your errback at the next point in the processing chain, while adding a callback that will return its first
argument, not affecting further processing in the success case.

addBoth(callbackOrErrback, *callbackOrErrbackArgs, **callbackOrErrbackKeywords)

This method adds the same callback into both sides of the processing chain at both points. Keep in mind that the
type of the first argument is indeterminate if you use this method! Use it for finally: style blocks.

Chaining Deferreds

If you need one Deferred to wait on another, all you need to do is return a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a method added to Deferred A using A.addCallbacks, Deferred A’s
processing chain will stop until Deferred B’s .callback() method is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s processing chain at the time.

Note: If a Deferred is somehow returned from its own callbacks (directly or indirectly), the behavior is undefined.
The Deferred code will make an attempt to detect this situation and produce a warning. In the future, this will become
an exception.

178 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

If this seems confusing, don’t worry about it right now — when you run into a situation where you need this behavior,
you will probably recognize it immediately and realize why this happens. If you want to chain deferreds manually,
there is also a convenience method to help you.

e chainDeferred(otherDeferred)

Add otherDeferred to the end of this Deferred’s processing chain. When self.callback is called, the result of
my processing chain up to this point will be passed to otherDeferred.callback. Further additions to my
callback chain do not affect otherDeferred.

This is the same as self.addCallbacks(otherDeferred.callback, otherDeferred.errback).

See also

1. Generating Deferreds, an introduction to writing asynchronous functions that return Deferreds.

2.1.15 Generating Deferreds
Deferred objects are signals that a function you have called does not yet have the data you want available. When a
function returns a Deferred object, your calling function attaches callbacks to it to handle the data when available.

This document addresses the other half of the question: writing functions that return Deferreds, that is, constructing
Deferred objects, arranging for them to be returned immediately without blocking until data is available, and firing
their callbacks when the data is available.

This document assumes that you are familiar with the asynchronous model used by Twisted, and with using deferreds
returned by functions .

Class overview

This is an overview API reference for Deferred from the point of creating a Deferred and firing its callbacks and
errbacks. It is not meant to be a substitute for the docstrings in the Deferred class, but can provide guidelines for its
use.

There is a parallel overview of functions used by calling function which the Deferred is returned to at Using Deferreds

Basic Callback Functions

e callback(result)

Run success callbacks with the given result. This can only be run once. Later calls to this or errback will
raise twisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added after this
point, addCallbacks will run the callbacks immediately.

e errback(failure)

Run error callbacks with the given failure. This can only be run once. Later calls to this or callback will
raise twisted.internet.defer.AlreadyCalledError . If further callbacks or errbacks are added after this
point, addCallbacks will run the callbacks immediately.

2.1. Developer Guides 179

Twisted Documentation, Release 23.8.0

What Deferreds don’t do: make your code asynchronous

Deferreds do not make the code magically not block.

Let’s take this function as an example:

from twisted.internet import defer
TARGET = 10000
def largeFibonnaciNumber():
create a Deferred object to return:
d = defer.Deferred()

calculate the ten thousandth Fibonnaci number

first = 0
second = 1
for i in range(TARGET - 1):
new = first + second
first = second
second = new
if i % 100 == 0:
print("Progress: calculating the %dth Fibonnaci number" % i)

give the Deferred the answer to pass to the callbacks:
d.callback(second)

return the Deferred with the answer:
return d

import time
timeBefore = time.time()

call the function and get our Deferred
d = largeFibonnaciNumber ()

timeAfter = time.time()

print("Total time taken for largeFibonnaciNumber call: %0.3f seconds" % \
(timeAfter - timeBefore))

add a callback to it to print the number

def printNumber (number) :
print("The %dth Fibonacci number is %d" % (TARGET, number))

print("Adding the callback now.")

d.addCallback(printNumber)

You will notice that despite creating a Deferred in the largeFibonnaciNumber function, these things happened:

180 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

* the “Total time taken for largeFibonnaciNumber call” output shows that the function did not return immediately
as asynchronous functions are expected to do; and

* rather than the callback being added before the result was available and called after the result is available, it isn’t
even added until after the calculation has been completed.

The function completed its calculation before returning, blocking the process until it had finished, which is exactly
what asynchronous functions are not meant to do. Deferreds are not a non-blocking talisman: they are a signal for
asynchronous functions to use to pass results onto callbacks, but using them does not guarantee that you have an
asynchronous function.

Advanced Processing Chain Control

e pause()
Cease calling any methods as they are added, and do not respond to callback , until self.unpause() is called.
e unpause()

If callback has been called on this Deferred already, call all the callbacks that have been added to this Deferred
since pause was called.

Whether it was called or not, this will put this Deferred in a state where further calls to addCallbacks or
callback will work as normal.

Returning Deferreds from synchronous functions

Sometimes you might wish to return a Deferred from a synchronous function. There are several reasons why, the major
two are maintaining API compatibility with another version of your function which returns a Deferred, or allowing for
the possibility that in the future your function might need to be asynchronous.

In the Using Deferreds reference, we gave the following example of a synchronous function:

synch-validation.py

def synchronousIsValidUser (user):

e

Return true if user is a valid user, false otherwise

e

return user in ["Alice", "Angus", "Agnes"]

While we can require that callers of our function wrap our synchronous result in a Deferred using maybeDeferred ,
for the sake of API compatibility it is better to return a Deferred ourselves using defer.succeed :

from twisted.internet import defer

def immediateIsValidUser(user):

"

Returns a Deferred resulting in true if user is a valid user, false
otherwise

"

result = user in ["Alice", "Angus", "Agnes"]

return a Deferred object already called back with the value of result
return defer.succeed(result)

2.1. Developer Guides 181

Twisted Documentation, Release 23.8.0

There is an equivalent defer. fail method to return a Deferred with the errback chain already fired.

Integrating blocking code with Twisted

At some point, you are likely to need to call a blocking function: many functions in third party libraries will have long
running blocking functions. There is no way to ‘force’ a function to be asynchronous: it must be written that way
specifically. When using Twisted, your own code should be asynchronous, but there is no way to make third party
functions asynchronous other than rewriting them.

In this case, Twisted provides the ability to run the blocking code in a separate thread rather than letting it block your
application. The twisted.internet.threads.deferToThread() function will set up a thread to run your blocking
function, return a Deferred and later fire that Deferred when the thread completes.

Let’s assume our largeFibonnaciNumber function from above is in a third party library (returning the result of the
calculation, not a Deferred) and is not easily modifiable to be finished in discrete blocks. This example shows it being
called in a thread, unlike in the earlier section we’ll see that the operation does not block our entire program:

def largeFibonnaciNumber():
Represent a long running blocking function by calculating
the TARGETth Fibonnaci number

e

TARGET = 10000

first = 0
second = 1

for i in range(TARGET - 1):
new = first + second
first = second
second = new

return second
from twisted.internet import threads, reactor

def fibonacciCallback(result):
Callback which manages the largeFibonnaciNumber result by
printing it out

i

print("largeFibonnaciNumber result =", result)

make sure the reactor stops after the callback chain finishes,
just so that this example terminates

reactor.stop()

def runQ:
Run a series of operations, deferring the largeFibonnaciNumber
operation to a thread and performing some other operations after
adding the callback
get our Deferred which will be called with the largeFibonnaciNumber result

d = threads.deferToThread(largeFibonnaciNumber)
(continues on next page)

182 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

add our callback to print it out
d.addCallback(fibonacciCallback)

print("1st line after the addition of the callback™)
print("2nd line after the addition of the callback")

if name_ == '__main__':

run()
reactor.run()

Possible sources of error

Deferreds greatly simplify the process of writing asynchronous code by providing a standard for registering callbacks,
but there are some subtle and sometimes confusing rules that you need to follow if you are going to use them. This
mostly applies to people who are writing new systems that use Deferreds internally, and not writers of applications that
just add callbacks to Deferreds produced and processed by other systems. Nevertheless, it is good to know.

Firing Deferreds more than once is impossible

Deferreds are one-shot. You can only call Deferred.callback or Deferred. errback once. The processing chain
continues each time you add new callbacks to an already-called-back-to Deferred.

Synchronous callback execution

If a Deferred already has a result available, addCallback may call the callback synchronously: that is, immediately
after it’s been added. In situations where callbacks modify state, it is might be desirable for the chain of processing to
halt until all callbacks are added. For this, it is possible to pause and unpause a Deferred’s processing chain while
you are adding lots of callbacks.

Be careful when you use these methods! If you pause a Deferred, it is your responsibility to make sure that you
unpause it. The function adding the callbacks must unpause a paused Deferred, it should never be the responsibility of
the code that actually fires the callback chain by calling callback or errback as this would negate its usefulness!

2.1.16 Scheduling tasks for the future

Let’s say we want to run a task X seconds in the future. The way to do that is defined in the reactor interface twisted.
internet.interfaces.IReactorTime :

from twisted.internet import reactor

def f(s):
print("this will run 3.5 seconds after it was scheduled: "% s)

reactor.calllLater(3.5, f, "hello, world")

f() will only be called if the event loop is started.
reactor.run()

If the result of the function is important or if it may be necessary to handle exceptions it raises, then the twisted.
internet.task.deferLater() utility conveniently takes care of creating a Deferred and setting up a delayed call:

2.1. Developer Guides 183

Twisted Documentation, Release 23.8.0

from twisted.internet import task
from twisted.internet import reactor

def £(s):
return "This will run 3.5 seconds after it was scheduled: %s" % s

d = task.deferLater(reactor, 3.5, f, "hello, world")
def called(result):

print(result)
d.addCallback(called)

f() will only be called if the event loop is started.
reactor.run()

If we want a task to run every X seconds repeatedly, we can use twisted.internet.task.LoopingCall:

from twisted.internet import task
from twisted.internet import reactor

loopTimes = 3
failInTheEnd = False
_loopCounter = 0

def runEverySecond():

o

Called at ever loop interval.

e

global _loopCounter

if _loopCounter < loopTimes:
_loopCounter += 1
print('A new second has passed.')
return

if failInTheEnd:
raise Exception('Failure during loop execution.')

We looped enough times.
loop.stop(Q)
return

def cbLoopDone(result):

e

Called when loop was stopped with success.

o

print("Loop done.")
reactor.stop()

def eblLoopFailed(failure):

o

Called when loop execution failed.
(continues on next page)

184 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

o

print (failure.getBriefTraceback())
reactor.stop()
loop = task.LoopingCall (runEverySecond)

Start looping every 1 second.
loopDeferred = loop.start(l.0)

Add callbacks for stop and failure.
loopDeferred.addCallback(cbLoopDone)
loopDeferred.addErrback(ebLoopFailed)

reactor.run()

If we want to cancel a task that we’ve scheduled:

from twisted.internet import reactor

def £(O):
print("I'll never run.")

callID = reactor.calllLater(5, f)
callID.cancel()
reactor.run()

As with all reactor-based code, in order for scheduling to work the reactor must be started using reactor.run() .

See also

1. Timing out Deferreds

2.1.17 Using Threads in Twisted

How Twisted Uses Threads Itself

All callbacks registered with the reactor — for example, dataReceived, connectionLost, or any higher-level method
that comes from these, such as render_GET in twisted.web, or a callback added to a Deferred — are called from
reactor.run. The terminology around this is that we say these callbacks are run in the “main thread”, or “reactor
thread” or “I/O thread”.

Therefore, internally, Twisted makes very little use of threads. This is not to say that it makes no use of threads; there
are plenty of APIs which have no non-blocking equivalent, so when Twisted needs to call those, it calls them in a
thread. One prominent example of this is system hostname resolution: unless you have configured Twisted to use its
own DNS client in twisted.names, it will have to use your operating system’s blocking APIs to map host names to
IP addresses, in the reactor’s thread pool. However, this is something you only need to know about for resource-tuning
purposes, like setting the number of threads to use; otherwise, it is an implementation detail you can ignore.

It is a common mistake to think that because Twisted can manage multiple connections at once, things are happening
in multiple threads, and so you need to carefully manage locks. Lucky for you, Twisted does most things in one thread!

2.1. Developer Guides 185

Twisted Documentation, Release 23.8.0

This document explains how to interact with existing APIs which need to be run within their own threads because they
block. If you’re just using Twisted’s own APIs, the rule for threads is simply “don’t use them”.

Invoking Twisted From Other Threads

Methods within Twisted may only be invoked from the reactor thread unless otherwise noted. Very few things within
Twisted are thread-safe. For example, writing data to a transport from a protocol is not thread-safe. This means that
if you start a thread and call a Twisted method, you might get correct behavior... or you might get hangs, crashes, or
corrupted data. So don’t do it.

The right way to call methods on the reactor from another thread, and therefore any objects which might call methods
on the reactor, is to give a function to the reactor to execute within its own thread. This can be done using the function
callFromThread:

from twisted.internet import reactor

def notThreadSafe(someProtocol, message):
someProtocol . transport.write(b"a message:

def callFromWhateverThreadYouWant():
reactor.callFromThread(notThreadSafe, b"hello")

+ message)

In this example, callFromWhateverThreadYouWant is thread-safe and can be invoked by any thread, but
notThreadSafe should only ever be called by code running in the thread where reactor.run is running.

Note: There are many objects within Twisted that represent values — for example, FilePath and URLPath — which
you may construct yourself. These may be safely constructed and used within a non-reactor thread as long as they are
not shared with other threads. However, you should be sure that these objects do not share any state, especially not with
the reactor. One good rule of thumb is that any object whose methods return Deferreds is almost certainly touching
the reactor at some point, and should never be accessed from a non-reactor thread.

Running Code In Threads

Sometimes we may want to run code in a non-reactor thread, to avoid blocking the reactor. Twisted provides a low-level
API for doing so, the callInThread method on the reactor.

For example, to run a method in a non-reactor thread we can do:

from twisted.internet import reactor

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print(x)

reactor.callInThread(aSillyBlockingMethod, "2 seconds have passed")
reactor.run()

callInThread will put your code into a queue, to be run by the next available thread in the reactor’s thread pool. This
means that depending on what other work has been submitted to the pool, your method may not run immediately.

Note: Keep in mind that callInThread can only concurrently run a fixed maximum number of tasks, and all users
of the reactor are sharing that limit. Therefore, you should not submit fasks which depend on other tasks in order to
complete to be executed by callInThread. An example of such a task would be something like this:

186 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

q = Queue()

def blocker(Q):
print(g.get() + qg.get())

def unblocker(a, b):
q.put(a)
q.put(b)

In this case, blocker will block forever unless unblocker can successfully run to give it inputs; similarly, unblocker
might block forever if blocker is not run to consume its outputs. So if you had a threadpool of maximum size X, and
you ran for each in range(X): reactor.callInThread(blocker), the reactor threadpool would be wedged
forever, unable to process more work or even shut down.

See “Managing the Reactor Thread Pool” below to tune these limits.

Getting Results
callInThread and callFromThread allow you to move the execution of your code out of and into the reactor thread,
respectively, but that isn’t always enough.

When we run some code, we often want to know what its result was. For this, Twisted provides two methods:
deferToThread and blockingCallFromThread, defined in the twisted.internet.threads module.

To get a result from some blocking code back into the reactor thread, we can use deferToThread to execute it instead
of callFromThread.

from twisted.internet import reactor, threads

def doLongCalculation():
.... do long calculation here ...
return 3

def printResult(x):
print (x)

run method in thread and get result as defer.Deferred
d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult)

reactor.run()

Similarly, if you want some code running in a non-reactor thread to invoke some code in the reactor thread and get its
result, you can use blockingCallFromThread:

from twisted.internet import threads, reactor, defer
from twisted.web.client import Agent
from twisted.web.error import Error

def inThread(Q):
agent = Agent(reactor)
try:
result = threads.blockingCallFromThread(
reactor,
(continues on next page)

2.1. Developer Guides 187

Twisted Documentation, Release 23.8.0

(continued from previous page)

agent.request,
b"GET",
b"https://twistedmatrix.com/",
)
except Exception as exc:
print(exc)
else:
print(result)
reactor.callFromThread(reactor.stop)

reactor.callInThread(inThread)
reactor.run()

blockingCallFromThread will return the object or raise the exception returned or raised by the function passed to it.
If the function passed to it returns a Deferred, it will return the value the deferred is fired with or raise the exception
it is failed with.

Managing the Reactor Thread Pool

We may want to modify the size of the thread pool, increasing or decreasing the number of threads in use. We can do
this:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(30)

The default size of the thread pool depends on the reactor being used; the default reactor uses a minimum size of 0 and
a maximum size of 10.

The reactor thread pool is implemented by ThreadPool. To access methods on this object for more advanced tuning
and monitoring (see the API documentation for details) you can get the thread pool with getThreadPool.

2.1.18 Producers and Consumers: Efficient High-Volume Streaming

The purpose of this guide is to describe the Twisted producer and consumer system. The producer system allows
applications to stream large amounts of data in a manner which is both memory and CPU efficient, and which does not
introduce a source of unacceptable latency into the reactor.

Readers should have at least a passing familiarity with the terminology associated with interfaces.

Push Producers

A push producer is one which will continue to generate data without external prompting until told to stop; a pull
producer will generate one chunk of data at a time in response to an explicit request for more data.

The push producer API is defined by the IPushProducer interface. It is best to create a push producer when data
generation is closedly tied to an event source. For example, a proxy which forwards incoming bytes from one socket to
another outgoing socket might be implemented using a push producer: the dataReceived takes the role of an event
source from which the producer generates bytes, and requires no external intervention in order to do so.

There are three methods which may be invoked on a push producer at various points in its lifetime: pauseProducing
, resumeProducing, and stopProducing .

188 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

pauseProducing()

In order to avoid the possibility of using an unbounded amount of memory to buffer produced data which cannot be
processed quickly enough, it is necessary to be able to tell a push producer to stop producing data for a while. This is
done using the pauseProducing method. Implementers of a push producer should temporarily stop producing data
when this method is invoked.

resumeProducing()

After a push producer has been paused for some time, the excess of data which it produced will have been pro-
cessed and the producer may again begin producing data. When the time for this comes, the push producer will have
resumeProducing invoked on it.

stopProducing()

Most producers will generate some finite (albeit, perhaps, unknown in advance) amount of data and then stop, having
served their intended purpose. However, it is possible that before this happens an event will occur which renders the
remaining, unproduced data irrelevant. In these cases, producing it anyway would be wasteful. The stopProducing
method will be invoked on the push producer. The implementation should stop producing data and clean up any
resources owned by the producer.

Pull Producers

The pull producer API is defined by the TPul1lProducer interface. Pull producers are useful in cases where there is
no clear event source involved with the generation of data. For example, if the data is the result of some algorithmic
process that is bound only by CPU time, a pull producer is appropriate.

Pull producers are defined in terms of only two methods: resumeProducing and stopProducing .

resumeProducing()

Unlike push producers, a pull producer is expected to only produce data in response to resumeProducing being called.
This method will be called whenever more data is required. How much data to produce in response to this method call
depends on various factors: too little data and runtime costs will be dominated by the back-and-forth event notification
associated with a buffer becoming empty and requesting more data to process; too much data and memory usage will be
driven higher than it needs to be and the latency associated with creating so much data will cause overall performance
in the application to suffer. A good rule of thumb is to generate between 16 and 64 kilobytes of data at a time, but you
should experiment with various values to determine what is best for your application.

stopProducing()

This method has the same meaning for pull producers as it does for push producers.

2.1. Developer Guides 189

Twisted Documentation, Release 23.8.0

Consumers

This far, I’ve discussed the various external APIs of the two kinds of producers supported by Twisted. However, I have
not mentioned where the data a producer generates actually goes, nor what entity is responsible for invoking these
APIs. Both of these roles are filled by consumers . Consumers are defined by the one interface IConsumer .

IConsumer , defines three methods: registerProducer , unregisterProducer, and write .

registerProducer(producer, streaming)

So that a consumer can invoke methods on a producer, the consumer needs to be told about the producer. This is done
with the registerProducer method. The first argument is either a TPul1Producer or IPushProducer provider; the
second argument indicates which of these interfaces is provided: True for push producers, False for pull producers.

unregisterProducer()

Eventually a consumer will not longer be interested in a producer. This could be because the producer has finished
generating all its data, or because the consumer is moving on to something else, or any number of other reasons. In
any case, this method reverses the effects of registerProducer .

write(data)

As you might guess, this is the method which a producer calls when it has generated some data. Push producers
should call it as frequently as they like as long as they are not paused. Pull producers should call it once for each time
resumeProducing is called on them.

Further Reading

An example push producer application can be found in doc/examples/streaming.py .
» Components: Interfaces and Adapters

e FileSender : A Simple Pull Producer

2.1.19 Choosing a Reactor and GUI Toolkit Integration

Overview
Twisted provides a variety of implementations of the twisted.internet.reactor. The specialized implementations
are suited for different purposes and are designed to integrate better with particular platforms.

The epoll()-based reactor is Twisted’s default on Linux. Other platforms use poll() , or the most cross-platform reactor,
select() .

Platform-specific reactor implementations exist for:
* Poll for Linux
* Epoll for Linux 2.6
* WaitForMultipleObjects (WFMO) for Win32
* Input/Output Completion Port (IOCP) for Win32

190 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

* KQueue for FreeBSD and macOS
* CoreFoundation for macOS

The remaining custom reactor implementations provide support for integrating with the native event loops of various
graphical toolkits. This lets your Twisted application use all of the usual Twisted APIs while still being a graphical
application.

Twisted currently integrates with the following graphical toolkits:
e GTK+ 2.0
* GTK+ 3.0 and GObject Introspection
e Tkinter
* wxPython
* Win32
* CoreFoundation
e PyUI

When using applications that are runnable using twistd , e.g. TACs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen using twistd ‘s -r option.

In all cases, the event loop is started by calling reactor.run() . In all cases, the event loop should be stopped with
reactor.stop() .

IMPORTANT: installing a reactor should be the first thing done in the app, since any code that does from twisted.
internet import reactor will automatically install the default reactor if the code hasn’t already installed one.

Reactor Functionality

Status TCP SSL UDP Thread- Pro- Schedul- Plat-
ing cesses ing forms
select() Stable Y Y Y Y Y Y Unix,
Win32
poll Stable Y Y Y Y Y Y Unix
WaitForMultipleObjects (WFMO) Experi- Y Y Y Y Y Y Win32
for Win32 mental
Input/Output Completion Port Experi- Y Y Y Y Y Y Win32
(IOCP) for Win32 mental
CoreFoundation Unmain- Y Y Y Y Y Y macOS
tained
epoll Stable Y Y Y Y Y Y Linux
2.6
GTK+ Stable Y Y Y Y Y Y Unix,
Win32
WX Experi- Y Y Y Y Y Y Unix,
mental Win32
kqueue Stable Y Y Y Y Y Y FreeBSD

2.1. Developer Guides 191

Twisted Documentation, Release 23.8.0

General Purpose Reactors

Select()-based Reactor

The select reactor is the default on platforms that don’t provide a better alternative that covers all use cases. If the
select reactor is desired, it may be installed via:

from twisted.internet import selectreactor
selectreactor.install()

from twisted.internet import reactor

Platform-Specific Reactors

Poll-based Reactor

The PollReactor will work on any platform that provides select.poll . With larger numbers of connected sockets, it
may provide for better performance than the SelectReactor.

from twisted.internet import pollreactor
pollreactor.install()

from twisted.internet import reactor

KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kqueue mechanism for event scheduling. See instructions in
the twisted.internet.kqreactor ‘s docstring for installation notes.

from twisted.internet import kqreactor
kqreactor.install()

from twisted.internet import reactor

WaitForMultipleObjects (WFMO) for Win32

The Win32 reactor is not yet complete and has various limitations and issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it can be used for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()

from twisted.internet import reactor

192 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Input/Output Completion Port (IOCP) for Win32

Windows provides a fast, scalable event notification system known as IO Completion Ports, or IOCP for short. Twisted
includes a reactor based on IOCP which is nearly complete.

from twisted.internet import iocpreactor
iocpreactor.install()

from twisted.internet import reactor

Epoll-based Reactor

The EPollReactor will work on any platform that provides epoll , today only Linux 2.6 and over. The implementation
of the epoll reactor currently uses the Level Triggered interface, which is basically like poll() but scales much better.

from twisted.internet import epollreactor
epollreactor.install()

from twisted.internet import reactor

GUI Integration Reactors

GTK+

Twisted integrates with PyGTK version 2.0 using the gtk2reactor . An example Twisted application that uses GTK+
can be found in doc/core/examples/pbgtk2.py .

GTK-2.0 split the event loop out of the GUI toolkit and into a separate module called “glib” . To run an application
using the glib event loop, use the glib2reactor . This will be slightly faster than gtk2reactor (and does not require
a working X display), but cannot be used to run GUI applications.

from twisted.internet import gtk2reactor # for gtk-2.0
gtk2reactor.install()

from twisted.internet import reactor

from twisted.internet import glib2reactor # for non-GUI apps
glib2reactor.install ()

from twisted.internet import reactor

2.1. Developer Guides 193

http://www.pygtk.org/

Twisted Documentation, Release 23.8.0

GTK+ 3.0 and GObject Introspection

Twisted integrates with GTK+ 3 and GObject through PyGObject’s introspection using the gtk3reactor and
gireactor reactors.

from twisted.internet import gtk3reactor
gtk3reactor.install()

from twisted.internet import reactor

from twisted.internet import gireactor # for non-GUI apps
gireactor.install()

from twisted.internet import reactor

GLib 3.0 introduces the concept of GApplication, a class that handles application uniqueness in a cross-platform
way and provides its own main loop. Its counterpart GtkApplication also handles application lifetime with respect
to open windows. Twisted supports registering these objects with the event loop, which should be done before running
the reactor:

from twisted.internet import gtk3reactor
gtk3reactor.install()

from gi.repository import Gtk
app = Gtk.Application(...)

from twisted import reactor
reactor.registerGApplication(app)
reactor.run()

wxPython

Twisted currently supports two methods of integrating wxPython. Unfortunately, neither method will work on all
wxPython platforms (such as GTK2 or Windows). It seems that the only portable way to integrate with wxPython is
to run it in a separate thread. One of these methods may be sufficient if your wx app is limited to a single platform.

As with Tkinter , the support for integrating Twisted with a wxPython application uses specialized support code rather
than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxAppInstance = wxApp(0)
wxsupport.install (myWWxAppInstance)

However, this has issues when running on Windows, so Twisted now comes with alternative wxPython support using
areactor. Using this method is probably better. Initialization is done in two stages. In the first, the reactor is installed:

from twisted.internet import wxreactor
wxreactor.install()

from twisted.internet import reactor

194 Chapter 2. Twisted Core

http://gtk.org
http://live.gnome.org/PyGObject
http://www.wxpython.org

Twisted Documentation, Release 23.8.0

Later, once a wxApp instance has been created, but before reactor.run() is called:

from twisted.internet import reactor
myWxAppInstance = wxApp(0)
reactor.registeriixApp (myWxAppInstance)

An example Twisted application that uses wxPython can be found in doc/core/examples/wxdemo.py .

CoreFoundation

Twisted integrates with PyObjC version 1.0. Sample applications using Cocoa and Twisted are available in the examples
directory under doc/core/examples/threadedselect/Cocoa .

from twisted.internet import cfreactor
cfreactor.install()

from twisted.internet import reactor

Non-Reactor GUI Integration

Tkinter

The support for Tkinter doesn’t use a specialized reactor. Instead, there is some specialized support code:

from tkinter import *
from twisted.internet import tksupport, reactor

root = Tk

Install the Reactor support
tksupport.install(root)

at this point build Tk app as usual using the root object,
and start the program with "reactor.run()'", and stop it
with "reactor.stop()".

PyUI

As with Tkinter , the support for integrating Twisted with a PyUI application uses specialized support code rather than
a simple reactor.

from twisted.internet import pyuisupport, reactor

pyuisupport.install (args=(640, 480), kw={'renderer': 'gl'})

An example Twisted application that uses PyUI can be found in doc/core/examples/pyuidemo.py .

2.1. Developer Guides 195

http://pyobjc.sf.net/
http://wiki.python.org/moin/TkInter
http://pyui.sourceforge.net

Twisted Documentation, Release 23.8.0

2.1.20 Getting Connected with Endpoints

Introduction

On a network, one can think of any given connection as a long wire, stretched between two points. Lots of stuff can
happen along the length of that wire - routers, switches, network address translation, and so on, but that is usually
invisible to the application passing data across it. Twisted strives to make the nature of the “wire” as transparent as
possible, with highly abstract interfaces for passing and receiving data, such as ITransport and IProtocol.

However, the application can’t be completely ignorant of the wire. In particular, it must do something to start the
connection, and to do so, it must identify the end points of the wire. There are different names for the roles of each end

point - “initiator” and “responder”, “connector”” and “listener”, or “client” and “server” - but the common theme is that
one side of the connection waits around for someone to connect to it, and the other side does the connecting.

In Twisted 10.1, several new interfaces were introduced to describe each of these roles for stream-oriented connections:
IStreamServerEndpoint and IStreamClientEndpoint. The word “stream”, in this case, refers to endpoints which
treat a connection as a continuous stream of bytes, rather than a sequence of discrete datagrams: TCP is a “stream”
protocol whereas UDP is a “datagram” protocol.

Constructing and Using Endpoints

In both Writing Servers and Writing Clients, we covered basic usage of endpoints; you construct an appropriate type of
server or client endpoint, and then call 1isten (for servers) or connect (for clients).

In both of those tutorials, we constructed specific types of endpoints directly. However, in most programs, you will
want to allow the user to specify where to listen or connect, in a way which will allow the user to request different
strategies, without having to adjust your program. In order to allow this, you should use clientFromString or
serverFromString.

There’s Not Much To It

Each type of endpoint is just an interface with a single method that takes an argument. serverEndpoint.
listen(factory) will start listening on that endpoint with your protocol factory, and clientEndpoint.
connect(factory) will start a single connection attempt. Each of these APIs returns a value, though, which can
be important.

However, if you are not already, you should be very familiar with Deferreds, as they are returned by both connect and
listen methods, to indicate when the connection has connected or the listening port is up and running.

Servers and Stopping

IStreamServerEndpoint.listen returns a Deferred that fires with an IListeningPort. Note that this deferred
may errback. The most common cause of such an error would be that another program is already using the requested
port number, but the exact cause may vary depending on what type of endpoint you are listening on. If you receive
such an error, it means that your application is not actually listening, and will not receive any incoming connections.
It’s important to somehow alert an administrator of your server, in this case, especially if you only have one listening
port!

Note also that once this has succeeded, it will continue listening forever. If you need to stop listening for some reason,
in response to anything other than a full server shutdown (reactor.stop and / or twistd will usually handle that
case for you), make sure you keep a reference around to that listening port object so you can call IListeningPort.
stopListening on it. Finally, keep in mind that stopListening itself returns a Deferred, and the port may not
have fully stopped listening until that Deferred has fired.

196 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Most server applications will not need to worry about these details. One example of a case where you would need to be
concerned with all of these events would be an implementation of a protocol like non-PASV FTP, where new listening
ports need to be bound for the lifetime of a particular action, then disposed of.

Clients and Cancelling

connectProtocol connects a Protocol instance to a given IStreamClientEndpoint. Itreturns a Deferred which
fires with the Protocol once the connection has been made. Connection attempts may fail, and so that Deferred may
also errback. If it does so, you will have to try again; no further attempts will be made. See the client documentation
for an example use.

connectProtocol is a wrapper around a lower-level API: IStreamClientEndpoint.connect will use a protocol
factory for a new outgoing connection attempt. It returns a Deferred which fires with the IProtocol returned from
the factory’s buildProtocol method, or errbacks with the connection failure.

Connection attempts may also take a long time, and your users may become bored and wander off. If this happens, and
your code decides, for whatever reason, that you’ve been waiting for the connection too long, you can call Deferred.
cancel on the Deferred returned from connect or connectProtocol, and the underlying machinery should give up
on the connection. This should cause the Deferred to errback, usually with CancelledError; although you should
consult the documentation for your particular endpoint type to see if it may do something different.

Although some endpoint types may imply a built-in timeout, the interface does not guarantee one. If you don’t have
any way for the application to cancel a wayward connection attempt, the attempt may just keep waiting forever. For
example, a very simple 30-second timeout could be implemented like this:

attempt = connectProtocol (myEndpoint, myProtocol)
reactor.callLater (30, attempt.cancel)

Note: If you've used ClientFactory before, keep in mind that the connect method takes a
Factory, not a ClientFactory. Even if you pass a ClientFactory to endpoint.connect, its
clientConnectionFailed and clientConnectionLost methods will not be called. In particular, clients
that extend ReconnectingClientFactory won’t reconnect. The next section describes how to set up reconnecting
clients on endpoints.

Persistent Client Connections

twisted.application.internet.ClientService can maintain a persistent outgoing connection to a server which
can be started and stopped along with your application.

One popular protocol to maintain a long-lived client connection to is IRC, so for an example of ClientService,
here’s how you would make a long-lived encrypted connection to an IRC server (other details, like how to authenticate,
omitted for brevity):

from twisted.internet.protocol import Factory

from twisted.internet.endpoints import clientFromString
from twisted.words.protocols.irc import IRCClient

from twisted.application.internet import ClientService
from twisted.internet import reactor

myEndpoint = clientFromString(reactor, "tls:example.com:6997")
myFactory = Factory.forProtocol (IRCClient)

(continues on next page)

2.1. Developer Guides 197

Twisted Documentation, Release 23.8.0

(continued from previous page)

myReconnectingService = ClientService(myEndpoint, myFactory) ’

If you already have a parent service, you can add the reconnecting service as a child service:

[parentService .addService(myReconnectingService) }

If you do not have a parent service, you can start and stop the reconnecting service using its startService and
stopService methods.

ClientService.stopService returns a Deferred that fires once the current connection closes or the current con-
nection attempt is cancelled.

Getting The Active Client

When maintaining a long-lived connection, it’s often useful to be able to get the current connection (if the connection is
active) or wait for the next connection (if a connection attempt is currently in progress). For example, we might want to
pass our ClientService from the previous example to some code that can send IRC notifications in response to some
external event. The ClientService.whenConnected method returns a Deferred that fires with the next available
Protocol instance. You can use it like so:

waitForConnection = myReconnectingService.whenConnected()

def connectedNow(clientForIRC):
clientForIRC.say("#bot-test", "hello, world!"™)

waitForConnection.addCallback(connectedNow)

Keep in mind that you may need to wrap this up for your particular application, since when no existing connection
is available, the callback is executed just as soon as the connection is established. For example, that little snippet is
slightly oversimplified: at the time connectedNow is run, the bot hasn’t authenticated or joined the channel yet, so its
message will be refused. A real-life IRC bot would need to have its own method for waiting until the connection is
fully ready for chat before chatting.

Reporting an Initial Failure

Often times, a failure of the very first connection attempt is special. It may indicate a problem that won’t go away
by just trying harder. The service may be configured with the wrong hostname, or the user may not have an internet
connection at all (perhaps they forgot to turn on their wifi adapter).

Applications can ask whenConnected to make their Deferred fail if the service makes one or more connection at-
tempts in a row without success. You can pass the failAfterFailures parameter into ClientService to set this
threshold.

By calling whenConnected(failAfterFailures=1) when the service is first started (just before or just after
startService), your application will get notification of an initial connection failure.

Setting it to 1 makes it fail after a single connection failure. Setting it to 2 means it will try once, wait a bit, try again,
and then either fail or succeed depending upon the outcome of the second connection attempt. You can use 3 or more
too, if you're feeling particularly patient. The default of None means it will wait forever for a successful connection.

Regardless of failAfterFailures, the Deferred will always fail with CancelledError if the service is stopped
before a connection is made.

198 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

waitForConnection = myReconnectingService.whenConnected(failAfterFailures=1)
def connectedNow(clientForIRC):

clientForIRC.say("#bot-test", "hello, world!")
def failed(f):

print("initial connection failed: "% (£,))

now you should stop the service and report the error upwards
waitForConnection.addCallbacks(connectedNow, failed)

Retry Policies

ClientService will immediately attempt an outgoing connection when startService is called. If that connection
attempt fails for any reason (name resolution, connection refused, network unreachable, and so on), it will retry ac-
cording to the policy specified in the retryPolicy constructor argument. By default, ClientService will use an
exponential backoff algorithm with a minimum delay of 1 second and a maximum delay of 1 minute, and a jitter of
up to 1 additional second to prevent stampeding-herd performance cascades. This is a good default, and if you do not
have highly specialized requirements, you probably want to use it. If you need to tune these parameters, you have two
options:

1. You can pass your own timeout policy to ClientService’s constructor. A timeout policy is a callable that takes
the number of failed attempts, and computes a delay until the next connection attempt. So, for example, if you
are really really sure that you want to reconnect every single second if the service you are talking to goes down,
you can do this:

myReconnectingService = ClientService(myEndpoint, myFactory, retryPolicy=lambda.
—ignored: 1)

Of course, unless you have only one client and only one server and they’re both on localhost, this sort of policy
is likely to cause massive performance degradation and thundering herd resource contention in the event of your
server’s failure, so you probably want to take the second option...

2. You can tweak the default exponential backoff policy with a few parameters by passing the result of twisted.
application.internet.backoffPolicy() to the retryPolicy argument. For example, if you want to
make it triple the delay between attempts, but start with a faster connection interval (half a second instead of one
second), you could do it like so:

myReconnectingService = ClientService(
myEndpoint, myFactory,
retryPolicy=backoffPolicy(initialDelay=0.5, factor=3.0)

Note: Before endpoints, reconnecting clients were created as subclasses of ReconnectingClientFactory. These
subclasses were required to call resetDelay. One of the many advantages of using endpoints is that these special
subclasses are no longer needed. ClientService accepts ordinary IProtocolFactory providers.

2.1. Developer Guides 199

Twisted Documentation, Release 23.8.0

Maximizing the Return on your Endpoint Investment

Directly constructing an endpoint in your application is rarely the best option, because it ties your application to a
particular type of transport. The strength of the endpoints AP is in separating the construction of the endpoint (figuring
out where to connect or listen) and its activation (actually connecting or listening).

If you are implementing a library that needs to listen for connections or make outgoing connections, when possible, you
should write your code to accept client and server endpoints as parameters to functions or to your objects’ constructors.
That way, application code that calls your library can provide whatever endpoints are appropriate.

If you are writing an application and you need to construct endpoints yourself, you can allow users to specify arbitrary
endpoints described by a string using the clientFromString and serverFromString APIs. Since these APIs just
take a string, they provide flexibility: if Twisted adds support for new types of endpoints (for example, [Pv6 endpoints,
or WebSocket endpoints), your application will automatically be able to take advantage of them with no changes to its
code.

Endpoints Aren’t Always the Answer

For many use-cases, especially the common case of a twistd plugin which runs a long-running server that just binds
a simple port, you might not want to use the endpoints APIs directly. Instead, you may want to construct an IService,
using strports.service, which will fit neatly into the required structure of the twistd plugin API. This doesn’t give
your application much control - the port starts listening at startup and stops listening at shutdown - but it does provide
the same flexibility in terms of what type of server endpoint your application will support.

It is, however, almost always preferable to use an endpoint rather than calling a lower-level APIs like connectTCP,
listenTCP, etc, directly. By accepting an arbitrary endpoint rather than requiring a specific reactor interface, you
leave your application open to lots of interesting transport-layer extensibility for the future.

Endpoint Types Included With Twisted

The parser used by clientFromString and serverFromString is extensible via third-party plugins, so the endpoints
available on your system depend on what packages you have installed. However, Twisted itself includes a set of basic
endpoints that will always be available.

Clients

TCP
Supported arguments: host, port, timeout. timeout is optional.

For example, tcp:host=twistedmatrix.com:port=_80:timeout=15.

TLS
Required arguments: host, port.

Optional arguments: timeout, bindAddress, certificate, privateKey, trustRoots, endpoint.
* host is a (UTF-8 encoded) hostname to connect to, as well as the host name to verify against.
e port is a numeric port number to connect to.
e timeout and bindAddress have the same meaning as the timeout and bindAddress for TCP clients.

» certificate is the certificate to use for the client; it should be the path name of a PEM file containing a
certificate for which privateKey is the private key.

200 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

» privateKey is the client’s private key, matching the certificate specified by certificate. It should
be the path name of a PEM file containing an X.509 client certificate. If certificate is specified
but privateKey is unspecified, Twisted will look for the certificate in the same file as specified by
certificate.

* trustRoots specifies a path to a directory of PEM-encoded certificate files. If you leave this unspecified,
Twisted will do its best to use the platform default set of trust roots, which should be the default WebTrust
set.

* the optional endpoint parameter changes the meaning of the tls: endpoint slightly. Rather than the
default of connecting over TCP with the same hostname used for verification, you can connect over any
endpoint type. If you specify the endpoint here, host and port are used for certificate verification purposes
only. Bear in mind you will need to backslash-escape the colons in the endpoint description here.

This client connects to the supplied hostname, validates the server’s hostname against the supplied hostname,
and then upgrades to TLS immediately after validation succeeds.

The simplest example of this would be: tls:example.com:443.

You can use the endpoint: feature with TCP if you want to connect to a host name; for example, if your DNS
is not working, but you know that the IP address 7.6.5.4 points to awesome.site.example.com, you could
specify: tls:awesome.site.example.com:443:endpoint=tcp\:7.6.5.4\:443.

You can use it with any other endpoint type as well, though; for example, if you had a local UNIX socket
that established a tunnel to awesome.site.example.com in /var/run/awesome.sock, you could instead
do tls:awesome.site.example.com:443:endpoint=unix\:/var/run/awesome.sock.

Or, from python code:

wrapped = HostnameEndpoint('example.com', 443)
contextFactory = optionsForClientTLS (hostname=u'example.com')
endpoint = wrapClientTLS(contextFactory, wrapped)

conn = endpoint.connect(Factory. forProtocol (Protocol))

UNIX
Supported arguments: path, timeout, checkPID. path gives a filesystem path to a listening UNIX domain
socket server. checkPID (optional) enables a check of the lock file Twisted-based UNIX domain socket servers
use to prove they are still running.

For example, unix:path=/var/run/web. sock.

TCP (Hostname)
Supported arguments: host, port, timeout. host is a hostname to connect to. timeout is optional. It is a
name-based TCP endpoint that returns the connection which is established first amongst the resolved addresses.

For example,

endpoint = HostnameEndpoint(reactor, "twistedmatrix.com'", 80)
conn = endpoint.connect(Factory. forProtocol (Protocol))

SSL (Deprecated)

Note: You should generally prefer the “TLS” client endpoint, above, unless you need to work with versions
of Twisted older than 16.0. Among other things:

 the ssl: client endpoint requires that you pass ’both” hostname= (for hostname verification) as well
as host= (for a TCP connection address) in order to get hostname verification, which is required for
security, whereas t1ls: does the correct thing by default by using the same hostname for both.

¢ the ssl: client endpoint doesn’t work with IPv6, and the t1s: endpoint does.

2.1. Developer Guides 201

Twisted Documentation, Release 23.8.0

All TCP arguments are supported, plus: certKey, privateKey, caCertsDir. certKey (optional) gives
a filesystem path to a certificate (PEM format). privateKey (optional) gives a filesystem path to a private
key (PEM format). caCertsDir (optional) gives a filesystem path to a directory containing trusted CA
certificates to use to verify the server certificate.

For example, ssl:host=twistedmatrix.com:port=443:caCertsDir=/etc/ssl/certs.

Servers

TCP (IPv4)

Supported arguments: port, interface, backlog. interface and backlog are optional. interface is an
IP address (belonging to the IPv4 address family) to bind to.

For example, tcp:port=80:interface=192.168.1.1.

TCP (IPv6)

SSL

All TCP (IPv4) arguments are supported, with interface taking an IPv6 address literal instead.
For example, tcp6:port=80:interface=2001\:0DB8\:f00e\:eb®O\:\:1.

All TCP arguments are supported, plus: certKey, privateKey, extraCertChain, sslmethod, and
dhParameters. certKey (optional, defaults to the value of privateKey) gives a filesystem path to a certifi-
cate (PEM format). privateKey gives a filesystem path to a private key (PEM format). extraCertChain
gives a filesystem path to a file with one or more concatenated certificates in PEM format that establish the chain
from a root CA to the one that signed your certificate. sslmethod indicates which SSL/TLS version to use (a
value like TLSv1_3_METHOD). dhParameters gives a filesystem path to a file in PEM format with parameters
that are required for Diffie-Hellman key exchange. Since the this is required for the DHE-family of ciphers that
offer perfect forward secrecy (PFS), it is recommended to specify one. Such a file can be created using openssl
dhparam -out dh_param_1024.pem -2 1024. Please refer to OpenSSL’s documentation on dhparam for
further details.

For example, ssl:port=443:privateKey=/etc/ssl/server.pem:extraCertChain=/etc/ssl/chain.
pem:sslmethod=SSLv3_METHOD:dhParameters=dh_param_1024.pem.

UNIX

Supported arguments: address, mode, backlog, lockfile. address gives a filesystem path to listen on with
a UNIX domain socket server. mode (optional) gives the filesystem permission/mode (in octal) to apply to that
socket. lockfile enables use of a separate lock file to prove the server is still running.

For example, unix:address=/var/run/web.sock:lockfile=1.

systemd

Supported arguments: domain, name, and index. domain indicates which socket domain the inherited file
descriptor belongs to (eg INET, INET6). name indicates the name of a file descriptor inherited from systemd. The
is set by the systemd configuration for the socket. index indicates an offset into the array of file descriptors which
have been inherited from systemd. name should be preferred over index because the order of the descriptors
can be difficult to predict.

For example, systemd: domain=INET6 :name=my-web-server.

See also Deploying Twisted with systemd.

PROXY

The PROXY protocol is a stream wrapper and can be applied any of the other server endpoints by placing
haproxy: in front of a normal port definition.

202

Chapter 2. Twisted Core

http://www.openssl.org/docs/apps/dhparam.html

Twisted Documentation, Release 23.8.0

For example, haproxy:tcp:port=80:interface=192.168.1.1orhaproxy:ssl:port=443:privateKey=/
etc/ssl/server.pem:extraCertChain=/etc/ssl/chain.pem:sslmethod=SSLv3_METHOD:dhParameters=dh_param_:
pem.

The PROXY protocol provides a way for load balancers and reverse proxies to send down the real IP of a connec-
tion’s source and destination without relying on X-Forwarded-For headers. A Twisted service using this endpoint
wrapper must run behind a service that sends valid PROXY protocol headers. For more on the protocol see the
formal specification. Both version one and two of the protocol are currently supported.

2.1.21 Components: Interfaces and Adapters

Object oriented programming languages allow programmers to reuse portions of existing code by creating new “classes”
of objects which subclass another class. When a class subclasses another, it is said to inherit all of its behaviour. The
subclass can then “override” and “extend” the behavior provided to it by the superclass. Inheritance is very useful in
many situations, but because it is so convenient to use, often becomes abused in large software systems, especially
when multiple inheritance is involved. One solution is to use delegation instead of “inheritance” where appropriate.
Delegation is simply the act of asking another object to perform a task for an object. To support this design pattern,
which is often referred to as the components pattern because it involves many small interacting components, inferfaces
and adapters were created by the Zope 3 team.

“Interfaces” are simply markers which objects can use to say “I implement this interface”. Other objects may then make
requests like “Please give me an object which implements interface X for object type Y. Objects which implement an
interface for another object type are called “adapters”.

The superclass-subclass relationship is said to be an is-a relationship. When designing object hierarchies, object mod-
ellers use subclassing when they can say that the subclass is the same class as the superclass. For example:

class Shape:
sidelLength = 0
def getSideLength(self):
return self.sideLength

def setSideLength(self, sideLength):
self.sidelLength = sideLength

def area(self):
raise NotImplementedError("Subclasses must implement area')

class Triangle(Shape):
def area(self):
return (self.sidelLength * self.sideLength) / 2

class Square(Shape):
def area(self):
return self.sidelLength * self.sideLength

In the above example, a Triangle is-a Shape, so it subclasses Shape, and a Square is-a Shape, so it also subclasses
Shape.

However, subclassing can get complicated, especially when Multiple Inheritance enters the picture. Multiple Inheri-
tance allows a class to inherit from more than one base class. Software which relies heavily on inheritance often ends
up having both very wide and very deep inheritance trees, meaning that one class inherits from many superclasses
spread throughout the system. Since subclassing with Multiple Inheritance means implementation inheritance, locat-
ing a method’s actual implementation and ensuring the correct method is actually being invoked becomes a challenge.
For example:

2.1. Developer Guides 203

http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt

Twisted Documentation, Release 23.8.0

class Area:
sideLength = 0
def getSideLength(self):
return self.sideLength

def setSidelLength(self, sidelLength):
self.sidelLength = sideLength

def area(self):
raise NotImplementedError("Subclasses must implement area')

class Color:
color = None
def setColor(self, color):
self.color = color

def getColor(self):
return self.color

class Square(Area, Color):
def area(self):
return self.sidelLength * self.sideLength

The reason programmers like using implementation inheritance is because it makes code easier to read since the im-
plementation details of Area are in a separate place than the implementation details of Color. This is nice, because
conceivably an object could have a color but not an area, or an area but not a color. The problem, though, is that Square
is not really an Area or a Color, but has an area and color. Thus, we should really be using another object oriented tech-
nique called composition, which relies on delegation rather than inheritance to break code into small reusable chunks.
Let us continue with the Multiple Inheritance example, though, because it is often used in practice.

What if both the Color and the Area base class defined the same method, perhaps calculate? Where would the
implementation come from? The implementation that is located for Square() .calculate() depends on the method
resolution order, or MRO, and can change when programmers change seemingly unrelated things by refactoring classes
in other parts of the system, causing obscure bugs. Our first thought might be to change the calculate method name to
avoid name clashes, to perhaps calculateArea and calculateColor. While explicit, this change could potentially
require a large number of changes throughout a system, and is error-prone, especially when attempting to integrate two
systems which you didn’t write.

Let’s imagine another example. We have an electric appliance, say a hair dryer. The hair dryer is American voltage.
We have two electric sockets, one of them an American 120 Volt socket, and one of them a United Kingdom 240 Volt
socket. If we plug the hair dryer into the 240 Volt socket, it is going to expect 120 Volt current and errors will result.
Going back and changing the hair dryer to support both plug120Volt and plug240Volt methods would be tedious,
and what if we decided we needed to plug the hair dryer into yet another type of socket? For example:

class HairDryer:
def plug(self, socket):
if socket.voltage() == 120:
print("I was plugged in properly and am operating.')
else:
print("I was plugged in improperly and ")
print("now you have no hair dryer any more.")

class AmericanSocket:
def voltage(self):

(continues on next page)

204 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

return 120

class UKSocket:
def voltage(self):
return 240

Given these classes, the following operations can be performed:

>>> hd = HairDryer()

>>> am = AmericanSocket()

>>> hd.plug(am)

I was plugged in properly and am operating.
>>> uk = UKSocket()

>>> hd.plug(uk)

I was plugged in improperly and

now you have no hair dryer any more.

We are going to attempt to solve this problem by writing an Adapter for the UKSocket which converts the voltage for
use with an American hair dryer. An Adapter is a class which is constructed with one and only one argument, the
“adaptee” or “original” object. In this example, we will show all code involved for clarity:

class AdaptToAmericanSocket:
def __init__(self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

Now, we can use it as so:

>>> hd = HairDryer()

>>> uk = UKSocket()

>>> adapted = AdaptToAmericanSocket (uk)
>>> hd.plug(adapted)

I was plugged in properly and am operating.

So, as you can see, an adapter can ‘override’ the original implementation. It can also ‘extend’ the interface of the
original object by providing methods the original object did not have. Note that an Adapter must explicitly delegate
any method calls it does not wish to modify to the original, otherwise the Adapter cannot be used in places where the
original is expected. Usually this is not a problem, as an Adapter is created to conform an object to a particular interface
and then discarded.

Interfaces and Components in Twisted code

Adapters are a useful way of using multiple classes to factor code into discrete chunks. However, they are not very
interesting without some more infrastructure. If each piece of code which wished to use an adapted object had to
explicitly construct the adapter itself, the coupling between components would be too tight. We would like to achieve
“loose coupling”, and this is where twisted.python.components comes in.

First, we need to discuss Interfaces in more detail. As we mentioned earlier, an Interface is nothing more than a class
which is used as a marker. Interfaces should be subclasses of zope.interface.Interface, and have a very odd
look to python programmers not used to them:

2.1. Developer Guides 205

Twisted Documentation, Release 23.8.0

from zope.interface import Interface

class IAmericanSocket(Interface):
def voltage():

mirn

Return the voltage produced by this socket object, as an integer.

i

Notice how it looks just like a regular class definition, other than inheriting from Interface? However, the method
definitions inside the class block do not have any method body! Since Python does not have any native language-level
support for Interfaces like Java does, this is what distinguishes an Interface definition from a Class.

Now that we have a defined Interface, we can talk about objects using terms like this: “The AmericanSocket
class implements the TAmericanSocket interface” and “Please give me an object which adapts UKSocket to the
TAmericanSocket interface”. We can make declarations about what interfaces a certain class implements, and we
can request adapters which implement a certain interface for a specific class.

Let’s look at how we declare that a class implements an interface:

from zope.interface import implementer

@implementer (IAmericanSocket)
class AmericanSocket:
def voltage(self):
return 120

So, to declare that a class implements an interface, we simply decorate it with zope.interface.implementer.

Now, let’s say we want to rewrite the AdaptToAmericanSocket class as a real adapter. In this case we also specify it
as implementing IAmericanSocket:

from zope.interface import implementer

@implementer (IAmericanSocket)
class AdaptToAmericanSocket:
def __init__(self, original):

i

Pass the original UKSocket object as original

i

self.original = original

def voltage(self):
return self.original.voltage() / 2

Notice how we placed the implements declaration on this adapter class. So far, we have not achieved anything by using
components other than requiring us to type more. In order for components to be useful, we must use the component
registry. Since AdaptToAmericanSocket implements IAmericanSocket and regulates the voltage of a UKSocket
object, we can register AdaptToAmericanSocket as an IAmericanSocket adapter for the UKSocket class. It is
easier to see how this is done in code than to describe it:

from zope.interface import Interface, implementer
from twisted.python import components

class IAmericanSocket(Interface):
def voltage():

(continues on next page)

206 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

mirn

Return the voltage produced by this socket object, as an integer.

mirn

@implementer (IAmericanSocket)
class AmericanSocket:
def voltage(self):
return 120

class UKSocket:
def voltage(self):
return 240

@implementer (TAmericanSocket)
class AdaptToAmericanSocket:
def __init__(self, original):
self.original = original

def voltage(self):
return self.original.voltage() / 2

components.registerAdapter(
AdaptToAmericanSocket,
UKSocket,
IAmericanSocket)

Now, if we run this script in the interactive interpreter, we can discover a little more about how to use components. The
first thing we can do is discover whether an object implements an interface or not:

>>> TAmericanSocket.implementedBy (AmericanSocket)

True

>>> IAmericanSocket.implementedBy (UKSocket)
False

>>> am = AmericanSocket()

>>> uk = UKSocket()

>>> TAmericanSocket.providedBy (am)

True

>>> IAmericanSocket.providedBy (uk)

False

As you can see, the AmericanSocket instance claims to implement IAmericanSocket, but the UKSocket does
not. If we wanted to use the HairDryer with the AmericanSocket, we could know that it would be safe to do so
by checking whether it implements IAmericanSocket. However, if we decide we want to use HairDryer with a
UKSocket instance, we must adapt it to IAmericanSocket before doing so. We use the interface object to do this:

>>> TAmericanSocket (uk)
<__main__.AdaptToAmericanSocket instance at 0x1a5120>

When calling an interface with an object as an argument, the interface looks in the adapter registry for an adapter which
implements the interface for the given instance’s class. If it finds one, it constructs an instance of the Adapter class,
passing the constructor the original instance, and returns it. Now the HairDryer can safely be used with the adapted
UKSocket . But what happens if we attempt to adapt an object which already implements TAmericanSocket? We
simply get back the original instance:

2.1. Developer Guides 207

Twisted Documentation, Release 23.8.0

>>> TAmericanSocket (am)
<__main__.AmericanSocket instance at 0x36bff0>

So, we could write a new “smart” HairDryer which automatically looked up an adapter for the socket you tried to
plug it into:

class HairDryer:
def plug(self, socket):
adapted = IAmericanSocket(socket)
assert adapted.voltage() == 120, "BOOM"
print("I was plugged in properly and am operating")

Now, if we create an instance of our new “smart” HairDryer and attempt to plug it in to various sockets, the HairDryer
will adapt itself automatically depending on the type of socket it is plugged in to:

>>> am = AmericanSocket()

>>> uk = UKSocket()

>>> hd HairDryer ()

>>> hd.plug(am)

I was plugged in properly and am operating
>>> hd.plug(uk)

I was plugged in properly and am operating

Voila; the magic of components.

Components and Inheritance

If you inherit from a class which implements some interface, and your new subclass declares that it implements another
interface, the implements will be inherited by default.

For example, pb.Root is a class which implements IPBRoot. This interface indicates that an object has remotely-
invokable methods and can be used as the initial object served by a new Broker instance. It has an implements setting
like:

from zope.interface import implementer

@implementer (IPBRoot)
class Root(Referenceable):
pass

Suppose you have your own class which implements your IMyInterface interface:

from zope.interface import implementer, Interface

class IMyInterface(Interface):
pass

@implementer (IMyInterface)
class MyThing:
pass

Now if you want to make this class inherit from pb.Root, the interfaces code will automatically determine that it also
implements IPBRoot:

208 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

from twisted.spread import pb
from zope.interface import implementer, Interface

class IMyInterface(Interface):
pass

@implementer (IMyInterface)
class MyThing(pb.Root):
pass

>>> from twisted.spread.flavors import IPBRoot
>>> IPBRoot.implementedBy (MyThing)
True

If you want MyThing to inherit from pb.Root but not implement IPBRoot like pb.Root does, use
@implementer_only:

from twisted.spread import pb
from zope.interface import implementer_only, Interface

class IMyInterface(Interface):
pass

@implementer_only(IMyInterface)
class MyThing(pb.Root):
pass

>>> from twisted.spread.pb import IPBRoot
>>> IPBRoot.implementedBy(MyThing)
False

2.1.22 Cred: Pluggable Authentication

Goals

Cred is a pluggable authentication system for servers. It allows any number of network protocols to connect and
authenticate to a system, and communicate to those aspects of the system which are meaningful to the specific protocol.
For example, Twisted’s POP3 support passes a “username and password” set of credentials to get back a mailbox for
the specified email account. IMAP does the same, but retrieves a slightly different view of the same mailbox, enabling
those features specific to IMAP which are not available in other mail protocols.

Cred is designed to allow both the backend implementation of the business logic - called the avarar - and the authenti-
cation database - called the credential checker - to be decided during deployment. For example, the same POP3 server
should be able to authenticate against the local UNIX password database or an LDAP server without having to know
anything about how or where mail is stored.

To sketch out how this works - a “Realm” corresponds to an application domain and is in charge of avatars, which
are network-accessible business logic objects. To connect this to an authentication database, a top-level object
called a Portal stores a realm, and a number of credential checkers. Something that wishes to log in, such as a
Protocol , stores a reference to the portal. Login consists of passing credentials and a request interface (e.g. POP3’s
IMailboxPOP3) to the portal. The portal passes the credentials to the appropriate credential checker, which returns an
avatar ID. The ID is passed to the realm, which returns the appropriate avatar. For a Portal that has a realm that creates

2.1. Developer Guides 209

Twisted Documentation, Release 23.8.0

mailbox objects and a credential checker that checks /etc/passwd, login consists of passing in a username/password
and the IMailboxPOP3 interface to the portal. The portal passes this to the /etc/passwd credential checker, gets back
a avatar ID corresponding to an email account, passes that to the realm and gets back a mailbox object for that email
account.

Putting all this together, here’s how a login request will typically be processed:

1. Login 8. Continue processing,

request \ Protocol / del_egating business
logic to the avatar.

(e.g. POP3)
2. Pass credentials to portal 7. Return avatar
ask for avatar by interface and logout callable
3. Get cred checker
matching the credentials’
interface Fortal

&, Return avatar

Credential checkers
: (registered with portal.registerChecker)

; 4. Check Realm
Cred Checker credentials,
(e.q. IUsernamePassword) return avatariD

5. Get avatar
by avatarlD

Cred Checker
(e.g. IUsernameHashedPassword)

Cred objects

The Portal

This is the core of login, the point of integration between all the objects in the cred system. There is one concrete
implementation of Portal, and no interface - it does a very simple task. A Portal associates one (1) Realm with a
collection of CredentialChecker instances. (More on those later.)

If you are writing a protocol that needs to authenticate against something, you will need a reference to a Portal, and to
nothing else. This has only 2 methods -

¢ login (credentials, mind, *interfaces)

The docstring is quite expansive (see twisted.cred.portal), butin brief, this is what you call when you need
to call in order to connect a user to the system. Typically you only pass in one interface, and the mind is None
. The interfaces are the possible interfaces the returned avatar is expected to implement, in order of preference.
The result is a deferred which fires a tuple of:

— interface the avatar implements (which was one of the interfaces passed in the *interfaces tuple)

210 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

— an object that implements that interface (an avatar)
— logout, a 0-argument callable which disconnects the connection that was established by this call to login

The logout method has to be called when the avatar is logged out. For POP3 this means when the protocol is
disconnected or logged out, etc..

e registerChecker (checker, *credentialInterfaces)

which adds a CredentialChecker to the portal. The optional list of interfaces are interfaces of credentials that the
checker is able to check.

The CredentialChecker

This is an object implementing ICredentialsChecker which resolves some credentials to an avatar ID.

Whether the credentials are stored in an in-memory data structure, an Apache-style htaccess file, a UNIX password
database, an SSH key database, or any other form, an implementation of ICredentialsChecker is how this data is
connected to cred.

A credential checker stipulates some requirements of the credentials it can check by specifying a credentiallnterfaces
attribute, which is a list of interfaces. Credentials passed to its requestAvatarld method must implement one of those
interfaces.

For the most part, these things will just check usernames and passwords and produce the username as the result, but
hopefully we will be seeing some public-key, challenge-response, and certificate based credential checker mechanisms
soon.

A credential checker should raise an error if it cannot authenticate the user, and return twisted.cred.checkers.
ANONYMOUS for anonymous access.

The Credentials

Oddly enough, this represents some credentials that the user presents. Usually this will just be a small static blob of
data, but in some cases it will actually be an object connected to a network protocol. For example, a username/password
pair is static, but a challenge/response server is an active state-machine that will require several method calls in order
to determine a result.

Twisted comes with a number of credentials interfaces and implementations in the twisted.cred.credentials
module, such as IUsernamePassword and IUsernameHashedPassword .

The Realm

A realm is an interface which connects your universe of “business objects” to the authentication system.
IRealm is another one-method interface:
e requestAvatar (avatarId, mind, *interfaces)

This method will typically be called from ‘Portal.login’. The avatarld is the one returned by a CredentialChecker.

Note: Note that avatarId must always be a string. In particular, do not use unicode strings. If internationalized
support is needed, it is recommended to use UTF-8, and take care of decoding in the realm.

The important thing to realize about this method is that if it is being called, the user has already authenticated
. Therefore, if possible, the Realm should create a new user if one does not already exist whenever possible.

2.1. Developer Guides 211

Twisted Documentation, Release 23.8.0

Of course, sometimes this will be impossible without more information, and that is the case that the interfaces
argument is for.

Since requestAvatar should be called from a Deferred callback, it may return a Deferred or a synchronous result.

The Avatar

An avatar is a business logic object for a specific user. For POP3, it’s a mailbox, for a first-person-shooter it’s the object
that interacts with the game, the actor as it were. Avatars are specific to an application, and each avatar represents a
single “user” .

The Mind

As mentioned before, the mind is usually None , so you can skip this bit if you want.

Masters of Perspective Broker already know this object as the ill-named “client object” . There is no “mind” class,
or even interface, but it is an object which serves an important role - any notifications which are to be relayed to an
authenticated client are passed through a ‘mind’. In addition, it allows passing more information to the realm during
login in addition to the avatar ID.

The name may seem rather unusual, but considering that a Mind is representative of the entity on the “other end” of a
network connection that is both receiving updates and issuing commands, I believe it is appropriate.

Although many protocols will not use this, it serves an important role. It is provided as an argument both to the Portal
and to the Realm, although a CredentialChecker should interact with a client program exclusively through a Credentials
instance.

Unlike the original Perspective Broker “client object” , a Mind’s implementation is most often dictated by the protocol
that is connecting rather than the Realm. A Realm which requires a particular interface to issue notifications will need
to wrap the Protocol’s mind implementation with an adapter in order to get one that conforms to its expected interface
- however, Perspective Broker will likely continue to use the model where the client object has a pre-specified remote
interface.

(If you don’t quite understand this, it’s fine. It’s hard to explain, and it’s not used in simple usages of cred, so feel free
to pass None until you find yourself requiring something like this.)

Responsibilities

Server protocol implementation

The protocol implementor should define the interface the avatar should implement, and design the protocol to have a
portal attached. When a user logs in using the protocol, a credential object is created, passed to the portal, and an avatar
with the appropriate interface is requested. When the user logs out or the protocol is disconnected, the avatar should
be logged out.

The protocol designer should not hardcode how users are authenticated or the realm implemented. For example, a
POP3 protocol implementation would require a portal whose realm returns avatars implementing IMailbox and whose
credential checker accepts username/password credentials, but that is all. Here’s a sketch of how the code might look
- note that USER and PASS are the protocol commands used to login, and the DELE command can only be used after
you are logged in:

pop3_server.py

212 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Copyright (c) Twisted Matrix Laboratories.
See LICENSE for details.

from zope.interface import Interface

from twisted.cred import credentials, error
from twisted.internet import defer

from twisted.protocols import basic

from twisted.python import log

class IMailbox(Interface):

Interface specification for mailbox.

def deleteMessage(index):

pass

class POP3(basic.LineReceiver):

def __init__(self, portal):

self.portal = portal

def do_DELE(self, i):

uses self.mbox, which is set after login
i=idint@@) -1

self.mbox.deleteMessage (i)
self.successResponse()

def do_USER(self, user):

self._userIs = user
self.successResponse("USER accepted, send PASS")

def do_PASS(self, password):

if self._userIs is None:
self.failResponse("USER required before PASS")
return
user = self._userls
self._userIs = None
d = defer.maybeDeferred(self.authenticateUserPASS, user, password)
d.addCallback(self._cbMailbox, user)

def authenticateUserPASS(self, user, password):

if self.portal is not None:
return self.portal.login(
credentials.UsernamePassword(user, password), None, IMailbox
)

raise error.UnauthorizedLogin()

def _cbMailbox(self, ial, user):

interface, avatar, logout = ial
(continues on next page)

2.1. Developer Guides 213

Twisted Documentation, Release 23.8.0

(continued from previous page)

if interface is not IMailbox:
self.failResponse("Authentication failed™)
log.err("_cbMailbox() called with an interface other than IMailbox")
return

self.mbox = avatar

self._onLogout = logout
self.successResponse("Authentication succeeded")
log.msg("Authenticated login for " + user)

Application implementation

The application developer can implement realms and credential checkers. For example, they might implement a realm
that returns IMailbox implementing avatars, using MySQL for storage, or perhaps a credential checker that uses LDAP
for authentication. In the following example, the Realm for a simple remote object service (using Twisted’s Perspective
Broker protocol) is implemented:

from zope.interface import implementer

from twisted.spread import pb
from twisted.cred.portal import IRealm

class SimplePerspective(pb.Avatar):

def perspective_echo(self, text):
print('echoing',text)
return text

def logout(self):
print(self, "logged out")

@implementer (IRealm)
class SimpleRealm:

def requestAvatar(self, avatarId, mind, *interfaces):
if pb.IPerspective in interfaces:
avatar = SimplePerspective()
return pb.IPerspective, avatar, avatar.logout
else:
raise NotImplementedError('"no interface")

214 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Deployment

Deployment involves tying together a protocol, an appropriate realm and a credential checker. For example, a POP3
server can be constructed by attaching to it a portal that wraps the MySQL-based realm and an /etc/passwd creden-
tial checker, or perhaps the LDAP credential checker if that is more useful. The following example shows how the
SimpleRealm in the previous example is deployed using an in-memory credential checker:

from twisted.spread import pb

from twisted.internet import reactor

from twisted.cred.portal import Portal

from twisted.cred.checkers import InMemoryUsernamePasswordDatabaseDontUse

portal = Portal(SimpleRealm())

checker = InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("guest", "password")
portal.registerChecker(checker)
reactor.listenTCP (9986, pb.PBServerFactory(portal))
reactor.run()

Cred plugins

Authentication with cred plugins

Cred offers a plugin architecture for authentication methods. The primary API for this architecture is the command-line;
the plugins are meant to be specified by the end-user when deploying a TAP (twistd plugin).

For more information on writing a twistd plugin and using cred plugins for your application, please refer to the Writing
a twistd plugin document.

Building a cred plugin

To build a plugin for cred, you should first define an authType , a short one-word string that defines your plugin to
the command-line. Once you have this, the convention is to create a file named myapp_plugins.py in the twisted.
plugins module path.

Below is an example file structure for an application that defines such a plugin:
* MyApplication/
— setup.py
— myapp/
% __init__.py
% cred.py
% Server.py
— twisted/
% plugins/
- myapp_plugins.py

Once you have created this structure within your application, you can create the code for your cred plugin by building a
factory class which implements ICheckerFactory . These factory classes should not consist of a tremendous amount

2.1. Developer Guides 215

Twisted Documentation, Release 23.8.0

of code. Most of the real application logic should reside in the cred checker itself. (For help on building those, scroll
up.)

The core purpose of the CheckerFactory is to translate an argstring , which is passed on the command line, into a
suitable set of initialization parameters for a Checker class. In most cases this should be little more than constructing
a dictionary or a tuple of arguments, then passing them along to a new checker instance.

from zope.interface import implementer

from twisted import plugin
from twisted.cred.strcred import ICheckerFactory
from myapp.cred import SpecialChecker

The class needs to implement both of these interfaces
for the plugin system to find our factory.
@implementer (ICheckerFactory, plugin.IPlugin)

class SpecialCheckerFactory(object):

e

A checker factory for a specialized (fictional) API.
This tells AuthOptionsMixin how to find this factory.
authType = "special"

This is a one-line explanation of what arguments, if any,
your particular cred plugin requires at the command-line.
argStringFormat = "A colon-separated key=value list."

This help text can be multiple lines. It will be displayed
when someone uses the "--help-auth-type special" command.
authHelp = """Some help text goes here ..."""

This will be called once per command-line.

def generateChecker(self, argstring=""):
argdict = dict((x.split('=") for x in argstring.split(':')))
return SpecialChecker(**argdict)

We need to instantiate our class for the plugin to work.
theSpecialCheckerFactory = SpecialCheckerFactory()

For more information on how your plugin can be used in your application (and by other application developers), please
see the Writing a twistd plugin document.

Conclusion

After reading through this tutorial, you should be able to
* Understand how the cred architecture applies to your application
* Integrate your application with cred’s object model
* Deploy an application that uses cred for authentication

* Allow your users to use command-line authentication plugins

216 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

2.1.23 The Twisted Plugin System

The purpose of this guide is to describe the preferred way to write extensible Twisted applications (and consequently,
also to describe how to extend applications written in such a way). This extensibility is achieved through the definition
of one or more APIs and a mechanism for collecting code plugins which implement this API to provide some additional
functionality. At the base of this system is the twisted.plugin module.

Making an application extensible using the plugin system has several strong advantages over other techniques:

* It allows third-party developers to easily enhance your software in a way that is loosely coupled: only the plugin
API is required to remain stable.

* It allows new plugins to be discovered flexibly. For example, plugins can be loaded and saved when a program
is first run, or re-discovered each time the program starts up, or they can be polled for repeatedly at runtime
(allowing the discovery of new plugins installed after the program has started).

Writing Extensible Programs

Taking advantage of twisted.plugin is a two step process:

1. Define an interface which plugins will be required to implement. This is done using the zope.interface package
in the same way one would define an interface for any other purpose.

A convention for defining interfaces is do so in a file named like ProjectName/projectname/iprojectname.py .
The rest of this document will follow that convention: consider the following interface definition be in Matsim/
matsim/imatsim.py, an interface definition module for a hypothetical material simulation package.

2. At one or more places in your program, invoke twisted.plugin.getPlugins() and iterate over its result.

As an example of the first step, consider the following interface definition for a physical modelling system.

from zope.interface import Interface, Attribute

class IMaterial (Interface):

e

An object with specific physical properties

e

def yieldStress(temperature):
Returns the pressure this material can support without
fracturing at the given temperature.

@type temperature: C{float}
@param temperature: Kelvins

@rtype: C{float}
@return: Pascals

e

dielectricConstant = Attribute("""
@type dielectricConstant: C
@ivar dielectricConstant: The relative permittivity, with the
real part giving reflective surface properties and the
imaginary part giving the radio absorption coefficient.

)

In another module, we might have a function that operates on objects providing the IMaterial interface:

2.1. Developer Guides 217

Twisted Documentation, Release 23.8.0

def displayMaterial(m):
print('A material with yield stress at 500 K' % (m.yieldStress(500),))
print('Also a dielectric constant of .'" % (m.dielectricConstant,))

The last piece of required code is that which collects IMaterial providers and passes them to the displayMaterial
function.

from twisted.plugin import getPlugins
from matsim import imatsim

def displayAllKnownMaterials():
for material in getPlugins(imatsim.IMaterial):
displayMaterial (material)

Third party developers may now contribute different materials to be used by this modelling system by implementing
one or more plugins for the IMaterial interface.

Extending an Existing Program

The above code demonstrates how an extensible program might be written using Twisted’s plugin system. How do we
write plugins for it, though? Essentially, we create objects which provide the required interface and then make them
available at a particular location. Consider the following example.

from zope.interface import implementer
from twisted.plugin import IPlugin
from matsim import imatsim

@implementer(IPlugin, imatsim.IMaterial)
class SimpleMaterial (object):
def __init__(self, yieldStressFactor, dielectricConstant):
self._yieldStressFactor = yieldStressFactor
self.dielectricConstant = dielectricConstant

def yieldStress(self, temperature):
return self._yieldStressFactor * temperature

steelPlate = SimpleMaterial(2.06842719ell, 2.7 + 0.23)
brassPlate SimpleMaterial (1.03421359el11, 1.4 + 0.53)

steelPlate and brassPlate now provide both IPlugin and IMaterial . All that remains is to make this module
available at an appropriate location. For this, there are two options. The first of these is primarily useful during
development: if a directory which has been added to sys. path (typically by adding it to the PYTHONPATH environment
variable) contains a directory named twisted/plugins/, each .py file in that directory will be loaded as a source of
plugins. This directory must not be a Python package: including __init__.py will cause the directory to be skipped
and no plugins loaded from it. Second, each module in the installed version of Twisted’s twisted.plugins package
will also be loaded as a source of plugins.

Once this plugin is installed in one of these two ways, displayAllKnownMaterials can be run and we will see two
pairs of output: one for a steel plate and one for a brass plate.

218 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Alternate Plugin Packages

getPlugins takes one additional argument not mentioned above. If passed in, the 2nd argument should be a module or
package to be used instead of twisted.plugins as the plugin meta-package. If you are writing a plugin for a Twisted
interface, you should never need to pass this argument. However, if you have developed an interface of your own, you
may want to mandate that plugins for it are installed in your own plugins package, rather than in Twisted’s.

You may want to support yourproject/plugins/ directories for ease of development. To do so, you should make
yourproject/plugins/__init__.py contain at least the following lines.

from twisted.plugin import pluginPackagePaths
__path__.extend(pluginPackagePaths(__name__))
—all__ =[]

The key behavior here is that interfaces are essentially paired with a particular plugin package. If plugins are installed
in a different package than the one the code which relies on the interface they provide, they will not be found when the
application goes to load them.

Plugin Caching

In the course of using the Twisted plugin system, you may notice dropin. cache files appearing at various locations.
These files are used to cache information about what plugins are present in the directory which contains them. At times,
this cached information may become out of date. Twisted uses the mtimes of various files involved in the plugin system
to determine when this cache may have become invalid. Twisted will try to re-write the cache each time it tries to use
it but finds it out of date.

For a site-wide install, it may not (indeed, should not) be possible for applications running as normal users to rewrite the
cache file. While these applications will still run and find correct plugin information, they may run more slowly than they
would if the cache was up to date, and they may also report exceptions if certain plugins have been removed but which
the cache still references. For these reasons, when installing or removing software which provides Twisted plugins, the
site administrator should be sure the cache is regenerated. Well-behaved package managers for such software should
take this task upon themselves, since it is trivially automatable. The canonical way to regenerate the cache is to run the
following Python code:

from twisted.plugin import IPlugin, getPlugins
list(getPlugins(IPlugin))

As mentioned, it is normal for exceptions to be raised once here if plugins have been removed.

Further Reading

* Components: Interfaces and Adapters

2.1.24 The Basics
Application

Twisted programs usually work with twisted.application.service.Application(). This class usually holds
all persistent configuration of a running server, such as:

e ports to bind to,

* places where connections to must be kept or attempted,

2.1. Developer Guides 219

Twisted Documentation, Release 23.8.0

* periodic actions to do,
* and almost everything else to do with your Application.
It is the root object in a tree of services implementing twisted.application.service.IService.

Other howtos describe how to write custom code for Applications, but this one describes how to use already written
code (which can be part of Twisted or from a third-party Twisted plugin developer). The Twisted distribution comes
with an important tool to deal with Applications: twistd(1).

Applications are just Python objects, which can be created and manipulated in the same ways as any other object.

twistd

The Twisted Daemon is a program that knows how to run Applications. Strictly speaking, twistd is not necessary.
Fetching the application, getting the IService component, calling startService(), scheduling stopService()
when the reactor shuts down, and then calling reactor.run() could be done manually.

However, twistd supplies many options which are highly useful for program set up:
* choosing a reactor (for more on reactors, see Choosing a Reactor),
* logging configuration (see the /ogger documentation for more),
* daemonizing (forking to the background),
* and more.

twistd supports all Applications mentioned above — and an additional one. Sometimes it is convenient to write the
code for building a class in straight Python. One big source of such Python files is the examples directory. When a
straight Python file which defines an Application object called application is used, use the -y option.

When twistd runs, it records its process id in a twistd.pid file (this can be configured via a command line switch).
In order to shutdown the twistd process, kill that pid. The usual way to do this would be:

[kill ‘cat twistd.pid’ J

To prevent twistd from daemonizing, you can pass it the --no-daemon option (or -n, in conjunction with other short
options).

As always, the gory details are in the manual page.
2.1.25 Using the Twisted Application Framework

Introduction

Audience

The target audience of this document is a Twisted user who wants to deploy a significant amount of Twisted code in
a re-usable, standard and easily configurable fashion. A Twisted user who wishes to use the Application framework
needs to be familiar with developing Twisted servers and/or clients.

220 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Goals

* To introduce the Twisted Application infrastructure.
* To explain how to deploy your Twisted application using . tac files and twistd.

* To outline the existing Twisted services.

Overview

The Twisted Application infrastructure takes care of running and stopping your application. Using this infrastructure
frees you from from having to write a large amount of boilerplate code by hooking your application into existing tools
that manage daemonization, logging, choosing a reactor and more.

The major tool that manages Twisted applications is a command-line utility called twistd. twistd is cross platform,
and is the recommended tool for running Twisted applications.

The core component of the Twisted Application infrastructure is the twisted.application.service.
Application() object —an object which represents your application. However, Application doesn’t provide anything
that you’d want to manipulate directly. Instead, Application acts as a container of any “Services” (objects implementing
IService) that your application provides. Most of your interaction with the Application infrastructure will be done
through Services.

By “Service”, we mean anything in your application that can be started and stopped. Typical services include web
servers, FTP servers and SSH clients. Your Application object can contain many services, and can even contain struc-
tured hierarchies of Services using MultiService or your own custom IServiceCollection implementations. You
will most likely want to use these to manage Services which are dependent on other Services. For example, a proxying
Twisted application might want its server Service to only start up after the associated Client service.

An IService has two basic methods, startService () which is used to start the service, and stopService () which
is used to stop the service. The latter can return a Deferred, indicating service shutdown is not over until the result
fires. For example:

from twisted.internet import reactor
from twisted.application import service
from somemodule import EchoFactory

class EchoService(service.Service):
def __init__(self, portNum):
self.portNum = portNum

def startService(self):
self._port = reactor.listenTCP(self.portNum, EchoFactory())

def stopService(self):
return self._port.stopListening()

See Writing Servers for an explanation of EchoFactory and 1istenTCP.

2.1. Developer Guides 221

Twisted Documentation, Release 23.8.0

Using Services and Application

twistd and tac

To handle start-up and configuration of your Twisted application, the Twisted Application infrastructure uses .tac
files. .tac are Python files which configure an Application object and assign this object to the top-level variable
“application”.

The following is a simple example of a . tac file:

service.tac

You can run this .tac file directly with:
twistd -ny service.tac

i

This is an example .tac file which starts a webserver on port 8080 and
serves files from the current working directory.

The important part of this, the part that makes it a .tac file, is
the final root-level section, which sets up the object called 'application’
which twistd will look for

i

import os

from twisted.application import internet, service
from twisted.web import server, static

def getWebService():

e

Return a service suitable for creating an application object.

This service is a simple web server that serves files on port 8080 from
underneath the current working directory.

create a resource to serve static files

fileServer = server.Site(static.File(os.getcwd()))

return internet.TCPServer (8080, fileServer)

this is the core part of any tac file, the creation of the root-level
application object
application = service.Application("Demo application")

attach the service to its parent application
service = getWebService()
service.setServiceParent (application)

twistd is a program that runs Twisted applications using a . tac file. In its most simple form, it takes a single argument
-y and a tac file name. For example, you can run the above server with the command twistd -y service.tac.

By default, twistd daemonizes and logs to a file called twistd.log. More usually, when debugging, you will want
your application to run in the foreground and log to the command line. To run the above file like this, use the command

222 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

twistd -noy service.tac.

For more information, see the twistd man page.

Customizing twistd logging

twistd logging can be customized using the command line. This requires that a log observer factory be importable.
Given a file named my . py with the code:

from twisted.logger import textFileLogObserver

def logger():
return textFileLogObserver (open("/tmp/my.log", "w'"))

Invoking twistd --logger my.logger ... will log to a file named /tmp/my.log (this simple example could
easily be replaced with use of the --logfile parameter to twistd).

Alternatively, the logging behavior can be customized through an API accessible from . tac files. The ILogObserver
component can be set on an Application in order to customize the default log observer that twistd will use.

Here is an example of how to use DailyLogFile, which rotates the log once per day.

from twisted.application.service import Application
from twisted.logger import ILogObserver, textFileLogObserver
from twisted.python.logfile import DailyLogFile

application = Application("myapp")
logfile = DailyLogFile('"my.log", "/tmp")
application.setComponent (ILogObserver, textFileLogObserver(logfile))

Invoking twistd -y my.tac will create a log file at /tmp/my . log.

Services provided by Twisted

Twisted also provides pre-written IService implementations for common cases like listening on a TCP port, in the
twisted.application.internet module. Here’s a simple example of constructing a service that runs an echo
server on TCP port 7001:

from twisted.application import internet, service
from somemodule import EchoFactory

port = 7001
factory = EchoFactory()

echoService = internet.TCPServer(port, factory) # create the service

Each of these services (except TimerService) has a corresponding “connect” or “listen”” method on the reactor, and the
constructors for the services take the same arguments as the reactor methods. The “connect” methods are for clients and
the “listen” methods are for servers. For example, TCPServer corresponds to reactor.listenTCP and TCPClient
corresponds to reactor.connectTCP.

TCPServer
TCPClient

Services which allow you to make connections and listen for connections on TCP ports.

2.1. Developer Guides 223

Twisted Documentation, Release 23.8.0

e listenTCP
¢ connectTCP
UNIXServer
UNIXClient
Services which listen and make connections over UNIX sockets.
e listenUNIX
¢ connectUNIX
SSLServer
SSLClient
Services which allow you to make SSL connections and run SSL servers.
e listenSSL
¢ connectSSL
UDPServer
A service which allows you to send and receive data over UDP.
e listenUDP
See also the UDP documentation.
UNIXDatagramServer
UNIXDatagramClient
Services which send and receive data over UNIX datagram sockets.
¢ listenUNIXDatagram
e connectUNIXDatagram
MulticastServer
A server for UDP socket methods that support multicast.
e listenlMulticast
TimerService
A service to periodically call a function.

e TimerService

Service Collection

IServiceCollection objects contain IService objects. IService objects can be added to IServiceCollection by
calling setServiceParent and detached by using disownServiceParent.

The standard implementation of IServiceCollection is MultiService, which also implements IService. MultiService
is useful for creating a new Service which combines two or more existing Services. For example, you could create a
DNS Service as a MultiService which has a TCP and a UDP Service as children.

224 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

from twisted.application import internet, service
from twisted.names import server, dns, hosts

port = 53

Create a MultiService, and hook up a TCPServer and a UDPServer to it as
children.

dnsService = service.MultiService()

hostsResolver = hosts.Resolver('/etc/hosts')

tcpFactory = server.DNSServerFactory([hostsResolver])
internet.TCPServer(port, tcpFactory).setServiceParent(dnsService)
udpFactory = dns.DNSDatagramProtocol (tcpFactory)

internet.UDPServer(port, udpFactory).setServiceParent(dnsService)

Create an application as normal
application = service.Application("DNSExample™)

Connect our MultiService to the application, just like a normal service.
dnsService.setServiceParent (application)

2.1.26 Writing a twistd Plugin

This document describes adding subcommands to the twistd command, as a way to facilitate the deployment of your
applications.

The target audience of this document are those that have developed a Twisted application which needs a command
line-based deployment mechanism.

There are a few prerequisites to understanding this document:

¢ A basic understanding of the Twisted Plugin System (i.e., the twisted.plugin module) is necessary, however,
step-by-step instructions will be given. Reading The Twisted Plugin System is recommended, in particular the
“Extending an Existing Program” section.

* The Application infrastructure is used in twistd plugins; in particular, you should know how to expose your
program’s functionality as a Service.

¢ In order to parse command line arguments, the twistd plugin mechanism relies on twisted.python.usage,
which is documented in Using usage.Options .

Goals

After reading this document, the reader should be able to expose their Service-using application as a subcommand of
twistd, taking into consideration whatever was passed on the command line.

2.1. Developer Guides 225

Twisted Documentation, Release 23.8.0

Alternatives to twistd Plugins

The major alternative to the twistd plugin mechanism is the .tac file, which is a simple script to be used with the
twistd -y/--python parameter. The twistd plugin mechanism exists to offer a more extensible command-line-driven
interface to your application. For more information on .tac files, see the document Using the Twisted Application
Framework .

Creating the Plugin

The following directory structure is assumed of your project:
e MyProject - Top level directory
— myproject - Python package
% __init__.py
During development of your project, Twisted plugins can be loaded from a special directory in your project, assuming
your top level directory ends up in sys.path. Create a directory named twisted containing a directory named
plugins , and add a file named myproject_plugin.py to it. This file will contain your plugin. Note that you must

not add any __init__.py files to this directory structure, and the plugin file should not be named myproject.py
(because that would conflict with your project’s module name).

In this file, define an object which provides the interfaces twisted.plugin.IPlugin and twisted.application.
service.IServiceMaker .

The tapname attribute of your IServiceMaker provider will be used as the subcommand name in a command like
twistd [subcommand] [args...],and the options attribute (which should be a usage.Options subclass) will
be used to parse the given args.

from zope.interface import implementer

from twisted.python import usage

from twisted.plugin import IPlugin

from twisted.application.service import IServiceMaker
from twisted.application import internet

from myproject import MyFactory

class Options(usage.Options):
optParameters = [["port", "p", 1235, "The port number to listen on."]]

@implementer (IServiceMaker, IPlugin)

class MyServiceMaker(object):
tapname = "myproject"”
description = "Run this! It'll make your dog happy."
options = Options

def makeService(self, options):

i

Construct a TCPServer from a factory defined in myproject.

o

return internet.TCPServer(int(options["port"]), MyFactory())

(continues on next page)

226 Chapter 2. Twisted Core

https://docs.python.org/3/library/sys.html#sys.path

Twisted Documentation, Release 23.8.0

(continued from previous page)

Now construct an object which *provides* the relevant interfaces

The name of this variable is irrelevant, as long as there is *some*
name bound to a provider of IPlugin and IServiceMaker.

serviceMaker = MyServiceMaker()

Now running twistd --help should print myproject in the list of available subcommands, followed by the descrip-
tion that we specified in the plugin. twistd -n myproject would, assuming we defined a MyFactory factory inside
myproject , start a listening server on port 1235 with that factory.

Using cred with your TAP

Twisted ships with a robust authentication framework to use with your application. If your server needs authentication
functionality, and you haven’t read about rwisted.cred yet, read up on it first.

If you are building a twistd plugin and you want to support a wide variety of authentication patterns, Twisted provides
an easy-to-use mixin for your Options subclass: strcred.AuthOptionMixin . The following code is an example of
using this mixin:

from twisted.cred import credentials, portal, strcred
from twisted.python import usage

from twisted.plugin import IPlugin

from twisted.application.service import IServiceMaker
from myserver import myservice

class ServerOptions(usage.Options, strcred.AuthOptionMixin):
This part is optional; it tells AuthOptionMixin what
kinds of credential interfaces the user can give us.
supportedInterfaces = (credentials.IUsernamePassword,)

optParameters = [

["port", "p", 1234, "Server port number"],
["host", "h", "localhost", "Server hostname"]]

@implementer (IServiceMaker, IPlugin)

class MyServerServiceMaker(object):
tapname = "myserver"
description = "This server does nothing productive."
options = ServerOptions

def makeService(self, options):
"""Construct a service object.
The realm is a custom object that your server defines.
realm = myservice.MyServerRealm(options["host"])

o

The portal is something Cred can provide, as long as
you have a list of checkers that you'll support. This
list is provided my AuthOptionMixin.

portal = portal.Portal(realm, options["credCheckers"])

(continues on next page)

2.1. Developer Guides 227

Twisted Documentation, Release 23.8.0

(continued from previous page)

OR, if you know you might get multiple interfaces, and

only want to give your application one of them, you

also have that option with AuthOptionMixin:

interface = credentials.IUsernamePassword

portal = portal.Portal(realm, options["credInterfaces"][interface])

The protocol factory is, like the realm, something you implement.
factory = myservice.ServerFactory(realm, portal)

Finally, return a service that will listen for connections.
return internet.TCPServer(int(options["port"]), factory)

As in our example above, we have to construct an object that
provides the IPlugin and IServiceMaker interfaces.
serviceMaker = MyServerServiceMaker ()

Now that you have your TAP configured to support any authentication we can throw at it, you’re ready to use it. Here is
an example of starting your server using the /etc/passwd file for authentication. (Clearly, this won’t work on servers
with shadow passwords.)

[$ twistd myserver --auth passwd:/etc/passwd

For a full list of cred plugins supported, see twisted.plugins, or use the command-line help:

$ twistd myserver --help-auth
$ twistd myserver --help-auth-type passwd

Deploy your Application Using Python Packages
To deploy your application one possibility is to wrap it up in a Python package. For this you need to write a special file
setup.py, which contains metadata of the package. You would have to extend the layout of your files like this:
* MyProject - Top level directory
— setup.py - Description file for the package
* myproject - Python package
- __init__.py
* twisted
- plugins

- myproject_plugins.py - Dropin file containing the actual plugin

from setuptools import setup, find_packages

setup(
name="MyApplication',
version='0.1ldev",
it is necesary to extend the found package list with the twisted.plugin
directory. It cannot be automatically detected, because it should not
contain a __init__.py file.

(continues on next page)

228 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)
packages=find_packages() + ['twisted.plugins'],
install_requires=[
"twisted',

1,

To create the Python package from the directory the standard setup tools can be used:

[$ python3 setup.py sdist]

This command creates a dist directory in your project folder with the compressed archive file MyApplication-0.
1dev.tar.gz. This archive contains all the code and additional files if specified. This file can be copied and used for
deployment.

To install the application just use pip. It will also install all requirements specified in setup.py.

[$ pip install MyApplication-0.ldev.tar.gz J

For more information about packaging in Python have a look at the official Python packaging user guide or hitchhiker’s
guide to packaging.

Conclusion

You should now be able to
* Create a twistd plugin
* Incorporate authentication into your plugin
* Use it from your development environment

* Install it correctly and use it in deployment

2.1.27 Deploying Twisted with systemd

Introduction

In this tutorial you will learn how to start a Twisted service using systemd. You will also learn how to start the service
using socket activation.

Note: The examples in this tutorial demonstrate how to launch a Twisted web server, but the same techniques apply
to any Twisted service.

2.1. Developer Guides 229

https://packaging.python.org/tutorials/packaging-projects/
https://the-hitchhikers-guide-to-packaging.readthedocs.io/
https://the-hitchhikers-guide-to-packaging.readthedocs.io/

Twisted Documentation, Release 23.8.0

Prerequisites

Twisted
You will need a version of Twisted >= 12.2 for the socket activation section of this tutorial.

This tutorial was written on a Fedora 18 Linux operating system with a system wide installation of Twisted
and Twisted Web.

If you have installed Twisted locally eg in your home directory or in a virtualenv, you will need to modify
the paths in some of the following examples.

Test your Twisted installation by starting a twistd web server on TCP port 8080 with the following
command:

r$ twistd --nodaemon web --listen tcp:8080 --path /srv/www/www.example.com/
—static

2013-01-28 13:21:35+0000 [-] Log opened.

2013-01-28 13:21:35+0000 [-] twistd 12.3.0 (/usr/bin/python 2.7.3) starting up.
2013-01-28 13:21:35+0000 [-] reactor class: twisted.internet.epollreactor.
—.EPol1Reactor.

2013-01-28 13:21:35+0000 [-] Site starting on 8080

2013-01-28 13:21:35+0000 [-] Starting factory <twisted.web.server.Site.
—.instance at 0x7f57eb66efc8>

L J

This assumes that you have the following static web page in the following directory structure:

tree /srv/

L— www.example.com
L— static
L index.html

<!doctype html>
<html lang=en>
<head>
<meta charset=utf-8>
<title>Example Site</title>
</head>
<body>
<hl>Example Site</hl>
</body>
</html>

Now try connecting to http://localhost:8080 in your web browser.

If you do not see your web page or if twistd didn’t start, you should investigate and fix the problem before
continuing.

230 Chapter 2. Twisted Core

http://localhost:8080

Twisted Documentation, Release 23.8.0

Basic Systemd Service Configuration

The essential configuration file for a systemd service is the service file.

Later in this tutorial, you will learn about some other types of configuration file, which are used to control when and
how your service is started.

But we will begin by configuring systemd to start a Twisted web server immediately on system boot.

Create a systemd service file

Create the service file at /etc/systemd/system/www.example.com.service with the following content:

/etc/systemd/system/www.example.com.service

[Unit]
Description=Example Web Server

[Service]
ExecStart=/usr/bin/twistd \
--nodaemon \
--pidfile= \
web --listen tcp:8080 --path .

WorkingDirectory=/srv/www/www.example.com/static

User=nobody
Group=nobody

Restart=always

[Install]
WantedBy=multi-user.target

This configuration file contains the following note worthy directives:
ExecStart
Always include the full path to twistd in case you have multiple versions installed.

The --nodaemon flag makes twistd run in the foreground. Systemd works best with child processes that
remain in the foreground.

The --pidfile= flag prevents twistd from writing a pidfile. A pidfile is not necessary when Twisted
runs as a foreground process.

@

The --path flag specifies the location of the website files. In this example we use “.” which makes twistd
serve files from its current working directory (see below).

WorkingDirectory

Systemd can configure the working environment of its child processes.

In this example the working directory of twistd is set to that of the static website.
User / Group

Systemd can also control the effective user and group of its child processes.

This example uses an un-privileged user “nobody” and un-privileged group “nobody”.

2.1. Developer Guides 231

http://www.freedesktop.org/software/systemd/man/systemd.service.html
http://www.freedesktop.org/software/systemd/man/systemd.service.html

Twisted Documentation, Release 23.8.0

This is an important security measure which ensures that the Twisted sub-process can not access restricted
areas of the file system.

Restart

Systemd can automatically restart a child process if it exits or crashes unexpectedly.

In this example the Restart option is set to always, which ensures that twistd will be restarted under
all circumstances.

WantedBy

Systemd service dependencies are controlled by WantedBy and RequiredBy directives in the [Install]
section of configuration file.

The special multi-user.target is used in this example so that systemd starts the twistd web service when
it reaches the multi-user stage of the boot sequence.

There are many more service directives which are documented in the systemd.directives man page.

Reload systemd

[$ sudo systemctl daemon-reload

This forces systemd to read the new configuration file.

Always run systemctl daemon-reload after changing any of the systemd configuration files.

Start the service

[$ sudo systemctl start www.example.com

twistd should now be running and listening on TCP port 8080. You can verify this using the systemctl status

command. eg

— 8080

—listen tcp:8080

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server
Loaded:
Active:
Main PID:
CGroup:

loaded (/etc/systemd/system/www.example.com.service; enabled)

active (running) since Mon 2013-01-28 16:16:26 GMT; 1s ago

10695 (twistd)

name=systemd:/system/www.example.com.service

L-10695 /usr/bin/python /usr/bin/twistd --nodaemon --pidfile= web --
--path .

Jan 28 16:16:26 zorin.lan systemd[1]: Starting Example Web Server...
Jan 28 16:16:26 zorin.lan systemd[1]: Started Example Web Server.
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000
Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000
—usr/bin/python 2.7.3) starting up.

Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] reactor class:.
—twisted.internet.epollreactor.EPollReactor.

Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Site starting on.

Log opened.
twistd 12.1.0 (/

[B |
I
—_

Jan 28 16:16:26 zorin.lan twistd[10695]: 2013-01-28 16:16:26+0000 [-] Starting factory
—<twisted.web.server.Site instance at 0x159b758>

232

Chapter 2. Twisted Core

http://www.freedesktop.org/software/systemd/man/systemd.special.html#multi-user.target
http://www.freedesktop.org/software/systemd/man/systemd.directives.html

Twisted Documentation, Release 23.8.0

The systemctl status command is convenient because it shows you both the current status of the service and a
short log of the service output.

This is especially useful for debugging and diagnosing service startup problems.

The twistd subprocess will log messages to stderr and systemd will log these messages to syslog. You can verify
this by monitoring the syslog messages or by using the new journalctl tool in Fedora.

See the systemctl man page for details of other systemctl command line options.

Enable the service

We’ve seen how to start the service manually, but now we need to “enable” it so that it starts automatically at boot time.

Enable the service with the following command:

$ sudo systemctl enable www.example.com.service
In -s '/etc/systemd/system/www.example.com.service' '/etc/systemd/system/multi-user.
< target.wants/www.example.com.service'

This creates a symlink to the service file in the multi-user.target.wants directory.
The Twisted web server will now be started automatically at boot time.

The multi-user.target is an example of a “special” systemd unit. Later in this tutorial you will learn how to use
another special unit - the sockets.target.

Test that the service is automatically restarted

The Restart=always option in the www.example.com. service file ensures that systemd will restart the twistd
process if and when it exits unexpectedly.

You can read about other Restart options in the systemd.service man page.

Try killing the twistd process and then checking its status again:

$ sudo kill 12543

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server
Loaded: loaded (/etc/systemd/system/www.example.com.service; disabled)
Active: active (running) since Mon 2013-01-28 17:47:37 GMT; 1ls ago
Main PID: 12611 (twistd)

The “Active” time stamp shows that the twistd process was restarted within 1 second.

Now stop the service before you proceed to the next section.

$ sudo systemctl stop www.example.com.service

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server
Loaded: loaded (/etc/systemd/system/www.example.com.service; enabled)
Active: inactive (dead) since Mon 2013-01-28 16:51:12 GMT; 1s ago
Process: 10695 ExecStart=/usr/bin/twistd --nodaemon --pidfile= web --port 8080 -
—-path . (code=exited, status=0/SUCCESS)

2.1. Developer Guides 233

http://www.freedesktop.org/software/systemd/man/systemctl.html
http://www.freedesktop.org/software/systemd/man/systemd.special.html
http://www.freedesktop.org/software/systemd/man/systemd.service.html

Twisted Documentation, Release 23.8.0

Socket Activation

First you need to understand what “socket activation” is. This extract from the systemd daemon man page explains it
quite clearly.

In a socket-based activation scheme the creation and binding of the listening socket as primary communi-
cation channel of daemons to local (and sometimes remote) clients is moved out of the daemon code and
into the init system.

Based on per-daemon configuration the init system installs the sockets and then hands them off to the
spawned process as soon as the respective daemon is to be started.

Optionally activation of the service can be delayed until the first inbound traffic arrives at the socket, to
implement on-demand activation of daemons.

However, the primary advantage of this scheme is that all providers and all consumers of the sockets can
be started in parallel as soon as all sockets are established.

In addition to that daemons can be restarted with losing only a minimal number of client transactions or
even any client request at all (the latter is particularly true for state-less protocols, such as DNS or syslog),
because the socket stays bound and accessible during the restart, and all requests are queued while the
daemon cannot process them.

Another benefit of socket activation is that systemd can listen on privileged ports and start Twisted with privileges
already dropped. This allows a Twisted service to be configured and restarted by a non-root user.

Twisted (since version 12.2) includes a systemd endpoint API and a corresponding string ports syntax which allows a
Twisted service to inherit a listening socket from systemd.

The following example builds on the previous example, demonstrating how to enable socket activation for a simple
Twisted web server.

Note: Before continuing, stop the previous example service with the following command:

[$ sudo systemctl stop www.example.com.service

Create a systemd.socket file

Create the systemd.socket file at /etc/systemd/system/www.example.com. socket with the following content:

/etc/systemd/system/www.example.com.socket

[Socket]
ListenStream=0.0.0.0:80
FileDescriptorName=my-web-port

[Install]
WantedBy=sockets.target

This configuration file contains the following important directives:
ListenStream=0.0.0.0:80

This option configures systemd to create a listening TCP socket bound to all local IPv4 addresses on port
80.

WantedBy=sockets.target

234 Chapter 2. Twisted Core

http://www.freedesktop.org/software/systemd/man/daemon.html
http://www.freedesktop.org/software/systemd/man/systemd.socket.html

Twisted Documentation, Release 23.8.0

This is a special target used by all socket activated services. systemd will automatically bind to all such
socket activation ports during boot up.

FileDescriptorName=my-web-port

This option names the file descriptor for the socket. The name allows a specific inherited descriptor to be
chosen reliably out of set of several inherited descriptors.

You also need to modify the www.example.com.service file as follows:

/etc/systemd/system/www.example.com.service

[Unit]
Description=Example Web Server
Requires=www.example.com.socket

[Service]
ExecStart=/usr/bin/twistd \
--nodaemon \
--pidfile= \
web --listen systemd:domain=INET:name=my-web-port --path .

WorkingDirectory=/srv/www/www.example.com/static

User=nobody
Group=nobody

Restart=always

Note the following important directives and changes:
ExecStart
The domain=INET endpoint argument makes twistd treat the inherited file descriptor as an IPv4 socket.

The name=my-web-port endpoint argument makes twistd adopt the file descriptor inherited from
systemd named my-web-port.

Socket activation is also technically possible with other socket families and types, but Twisted currently
only accepts IPv4 and IPv6 TCP sockets. See Limitations and Known Issues below.

Requires

The service no longer knows how to bind the listening port for itself. The corresponding socket unit must
be started so it can pass the listening port on to the twistd process.

[Install]
In this example, the [Install] section has been moved to the socket configuration file.

Reload systemd so that it reads the updated configuration files.

[$ sudo systemctl daemon-reload J

2.1. Developer Guides 235

http://www.freedesktop.org/software/systemd/man/systemd.special.html#sockets.target

Twisted Documentation, Release 23.8.0

Start and enable the socket

You can now start systemd listening on the socket with the following command:

[$ sudo systemctl start www.example.com.socket

This command refers specifically to the socket configuration file, not the service file.

systemd should now be listening on port 80

$ systemctl status www.example.com.socket

www.example.com.socket
Loaded: loaded (/etc/systemd/system/www.example.com.socket; disabled)
Active: active (listening) since Tue 2013-01-29 14:53:17 GMT; 7s ago

Jan 29 14:53:17 zorin.lan systemd[1]: Listening on www.example.com.socket.

But twistd should not yet have started. You can verify this using the systemctl command. eg

$ systemctl status www.example.com.service

www.example.com.service - Example Web Server
Loaded: loaded (/etc/systemd/system/www.example.com.service; static)
Active: inactive (dead) since Tue 2013-01-29 14:48:42 GMT; 6min ago

Enable the socket, so that it will be started automatically with the other socket activated services during boot up.

$ sudo systemctl enable www.example.com.socket
In -s '/etc/systemd/system/www.example.com.socket' '/etc/systemd/system/sockets.target.
—wants/www.example.com.socket'

Activate the port to start the service

Now try connecting to http://localhost:80 in your web browser.

systemd will accept the connection and start twistd, passing it the listening socket. You can verify this by using
systemctl to report the status of the service. eg

$ systemctl status www.example.com.service
www.example.com.service - Example Web Server

Loaded: loaded (/etc/systemd/system/www.example.com.service; static)

Active: active (running) since Tue 2013-01-29 15:02:20 GMT; 3s ago

Main PID: 25605 (twistd)
CGroup: name=systemd:/system/www.example.com.service
L-25605 /usr/bin/python /usr/bin/twistd --nodaemon --pidfile= web --

—port systemd:domain=INET:name=my-web-port --path .

Jan 29 15:02:20 zorin.lan systemd[1]: Started Example Web Server.

Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Log opened.

Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] twistd 12.1.0 (/
—usr/bin/python 2.7.3) starting up.

Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] reactor class:..
—twisted.internet.epollreactor.EPollReactor.

Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Site starting on 80

(continues on next page)

236 Chapter 2. Twisted Core

http://localhost:80

Twisted Documentation, Release 23.8.0

(continued from previous page)

Jan 29 15:02:20 zorin.lan twistd[25605]: 2013-01-29 15:02:20+0000 [-] Starting factory
—<twisted.web.server.Site instance at 0x24be758>

Conclusion

In this tutorial you have learned how to deploy a Twisted service using systemd. You have also learned how the service
can be started on demand, using socket activation.

Limitations and Known Issues

1. Twisted can not accept datagram sockets from systemd.

2. Twisted does not support listening for SSL connections on sockets inherited from systemd.
Further Reading

* systemd Documentation

2.1.28 Logging with twisted.logger

The Basics

Logging consists of two main endpoints: applications that emit events, and observers that receive and handle those
events. An event is simply a dict object containing the relevant data that describes something interesting that has
occurred in the application. For example: a web server might emit an event after handling each request that includes
the URI of requested resource, the response’s status code, a count of bytes transferred, and so on. All of that information
might be contained in a pair of objects representing the request and response, so logging this event could be as simple
as:

[109 .info(request=request, response=response)

The above API would seem confusing to users of many logging systems, which are built around the idea of emitting
strings to a file. There is, after all, no string in the above call. In such systems, one might expect the API to look like
this instead:

log.info(

status= , bytes= , etc...
.format (uri=request.uri, status=response.code, size=response.size)

Here, a string is rendered by formatting data from our request and response objects. The string can be easily appended
to a log file, to be later read by an administrator, or perhaps teased out via some scripts or log gathering tools.

One disadvantage to this is that a strings meant to be human-readable are not necessarily easy (or even possible) for
software to handle reliably. While text files are a common medium for storing logs, one might want to write code that
notices certain types of events and does something other than store the event.

In the web server example, if many requests from a given IP address are resulting in failed authentication, someone
might be trying to break in to the server. Perhaps blocking requests from that IP address would be useful. An observer
receiving the above event as a string would have to resort to parsing the string to extract the relevant information,
which may perform poorly and, depending on how well events are formatted, it may also be difficult to avoid bugs.

2.1. Developer Guides 237

http://www.freedesktop.org/wiki/Software/systemd/

Twisted Documentation, Release 23.8.0

Additionally, any information not encoded into the string is simply unavailable; if the IP address isn’t in the string, it
cannot be obtained from the event.

However, if the request and response objects are available to the observer, as in the first example, it would be possible
to write an observer that accessed any attributes of those objects. It would also be a lot easier to write an observer that
emitted structured information by serializing these objects into a format such as JSON, rows in a database, etc.

Events-as-strings do have the advantage that it’s obvious what an observer that writes strings, for example to a file,
would emit. We can solve this more flexibly by providing an optional format string in events that can be used for this
purpose:

log.info(

status= , bytes= , etc...",
request=request, response=response

Note that this looks very much like the events-as-strings version of the API, except that the string is not rendered by the
caller; we leave that to the observer, if and when it is needed . The observer also has direct access to the request and
response objects, as well as their attributes. Now a text-based observer can format the text in a prescribed way, and an
observer that wants to handle these events in some other manner can do so as well.

Usage for emitting applications

The first thing that an application that emits logging events needs to do is to instantiate a Logger object, which provides
the API to emit events. A Logger may be created globally for a module:

from twisted.logger import Logger
log = Logger()

def handleData(data):
log.debug("Got data: .", data=data)

A Logger can also be associated with a class:

from twisted.logger import Logger

class Foo(object):
log = Logger()

def oops(self, data):
self.log.error(
"Oops! Invalid data from server: ,
data=data

When associated with a class in this manner, the "log_source" key is set in the event. For example:

logsource.py

from twisted.logger import Logger

class MyObject:
log = Logger()

(continues on next page)

238 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

(continued from previous page)

def __init__(self, value):
self.value = value

def doSomething(self, something):
self.log.info(
"Object with value doing R
something=something,

MyObject(7) .doSomething("a task")

This example will show the string “object with value 7 doing a task” because the log_source key is automatically set
to the MyObject instance that the Logger is retrieved from.

Capturing Failures

Logger provides a failure method, which allows one to capture a Failure object conveniently:

from twisted.logger import Logger
log = Logger()

try:
1/0

except BaseException:
log.failure("Math is hard!")

The emitted event will have the "1og_failure" key set, which is a Failure that captures the exception. This can be
used by my observers to obtain a traceback. For example, FileLogObserver will append the traceback to it’s output:

Math is hard!

Traceback (most recent call last):
--- <exception caught here> ---
File "/tmp/test.py", line 8, in <module>
1/0
exceptions.ZeroDivisionError: integer division or modulo by zero

Note that this API is meant to capture unexpected and unhandled errors (that is: bugs, which is why tracebacks are
preserved). As such, it defaults to logging at the critical level. It is generally more appropriate to instead use
log.error() when logging an expected error condition that was appropriately handled by the software.

2.1. Developer Guides 239

Twisted Documentation, Release 23.8.0

Namespaces

All Logger s have a namespace, which can be used to categorize events. Namespaces may be specified by passing
in a namespace argument to Logger ‘s initializer, but if none is given, the logger will derive its namespace from the
module name of the callable that instantiated it, or, in the case of a class, from the fully qualified name of the class. A
Logger will add a 1og_namespace key to the events it emits.

In the first example above, the namespace would be some.module , and in the second example, it would be some.
module.Foo .

Log levels

Logger s provide a number of methods for emitting events. These methods all have the same signature, but each will
attach a specific 1og_level key to events. Log levels are defined by the LogLevel constants container. These are:

debug

Debugging events: Information of use to a developer of the software, not generally of interest to someone
running the software unless they are attempting to diagnose a software issue.

info

Informational events: Routine information about the status of an application, such as incoming connec-
tions, startup of a subsystem, etc.

warn

Warning events: Events that may require greater attention than informational events but are not a systemic
failure condition, such as authorization failures, bad data from a network client, etc. Such events are of
potential interest to system administrators, and should ideally be phrased in such a way, or documented,
so as to indicate an action that an administrator might take to mitigate the warning.

error

Error conditions: Events indicating a systemic failure. For example, resource exhaustion, or the loss of
connectivity to an external system, such as a database or API endpoint, without which no useful work
can proceed. Similar to warnings, errors related to operational parameters may be actionable to system
administrators and should provide references to resources which an administrator might use to resolve
them.

critical

Critical failures: Errors indicating systemic failure (ie. service outage), data corruption, imminent data
loss, etc. which must be handled immediately. This includes errors unanticipated by the software, such as
unhandled exceptions, wherein the cause and consequences are unknown.

In the first example above, the call to log.debug will add a 1og_level key to the emitted event with a value of
LogLevel.debug . In the second example, calling self.log.error would use a value of LogLevel.error .

The above descriptions are simply guidance, but it is worth noting that log levels have a reduced value if they are used
inconsistently. If one module in an application considers a message informational, and another module considers a
similar message an error, then filtering based on log levels becomes harder. This is increasingly likely if the modules
in question are developed by different parties, as will often be the case with externally source libraries and frameworks.
(If a module tends to use higher levels than another, namespaces may be used to calibrate the relative use of log levels,
but that is obviously suboptimal.) Sticking to the above guidelines will hopefully help here.

240 Chapter 2. Twisted Core

Twisted Documentation, Release 23.8.0

Emitter method signatures

The emitter methods (debug , info , warn , etc.) all take an optional format string as a first argument, followed by
keyword arguments that will be included in the emitted event.

Note that all three examples in the opening section of this HOWTO fit this signature. The first omits the format, which
doesn’t lend itself well to text logging. The second omits the keyword arguments, which hostile to anything other than
text logging, and is therefore ill-advised. Finally, the third provides both, which is the recommended usage.

These methods are all convenience wrappers around the emit method, which takes a LogLevel as its first argument.

Format strings

Format strings provide observers with a standard way to format an event as text suitable for a human being to read.
Formatting is accomplished using the function eventAsText. When writing a format string, take care to present it
in a manner which would make as much sense as possible to a human reader. Particularly, format strings need not be
written with an eye towards parseability or machine-readability. If you want to save your log events along with their
structure and then analyze them later, see the next section, on “saving events for later”

Format strings should be

unicode , and use PEP 3101 syntax to describe how the event should be rendered as human-readable text. For legacy
support and convenience in python 2, UTF-8-encoded bytes are also accepted for format strings, but unicode is pre-
ferred. There are two variations from PEP 3101 in the format strings used by this module:

1. Positional (numerical) field names (eg. {0}) are not permitted. Event keys are not ordered, which means
positional field names do not make sense in this context. However, this is not an accidental limitation, but an
intentional design decision. As software evolves, log messages often grow to include additional information,
while still logging the same conceptual event. By using meaningful names rather than opaque indexes for event
keys, these identifiers are more robust against future changes in the format of messages and the information
pr